首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cockayne syndrome (CS) is an autosomal recessive disorder with dwarfism, mental retardation, sun sensitivity and a variety of other features. Cultured CS cells are hypersensitive to ultraviolet (UV) light, and following UV irradiation, CS cells are unable to restore RNA synthesis rates to normal levels. This has been attributed to a specific deficiency in CS cells in the ability to repair damage in actively transcribed regions of DNA at the rapid rate seen in normal cells. We have used the failure of recovery of RNA synthesis, following UV irradiation of CS cells, in a complementation test. Cells of different CS donors are fused. Restoration of normal RNA synthesis rates in UV-irradiated heterodikaryons indicates that the donors are in different complementation groups, whereas a failure to effect this recovery implies that they are in the same group. In an analysis of cell strains from 22 CS donors from several countries and different racial groups, we have assigned five cell strains to the CS-A group and the remaining 17 to CS-B. No obvious racial, clinical or cellular distinctions could be made between individuals in the two groups. Our analysis will assist the identification of mutations in the recently cloned CSA and CSB genes and the study of structure-function relationships. Received: 19 June 1995  相似文献   

2.
3.
2 mutant mouse cells M10 and Q31 were examined for chromosomal aberrations induced by ultraviolet radiation (UV) and 4-nitroquinoline-1-oxide (4NQO), as compared with mouse lymphoma L5178Y cells. Q31 cells are UV- and 4NQO-sensitive cells isolated from L5178Y cells. M10 cells are similar but are sensitive to ionizing radiation and 4NQO. After treatment with UV or 4NQO, chromatid-type aberrations in these cell strains were induced more frequently in the first mitotic cells, at late fixation times. After UV exposure (2.4 J/m2), the maximal frequencies of chromatid-type breaks in Q31 cells were about 5 times higher than in L5178Y cells. In M10 cells such breaks were only as frequent as in L5178Y cells. After 4NQO treatment (50 ng/ml) the frequencies of chromatid-type breaks in M10 and Q31 cells were significantly higher than in L5178Y cells. From these results and those of previous studies (Takahashi et al., 1982), M10 cells may be considered hypersensitive to gamma-rays and 4NQO, but not to UV, and thus react similarly to L5178Y cells. The hypersensitivity of M10 cells to 4NQO may result from a defect in the ionizing-radiation repair mechanism as has been suggested to occur in ataxia telangiectasia (AT) cells. Q31 cells are hypersensitive to UV and 4NQO, but not to gamma-rays. Q31 cells may be considered to be deficient in a UV-like repair pathway. In conclusion, characteristics of murine M10 and Q31 cells are compared with those of human AT and xeroderma pigmentosum (XP) cells.  相似文献   

4.
There was investigated one of the mechanisms of adaptive response, related to chromosome aberrations induced by gamma-rays, in lymphocytes of healthy donors and donors with hereditary diseases (Marfan's syndrome and homocystinurea) whose cells are repair-deficient. 3H-thymidine treatment was used as an adaptive dose in G1-period of cell cycle and 8-methoxypsoralen (8-MOP), activated with UV-light, was used as a challenge agents. Cells of healthy donors and cells of patients with Marfan's syndrome had normal adaptive response in relation to gamma-irradiation and photomutagenic action of 8-MOP. There was no induction of adaptive response in realation to gamma-irradiation and 8-MOP photomutagenic action in cells of patients with homocystinurea. The cells from donors characterised with normal repair system and lack of adaptive response 8-MOP photomutagenic action wasn't modified by 3H-thymidine. We have found parallelism of adaptive response protective effect against chromosome aberrations, induced by UV activated 8-MOP and gamma-rays in repair proficient cells of healthy donors and repair deficient cells of patients with Marfan's syndrome. These data lead us to conclusion that mechanism of adaption, at least in some cases has no connection with repair process modification.  相似文献   

5.
A uniform response to UV of four normal cell strains was demonstrated. One excision-proficient xeroderma pigmentosum variant strain (XP7TA) had a wild-type UV response but a second (XP30RO) was more sensitive. An excision-deficient xeroderma pigmentosum strain XP4L0 was substantially more sensitive than wild-type cell strains. A continuous post-irradiation treatment with non-toxic levels of caffeine enhanced the lethal effect of UV light in both xeroderma pigmentosum variant cell strains but not in cells from normal individuals. There was no detectable effect on cells from a xeroderma pigmentosum individual from complementation group A. These results correlate well with observations on the influence of caffeine on post-replication repair in the three classes of cells.  相似文献   

