首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Ascospore formation in yeast is accomplished through a cell division in which daughter nuclei are engulfed by newly formed plasma membranes, termed prospore membranes. Closure of the prospore membrane must be coordinated with the end of meiosis II to ensure proper cell division. AMA1 encodes a meiosis-specific activator of the anaphase promoting complex (APC). The activity of APCAma1 is inhibited before meiosis II, but the substrates specifically targeted for degradation by Ama1 at the end of meiosis are unknown. We show here that ama1Δ mutants are defective in prospore membrane closure. Ssp1, a protein found at the leading edge of the prospore membrane, is stabilized in ama1Δ mutants. Inactivation of a conditional form of Ssp1 can partially rescue the sporulation defect of the ama1Δ mutant, indicating that an essential function of Ama1 is to lead to the removal of Ssp1. Depletion of Cdc15 causes a defect in meiotic exit. We find that prospore membrane closure is also defective in Cdc15 and that this defect can be overcome by expression of a form of Ama1 in which multiple consensus cyclin-dependent kinase phosphorylation sites have been mutated. These results demonstrate that APCAma1 functions to coordinate the exit from meiosis II with cytokinesis.  相似文献   

2.
The de novo formation of multilayered spore walls inside a diploid mother cell is a major landmark of sporulation in the yeast Saccharomyces cerevisiae. Synthesis of the dityrosine-rich outer spore wall takes place toward the end of this process. Bisformyl dityrosine, the major building block of the spore surface, is synthesized in a multistep process in the cytoplasm of the prospores, transported to the maturing wall, and polymerized into a highly cross-linked macromolecule on the spore surface. Here we present evidence that the sporulation-specific protein Dtr1p (encoded by YBR180w) plays an important role in spore wall synthesis by facilitating the translocation of bisformyl dityrosine through the prospore membrane. DTR1 was identified in a genome-wide screen for spore wall mutants. The null mutant accumulates unusually large amounts of bisformyl dityrosine in the cytoplasm and fails to efficiently incorporate this precursor into the spore surface. As a result, many mutant spores have aberrant surface structures. Dtr1p, a member of the poorly characterized DHA12 (drug:H+ antiporter with 12 predicted membrane spans) family, is localized in the prospore membrane throughout spore maturation. Transport by Dtr1p may not be restricted to its natural substrate, bisformyl dityrosine. When expressed in vegetative cells, Dtr1p renders these cells slightly more resistant against unrelated toxic compounds, such as antimalarial drugs and food-grade organic acid preservatives. Dtr1p is the first multidrug resistance protein of the major facilitator superfamily with an assigned physiological role in the yeast cell.  相似文献   

3.
4.
5.
During sporulation and meiosis of budding yeast a developmental program determines the formation of the new plasma membranes of the spores. This process of prospore membrane (PSM) formation leads to the formation of meiotic daughter cells, the spores, within the lumen of the mother cell. It is initiated at the spindle pole bodies during meiosis II. Spore formation, but not meiotic cell cycle progression, requires the function of phospholipase D (PLD/Spo14). Here we show that PLD/Spo14 forms a complex with Sma1, a meiotically expressed protein essential for spore formation. Detailed analysis revealed that both proteins are required for early steps of prospore membrane assembly but with distinct defects in the respective mutants. In the Deltaspo14 mutant the initiation of PSM formation is blocked and aggregated vesicles of homogenous size are detected at the spindle pole bodies. In contrast, initiation of PSM formation does occur in the Deltasma1 mutant, but the enlargement of the membrane is impaired. During PSM growth both Spo14 and Sma1 localize to the membrane, and localization of Spo14 is independent of Sma1. Biochemical analysis revealed that Sma1 is not necessary for PLD activity per se and that PLD present in a complex with Sma1 is highly active. Together, our results suggest that yeast PLD is involved in two distinct but essential steps during the regulated vesicle fusion necessary for the assembly of the membranous encapsulations of the spores.  相似文献   

6.
During the sporulation process of Saccharomyces cerevisiae, meiotic progression is accompanied by de novo formation of the prospore membrane inside the cell. However, it remains to be determined whether certain species of lipids are required for spore formation in yeast. In this study, we analyzed the requirement of the synthesis of phosphatidylethanolamine (PE), phosphatidylcholine (PC), and ergosterol for spore formation using strains in which the synthesis of these lipids can be controlled. When synthesis of PE and PC was repressed, sporulation efficiency decreased. This suggests that synthesis of these phospholipids is vital to proper sporulation. In addition, sporulation was also impaired in cells with a lowered sterol content, raising the possibility that sterol content is also important for spore formation.  相似文献   

7.
The creation of haploid gametes in yeast, termed spores, requires the de novo formation of membranes within the cytoplasm. These membranes, called prospore membranes, enclose the daughter nuclei generated by meiosis. Proper growth and closure of prospore membranes require the highly conserved Vps13 protein. Mutation of SPO71, a meiosis-specific gene first identified as defective in spore formation, was found to display defects in membrane morphogenesis very similar to those seen in vps13Δ cells. Specifically, prospore membranes are smaller than in the wild type, they fail to close, and membrane vesicles are present within the prospore membrane lumen. As in vps13Δ cells, the levels of phophatidylinositol-4-phosphate are reduced in the prospore membranes of spo71Δ cells. SPO71 is required for the translocation of Vps13 from the endosome to the prospore membrane, and ectopic expression of SPO71 in vegetative cells results in mislocalization of Vps13. Finally, the two proteins can be coprecipitated from sporulating cells. We propose that Spo71 is a sporulation-specific partner for Vps13 and that they act in concert to regulate prospore membrane morphogenesis.  相似文献   

8.
Saccharomyces cerevisiae contains two SNAP25 paralogues, Sec9 and Spo20, which mediate vesicle fusion at the plasma membrane and the prospore membrane, respectively. Fusion at the prospore membrane is sensitive to perturbation of the central ionic layer of the SNARE complex. Mutation of the central glutamine of the t-SNARE Sso1 impaired sporulation, but does not affect vegetative growth. Suppression of the sporulation defect of an sso1 mutant requires expression of a chimeric form of Spo20 carrying the SNARE helices of Sec9. Mutation of two residues in one SNARE domain of Spo20 to match those in Sec9 created a form of Spo20 that restores sporulation in the presence of the sso1 mutant and can replace SEC9 in vegetative cells. This mutant form of Spo20 displayed enhanced activity in in vitro fusion assays, as well as tighter binding to Sso1 and Snc2. These results demonstrate that differences within the SNARE helices can discriminate between closely related SNAREs for function in vivo.  相似文献   

9.
Formation of ascospores in the yeast Saccharomyces cerevisiae is driven by an unusual cell division in which daughter nuclei are encapsulated within de novo-formed plasma membranes, termed prospore membranes. Generation of viable spores requires that cytoplasmic organelles also be captured along with nuclei. In mitotic cells segregation of mitochondria into the bud requires a polarized actin cytoskeleton. In contrast, genes involved in actin-mediated transport are not essential for sporulation. Instead, efficient segregation of mitochondria into spores requires Ady3p, a component of a protein coat found at the leading edge of the prospore membrane. Other organelles whose mitotic segregation is promoted by actin, such as the vacuole and the cortical endoplasmic reticulum, are not actively segregated during sporulation but are regenerated within spores. These results reveal that organellar segregation into spores is achieved by mechanisms distinct from those in mitotic cells.  相似文献   

10.
During sporulation in Saccharomyces cerevisiae, the dityrosine transporter Dtr1p, which is required for formation of the outermost layer of the spore wall, is specifically expressed and transported to the prospore membrane, a novel double-lipid-bilayer membrane. Dtr1p consists of 572 amino acids with predicted N- and C-terminal cytoplasmic extensions and 12 transmembrane domains. Dtr1p missing the largest internal cytoplasmic loop was trapped in the endoplasmic reticulum in both mitotically dividing cells and cells induced to sporulate. Deletion of the carboxyl 15 amino acids, but not the N-terminal extension of Dtr1p, resulted in a protein that failed to localize to the prospore membrane and was instead observed in cytoplasmic puncta. The puncta colocalized with a cis-Golgi marker, suggesting that Dtr1p missing the last 15 amino acids was trapped in an early Golgi compartment. Deletion of the C-terminal 10 amino acids resulted in a protein that localized to the prospore membrane with a delay and accumulated in cytoplasmic puncta that partially colocalized with a trans-Golgi marker. Both full-length Dtr1p and Dtr1p missing the last 10 amino acids expressed in vegetative cells localized to the plasma membrane and vacuoles, while Dtr1p deleted for the carboxyl-terminal 15 amino acids was observed only at vacuoles, suggesting that transport to the prospore membrane is mediated by distinct signals from those that specify plasma membrane localization. Transfer-of-function experiments revealed that both the carboxyl transmembrane domain and the C-terminal tail are important for Golgi complex-to-prospore membrane transport.  相似文献   