6.
Cordycepin (3'-deoxyadenosine, 3'-dA) is an RNA antimetabolite and a radiosensitizer in cultured mammalian cells. In the present paper, the effects of 3'-dA on gamma-ray-induced lethality and 6-thioguanine (6TG)-resistant mutations in cultured Chinese hamster V79 cells were examined. 3'-dA had the effect of sensitizing the lethality induced by gamma-rays. The potentially lethal damage (PLD) repair produced by post-incubation of cells in Hanks' solution after gamma-irradiation was almost completely suppressed by 5 x 10(-5) M 3'-dA. When cells were irradiated with 10 Gy gamma-rays and incubated with 3'-dA for 5 h, the frequency of 6TG-resistant mutations induced by gamma-rays decreased to one-sixth of that of irradiated cells incubated without 3'-dA. The decrease in the frequency of gamma-ray-induced mutations was dependent on the length of incubation time with 3'-dA. It is suggested that the inhibition of PLD repair by 3'-dA may be that of error-prone repair.  相似文献   

7.
《Mutation Research Letters》1991,262(3):151-157
The extent of DNA-excision repair was determined in human fibroblast strains from clinically normal and xeroderma pigmentosum complementation group A (XP-A) donors after irradiation with 254-nm ultraviolet (UV) light. Repair was monitored by the use of 1-β-d-arabinofuranosylcytosine (araC), a potent inhibitor of DNA synthesis, and alkaline sucrose velocity sedimentation to quantitate DNA single-strand breaks. In this approach, the number of araC-accumulated breaks in post-UV incubated cultures becomes a measure of the efficiency of a particular strain to perform long-patch excision repair. The maximal rate of removal of araC-detectable DNA lesions equalled ∼ 1.8 sites/108 dalton/h in the normal strains (GM38, GM43), while it was more than 10-fold lower in both XP-A strains (XP4LO, XP12BE) examined. In normal fibroblasts the number of lesions removed during the first 4 h after irradiation saturated at ∼ 10 J/m2. In contrast, the residual amount of repair in the excision-deficient cells increased as a linear function of UV fluence over a range 5–120 J/m2. Thus we conclude that the repair of araC-detectable UV photoproducts in XP group A fibroblasts is limited by availability of damaged regions in the genome to repair complexes.  相似文献   

8.
Xeroderma pigmentosum (XP) cells are dificient in the repair of damage induced by ultraviolet irradiation. Excision-repair-deficient XP cell strains have been classified into 7 distinct complementation groups, according to results of studies on cell fusion and UV irradiation. XP cells are not only abnormally sensitive to UV, but also to a variety of chemical carcinogens, including 4-nitroquinoline-1-oxide (4NQO). Complementation analysis with XP strains from 4 different complementation groups with respect to the repair of 4NQO-induced DNA damage revealed that the classification of the strains into complementation groups with respect to 4NQO-induced repair coincides with the classification based on the repair of UV damage.  相似文献   

9.
Nucleotide excision repair (NER) removes damage from DNA in a tightly regulated multiprotein process. Defects in NER result in three different human disorders, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS). Two cases with the combined features of XP and CS have been assigned to the XP-D complementation group. Despite their extreme UV sensitivity, these cells appeared to incise their DNA as efficiently as normal cells in response to UV damage. These incisions were, however, uncoupled from the rest of the repair process. Using cell-free extracts, we were unable to detect any incision activity in the neighbourhood of the damage. When irradiated plasmids were introduced into unirradiated XP-D/CS cells, the ectopically introduced damage triggered the induction of breaks in the undamaged genomic DNA. XP-D/CS cells thus have a unique response to sensing UV damage, which results in the introduction of breaks into the DNA at sites distant from the damage. We propose that it is these spurious breaks that are responsible for the extreme UV sensitivity of these cells.  相似文献   