11.
In the yeast Saccharomyces cerevisiae, cells undergoing sporulation form prospore membranes to surround their meiotic nuclei. The prospore membranes ultimately become the plasma membranes of the new cells. The putative phospholipase Spo1 and the tandem Pleckstrin Homology domain protein Spo71 have previously been shown to be required for prospore membrane development, along with the constitutively expressed Vps13 involved in vacuolar sorting. Here, we utilize genetic analysis, and find that SPO73 is required for proper prospore membrane shape and, like SPO71, is necessary for prospore membrane elongation. Additionally, similar to SPO71, loss of SPO73 partially suppresses spo1Δ. Spo73 localizes to prospore membranes and complexes with Spo71. We also find that phosphatidylserine localizes to the prospore membrane. Our results suggest a model where SPO71 and SPO73 act in opposition to SPO1 to form and elongate prospore membranes, while VPS13 plays a distinct role in prospore membrane development.  相似文献   

12.
Nickas ME  Neiman AM 《Genetics》2002,160(4):1439-1450
Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Delta/ady3Delta asci that do form contain fewer than four spores. The sporulation defect in ady3Delta/ady3Delta cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Delta/ady3Delta cells. In mpc70Delta/mpc70Delta cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation.  相似文献   

13.
The mechanisms that control the size and shape of membranes are not well understood, despite the importance of these structures in determining organelle and cell morphology. The prospore membrane, a double lipid bilayer that is synthesized de novo during sporulation in S. cerevisiae, grows to surround the four meiotic products. This membrane determines the shape of the newly formed spores and serves as the template for spore wall deposition. Ultimately, the inner leaflet of the prospore membrane will become the new plasma membrane of the cell upon germination. Here we show that Spo71, a pleckstrin homology domain protein whose expression is induced during sporulation, is critical for the appropriate growth of the prospore membrane. Without SPO71, prospore membranes surround the nuclei but are abnormally small, and spore wall deposition is disrupted. Sporulating spo71Δ cells have prospore membranes that properly localize components to their growing leading edges yet cannot properly localize septin structures. We also found that SPO71 genetically interacts with SPO1, a gene with homology to the phospholipase B gene that has been previously implicated in determining the shape of the prospore membrane. Together, these results show that SPO71 plays a critical role in prospore membrane development.  相似文献   

14.
Cell reproduction is a complex process involving whole cell structures and machineries in space and time, resulting in regulated distribution of endomembranes, organelles, and genomes between daughter cells. Secretory pathways supported by the activity of the Golgi apparatus play a crucial role in cytokinesis in plants. From the onset of phragmoplast initiation to the maturation of the cell plate, delivery of secretory vesicles is necessary to sustain successful daughter cell separation. Tethering of secretory vesicles at the plasma membrane is mediated by the evolutionarily conserved octameric exocyst complex. Using proteomic and cytologic approaches, we show that EXO84b is a subunit of the plant exocyst. Arabidopsis thaliana mutants for EXO84b are severely dwarfed and have compromised leaf epidermal cell and guard cell division. During cytokinesis, green fluorescent protein–tagged exocyst subunits SEC6, SEC8, SEC15b, EXO70A1, and EXO84b exhibit distinctive localization maxima at cell plate initiation and cell plate maturation, stages with a high demand for vesicle fusion. Finally, we present data indicating a defect in cell plate assembly in the exo70A1 mutant. We conclude that the exocyst complex is involved in secretory processes during cytokinesis in Arabidopsis cells, notably in cell plate initiation, cell plate maturation, and formation of new primary cell wall.  相似文献   

15.
Neiman AM 《Genetics》2011,189(3):737-765
In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae.  相似文献   

16.
During the sporulation process of Saccharomyces cerevisiae, meiotic progression is accompanied by de novo formation of the prospore membrane inside the cell. However, it remains to be determined whether certain species of lipids are required for spore formation in yeast. In this study, we analyzed the requirement of the synthesis of phosphatidylethanolamine (PE), phosphatidylcholine (PC), and ergosterol for spore formation using strains in which the synthesis of these lipids can be controlled. When synthesis of PE and PC was repressed, sporulation efficiency decreased. This suggests that synthesis of these phospholipids is vital to proper sporulation. In addition, sporulation was also impaired in cells with a lowered sterol content, raising the possibility that sterol content is also important for spore formation.  相似文献   

17.
The highly conserved family of septin proteins has important functions in cytokinesis in mitotically proliferating cells. A different form of cytokinesis occurs during gametogenesis in Saccharomyces cerevisiae, in which four haploid meiotic products become encased by prospore membrane (PSMs) and specialized, stress-resistant spore walls. Septins are known to localize in a series of structures near the growing PSM, but previous studies noted only mild sporulation defects upon septin mutation. We report that directed PSM extension fails in many septin-mutant cells, and, for those that do succeed, walls are abnormal, leading to increased susceptibility to heating, freezing, and digestion by the Drosophila gut. Septin mutants mislocalize the leading-edge protein (LEP) complex required for normal PSM and wall biogenesis, and ectopic expression of the LEP protein Ssp1 perturbs mitotic septin localization and function, suggesting a functional interaction. Strikingly, extra copies of septin CDC10 rescue sporulation and LEP localization in cells lacking Sma1, a phospholipase D–associated protein dispensable for initiation of PSM assembly and PSM curvature but required for PSM extension. These findings point to key septin functions in directing efficient membrane and cell wall synthesis during budding yeast gametogenesis.  相似文献   

18.
ADP-ribosylation factor (ARF) proteins in Saccharomyces cerevisiae are encoded by two genes, ARF1 and ARF2. The addition of the c-myc epitope at the C terminus of Arf1 resulted in a mutant (arf1-myc arf2) that supported vegetative growth and rescued cells from supersensitivity to fluoride, but homozygous diploids failed to sporulate. arf1-myc arf2 mutants completed both meiotic divisions but were unable to form spores. The SPO14 gene encodes a phospholipase D (PLD), whose activity is essential for mediating the formation of the prospore membrane, a prerequisite event for spore formation. Spo14 localized normally to the developing prospore membrane in arf1-myc arf2 mutants; however, the synthesis of the membrane was attenuated. This was not a consequence of reduced PLD catalytic activity, because the enzymatic activity of Spo14 was unaffected in meiotic arf1-myc arf2 mutants. Although potent activators of mammalian PLD1, Arf1 proteins did not influence the catalytic activities of either Spo14 or ScPld2, a second yeast PLD. These results demonstrate that ARF1 is required for sporulation, and the mitotic and meiotic functions of Arf proteins are not mediated by the activation of any known yeast PLD activities. The implications of these results are discussed with respect to current models of Arf signaling.  相似文献   