10.
The extent of DNA-excision repair was determined in human fibroblast strains from clinically normal and xeroderma pigmentosum complementation group A (XP-A) donors after irradiation with 254-nm ultraviolet (UV) light. Repair was monitored by the use of 1-beta-D-arabinofuranosylcytosine (araC), a potent inhibitor of DNA synthesis, and alkaline sucrose velocity sedimentation to quantitate DNA single-strand breaks. In this approach, the number of araC-accumulated breaks in post-UV incubated cultures becomes a measure of the efficiency of a particular strain to perform long-patch excision repair. The maximal rate of removal of araC-detectable DNA lesions equalled approximately 1.8 sites/10(8) dalton/h in the normal strains (GM38, GM43), while it was more than 10-fold lower in both XP-A strains (XP4LO, XP12BE) examined. In normal fibroblasts the number of lesions removed during the first 4 h after irradiation saturated at approximately 10 J/m2. In contrast, the residual amount of repair in the excision-deficient cells increased as a linear function of UV fluence over a range 5-120 J/m2. Thus we conclude that the repair of araC-detectable UV photoproducts in XP group A fibroblasts is limited by availability of damaged regions in the genome to repair complexes.  相似文献   

11.
The host-cell reactivation of V antigen production for irradiated adenovirus was examined in fibroblasts from 5 unrelated patients with Cockayne's syndrome (CS) and 2 CS heterozygotes. The fibroblast cultures were infected with either irradiated or non-irradiated adenovirus and subsequently examined for the presence of viral structural antigens using immunofluorescent staining. All CS-homozygous strains showed a reduced host-cell reactivation (HCR) of this viral function for both UV- and γ-irradiated virus. For UV-irradiation of the virus, D37 values expressed as a percentage of that obtained on normal strains, ranged from 14 to 35%. For γ-irradiation of the virus these values ranged from 61 to 80%. These results indicate some defect in the repair of both UV- and γ-ray-induced DNA damage for CS. 1 CS-heterozygote strain tested also showed a reduced HCR for UV-irradiated adenovirus intermediate between that of the patient strain and normal, whereas another CS-heterozygote strain showed an apparently normal HCR level.  相似文献   

12.
The rate of DNA synthesis was studied in normal cell strain and in strains from patients suffering from inherited disorder ataxia telangiectasia (AT). After exposure to reactively low doses of oxic X-rays (0–4 krad) DNA synthesis was depressed in AT cell strains to a significantly lesser extent than in normal cells. This response was observed in both an “excision-deficient” and an “excision-proficient” strain. In contrast, there was no difference in DNA-synthesis inhibition between AT and normal cells after UV exposure. After X-irradiation of cells from patients with xeroderma pigmentosum, both complementation group A and XP variants, the observed rate of DNA synthesis was equal to that in normal cells. An exception was the strain XP3BR which has been shown to be X-ray sensitive. This strain exhibited diminished DNA synthesis inhibition after X-ray doses below 1 krad.These data suggest a relationship between hypersensitivity to X-rays and diminished depression of DNA synthesis.  相似文献   

13.
Two siblings have been reported whose clinical manifestations (cutaneous photosensitivity and central nervous system dysfunction) are strongly reminiscent of the DeSanctis-Cacchione syndrome (DCS) variant of xeroderma pigmentosum (XP), a severe form of XP. Fibroblasts from the siblings showed UV sensitivity, a failure of recovery of RNA synthesis (RRS) after UV irradiation, and a normal level of unscheduled DNA synthesis (UDS), which were, unexpectedly, the biochemical characteristics usually associated with Cockayne syndrome (CS). However, no complementation group assignment in these cells has yet been performed. We here report that these patients can be assigned to CS complementation group B (CSB) by cell fusion complementation analysis. To our knowledge, these are the first patients with defects in the CSB gene to be associated with an XP phenotype. The results imply that the gene product from the CSB gene must interact with the gene products involved in excision repair and associated with XP.  相似文献   

14.
46BR is a fibroblast cell strain established from an individual with hypogammaglobulinaemia. The cells are unique in showing hypersensitivity to the lethal effects of a wide range of DNA-damaging agents. Thus they are hypersensitive to gamma- and 254-nm UV-irradiation and show a limited capacity to repair potentially lethal gamma-irradiation damage when compared with fibroblasts from normal individuals. A slight hypersensitivity to mitomycin C was also revealed but we were not able to discriminate 46BR from normals with 4-nitroquinoline oxide. The cells were hypersensitive to the alkylating agents, dimethyl sulphate, methyl methanesulphonate, ethyl methanesulphonate, N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea but not N-ethyl-N-nitrosourea. A consideration of the spectra of DNA lesions produced by these alkylating agents together with the sensitivity to ionising radiation and mitomycin C suggests that 46BR cells are defective in a repair step that is common to all agents. We suggest that the cells are defective in DNA polymerisation or ligation. Support for this suggestion comes from the absence of any hypersensitivity to N-ethyl-N-nitrosourea since its major reaction products are not removed by excision pathways that require polymerisation and ligation.  相似文献   