19.
Sporulation of Saccharomyces cerevisiae is a developmental process in which four haploid spores are generated inside a diploid cell. Gip1, a sporulation-specific targeting subunit of protein phosphatase type 1, together with its catalytic subunit, Glc7, colocalizes with septins along the extending prospore membrane and is required for septin organization and spore wall formation. However, the mechanism by which Gip1-Glc7 phosphatase promotes these events is unclear. We show here that Ysw1, a sporulation-specific coiled-coil protein, has a functional relationship to Gip1-Glc7 phosphatase. Overexpression of YSW1 partially suppresses the sporulation defect of a temperature-sensitive allele of gip1. Ysw1 interacts with Gip1 in a two-hybrid assay, and this interaction is required for suppression. Ysw1 tagged with green fluorescent protein colocalizes with septins and Gip1 along the extending prospore membrane during spore formation. Sporulation is partially defective in ysw1Δ mutant, and cytological analysis revealed that septin structures are perturbed and prospore membrane extension is aberrant in ysw1Δ cells. These results suggest that Ysw1 functions with the Gip1-Glc7 phosphatase to promote proper septin organization and prospore membrane formation.Diploid cells of Saccharomyces cerevisiae subjected to nitrogen limitation in the presence of a nonfermentable carbon source undergo the developmental process of sporulation (14, 23, 35). Four nuclei produced by two rounds of nuclear division, meiosis I and II, are encapsulated by newly formed double-membrane structures, called prospore membranes, and are finally packaged into spores covered with layered spore walls (35).In this process, prospore membrane formation is one of the most dynamic events. Early in meiosis II, the cytoplasmic surface of the meiotic spindle pole body (SPB) is modified by the recruitment of sporulation-specific protein complex that acts as a site of vesicle recruitment (2, 22, 39). Post-Golgi secretory vesicles dock to the surface of the SPBs and fuse with each other, generating prospore membranes (33, 34). The prospore membranes then grow to engulf daughter nuclei through a series of stages that are categorized by the membranes'' appearance in the fluorescence microscope (12). Initially, the membranes appear as small horseshoes that enlarge to become small round membrane structures. The prospore membranes then extend into a tube-like shape, engulfing the nucleus, as well as some cytosol and organelles (12). After this extension, prospore membrane undergoes a rapid change to a mature round form. This rounding of the membrane is coordinated with membrane closure (12). Spore wall materials are then deposited into the luminal space created by closure of the prospore membrane (9).In addition to the meiotic plaque of the SPB, two protein complexes are associated with the prospore membrane as it forms. One is the leading edge protein complex, which exists at the lip of the prospore membranes and consists of three components: Ssp1, Ady3, and Don1 (27, 30, 38). Ssp1 is the most important of the three and is required for proper extension of the prospore membrane (30). The second complex is a sporulation-specific septin structure. The septins are a family of cytoskeletal proteins, which form filaments (18, 50). Septins are conserved from yeast to mammals. They were originally found and have been extensively studied in S. cerevisiae. In vegetatively growing S. cerevisiae cells, five septin proteins—Cdc3, Cdc10, Cdc11, Cdc12, and Shs1—form a ring at the bud neck that serves as a scaffold for many additional proteins, as well as a barrier to diffusion of proteins between the mother and the bud (19, 29, 50). In sporulating cells, the set of septin proteins is changed. Cdc3 and Cdc10, along with two sporulation-specific septins, Spr3 and Spr28, form a pair of parallel bars or sheets associated with each prospore membrane (11, 15, 29). Although deletion of sporulation-specific septins has only modest effects on sporulation (11, 15), their specific localization suggests that they have some function during prospore membrane formation. Septin organization in vegetatively growing cells is regulated by phosphorylation and dephosphorylation of septin components and septin-associated proteins (29). In sporulating cells, a sporulation-specific protein phosphatase type 1 (PP1) complex Gip1-Glc7 is required for the formation of septin structures (46), although whether this phosphatase acts directly on the septin proteins is unknown.The PP1 catalytic subunit is highly conserved in eukaryotes and is involved in a variety of cellular processes (8, 44). In S. cerevisiae it is encoded by an essential gene, GLC7, and functions in glycogen synthesis, glucose repression, chromosome segregation, cell wall organization, endocytosis, mating, and sporulation (3, 17, 24, 42, 44, 47, 53). The specificity of this enzyme is determined by targeting subunits. GIP1 was originally isolated in a two-hybrid screen by using GLC7 as a bait, and this interaction was confirmed by coimmunoprecipitation of the two proteins (48). GIP1 is a sporulation-specific gene required for sporulation. Further analysis revealed that Gip1 and Glc7 colocalize with septins during sporulation and are required for both septin organization and spore wall formation (46). The specific targets or cofactors of this PP1 complex are unknown.To elucidate the role of Gip1-Glc7 phosphatase, we screened for high-copy suppressors of a temperature-sensitive allele of gip1 and isolated YSW1. Ysw1 interacts with Gip1 and colocalizes with septins similar to Gip1. Furthermore, a ysw1Δ mutant displays aberrant septin structures and prospore membrane extension. These results suggest that Ysw1 may function with Gip1-Glc7 to regulate proper septin organization and prospore membrane formation.  相似文献   

20.
Mexican isolates ofPaecilomyces fumosoroseus (Wize) Brown & Smith virulent to nymphs and adults ofBemisia tabaci Gennadius (Homoptera: Aleyrodidae) were screened in terms of spore production in submerged culture. Effects of light, temperature stress and yeast extract on sporulation were studied. Cycles of 12 hours light/12 hours dark increased spore production as well as an incubation for 24 hours at 37°C prior to incubation at 30°C. In absence of organic nitrogen both fungal growth and sporulation were very low. Spore production in fermentors with a culture media of a C:N ratio of 25 was doubled as compared to a media with a C:N ratio of 11. Both conidia and blastospores were produced. Production of conidia directly from blastospores through microcyclic sporulation was observed. The proportion of conidia obtained under optimal conditions was 88.8%. Submerged culture ofP. fumosoroseus seemed advantageous compared to ricefilled plastic bags production method because of shorter fermentation times, higher spore yields and substantially higher volumetric spore productivity. Results indicated that careful manipulation of nutritional and environmental conditions allowed for production of conidia during submerged growth ofP. fumosoroseus, microcyclic sporulation being induced under a set of environmental conditions including temperature stress and nutrients limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号