15.
Summary We present clinical and biochemical data from three patients with severe Cockayne syndrome (CS) of very early onset. Unlike in classic CS, signs became evident in the first weeks of life and led to unusually early death. Fibroblasts from two of the patients showed a complete defect of the repair of UV-induced thymine dimer lesions. They were unable to remove thymine dimer lesions from their DNA, had a severe reduction of the RNA synthesis rates after UV irradiation, and showed no reactivation of an UV-inactivated indicator gene and no DNA recondensation after UV irradiation. DNA repair investigated in these two fibroblast cell strains resembled that of xeroderma pigmentosum cells of complementation group A. In contrast, fibroblasts from the third patient showed the same in vitro repair characteristics as classic CS cells.  相似文献   

16.
Mouse lymphoma strains L5178Y-R (LY-R) and L5178Y-S (LY-S), which are differentially sensitive to the cytotoxic effects of ionizing radiation, were found to differ in their abilities to repair potentially lethal damage (PLD) and sublethal damage (SLD). The results showed that strain LY-R was more proficient than strain LY-S in the repair of SLD. The split dose recovery observed in strain LY-S could be accounted for by its recovery during postirradiation incubation. In contrast, SLD repair occurred in the absence of PLD repair in strain LY-R. The possibility that the repair of PLD might be completed prior to the postirradiation incubation in strain LY-R was suggested by the decreased survival observed when the cells were irradiated in a hypotonic solution. The repair of PLD and SLD in strain LY-S was temperature sensitive, occurring during postirradiation incubations between 15 and 34 degrees C, but not at 37 or 40 degrees C. This temperature sensitivity is very similar to the temperature sensitivity of the repair of pH 9.6-labile lesions in DNA in strain LY-S, as reported previously. Thus postirradiation cellular recovery processes in strain LY-S may involve the repair of pH 9.6-labile lesions in DNA. Temperature-dependent changes in the postirradiation distribution of cells throughout the cell cycle were observed which could contribute to the temperature sensitivity of the postirradiation recovery of strain LY-S.  相似文献   

17.
18.
DNA repair after UV exposure was studied in multinucleate cells, obtained after fusion of excision-defective and variant xeroderma pigmentosum fibroblasts. Optimal fusion conditions were determined, facilitating the measurement of DNA replication in heterokaryons. In unirradiated multikaryons, entry into the S phase was depressed, when compared with unfused cells. The extent of the depression of S phase entry was dependent on the fusion conditions. In heterokaryons obtained after fusion of XP variant (6 different strains) with excision-defective XP (three cell strains from complementation groups A, C and D) both unscheduled DNA synthesis and postreplication repair after UV irradiation were restored to normal levels. In contrast, complementation was not observed after pairwise fusion of the XP variant cell strains. These results suggest that the XP variants comprise a single complementation group, different from complementation groups A, C and D.  相似文献   

19.
20.
The sensitivity of Bloom's syndrome (bl/bl) fibroblasts to ultraviolet light (254 nm) has been estimated by 4 criteria: sister-chromatid exchange (SCE) formation, micronucleus production, cell survival, and host-cell reactivation of UV-irradiated adenovirus 2. In general, bl/bl strains did not differ significantly from the normal (+/+) strains in their response to UV treatment by any of the 4 criteria. One bl/bl strain, GM1492, was exceptional: It was abnormally sensitive to UV light in the SCE, micronucleus, and host-cell reactivation assays, but was not sensitive to UV as estimated by colony-forming ability. Thus, although one of the bl/bl strains studied in the experiments was sensitive to UV light as judged by some criteria, UV sensitivity is not a universal characteristic of Bloom's syndrome cells. It is nuclear whether the UV sensitivity of the GM1492 strain reflects genetic diversity within the syndrome or some unrelated property of this strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号