首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of plastocyanin in greening bean leaves   总被引:3,自引:0,他引:3       下载免费PDF全文
The plastocyanin content of etiolated bean leaves (Phaseolus vulgaris L.) was measured, and the development of the protein in response to light was followed. Measurements were made by quantitative extraction of plastocyanin and a sensitive assay with an O2 electrode. The electron-paramagnetic-resonance (e.p.r.) signal of oxidized plastocyanin was used as an independent check on the validity of the assay method, and on the thoroughness of extraction. After an initial lag period, the amount of plastocyanin in greening bean leaves increased to reach a maximum after 50h illumination. The chlorophyll/plastocyanin ratio reached a maximum value of 200 irrespective of the light intensity at which greening was carried out, suggesting that the synthesis of the two components is co-ordinated. Experiments involving treatment of etiolated seedlings with brief periods of light of different spectral composition indicated that phytochrome is involved in plastocyanin synthesis. The lack of inhibition of plastocyanin synthesis by specific inhibitors of chloroplast protein synthesis suggests that the protein is synthesized on cytoplasmic ribosomes. The data are discussed in relation to the development of ferredoxin in greening bean leaves.  相似文献   

2.
Biogenesis of the photosynthetic apparatus in greening etiolated leaves of barley (Hordeum vulgare L) was investigated by an approach permitting investigation of this process under conditions that minimize differences in plastid development. Distributions of barley leaves greening for 24 h as to chlorophyll content and of chloroplast grana as to number of thylakoids were shown to be of a multimodal character. The shape of time-course curves of chlorophyll accumulation in local sites of greening etiolated leaves was of a stepped or (at the end of greening) undulated character. The stepwise accumulation of chlorophyll was accompanied by wave-like changes in chlorophyll b/a ratio, intensity of low-temperature chlorophyll fluorescence and photosynthetic activity with minima at the time points of transition to accelerated chlorophyll accumulation. It is assumed that (1) development of the photosynthetic apparatus in local sites of greening etiolated leaves occurs stepwise, from one steady level to another, but not as gradually as is generally accepted, and (2) every separate step in development of the photosynthetic apparatus seems to begin with formation of photosystem cores and to end with the synthesis of light-harvesting complexes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
4.
d(-)threo-Chloramphenicol blocks chlorophyll and plastid protein synthesis in Euglena. During chloroplast development in white light, but not in red, the cells escape from chloramphenicol inhibition and chlorophyll formation is restored. Concomitantly, chloramphenicol is reduced. Reduction of chloramphenicol in an enzyme extract from Euglena requires NADPH and ferredoxin for maximal activity. Methyl viologen replaces ferredoxin, and when chemically reduced, ferredoxin or methyl viologen reduces chloramphenicol directly. This suggests that the enzyme involved is ferredoxin-NADP reductase. In agreement, crude extracts from wild type and W(3)BUL, a mutant lacking detectable plastids and plastid DNA, when separated on acrylamide gels, show a single band which reduces methyl viologen with NADPH, and its mobility is similar in wild type and in mutant W(3)BUL. The reductase is inducible by light and increases 3-fold in wild type in white or red light and 1.5-fold in W(3)BUL in white light. DCMU does not block chloramphenicol reduction in vivo indicating that electrons originate from sources other than photosynthetic electron transport. We infer that chloramphenicol is reduced by ferredoxin which receives electrons via ferredoxin-NADP reductase. The limiting step is not the enzyme but the source of reducing power which can be supplied from the cytoplasm, probably under control of the blue light receptor. Ferredoxin and ferredoxin NADP reductase appear to be coded in the nuclear genome, synthesized on cytoplasmic ribosomes, and join a group of enzymes which cannot be precisely localized, since they may be active anywhere from their site of synthesis in the cytoplasm to their place of deposition in the chloroplast.  相似文献   

5.
Treatment of barley seeds (Hordeum vulgare L.) with streptomycin, an inhibitor of plastid protein synthesis, resulted in growth of the albino phenotype seedlings with ribosome-deficient undifferentiated plastids and chlorophyll (Chl) level as low as 0.1% of that in control plant leaves. A major effect of the antibiotic was almost complete suppression of the ability of plants to synthesize 5-aminolevulinic acid (ALA) intended for Chl biosynthesis. The activity of synthesis of ALA intended for heme porphyrin biosynthesis in etiolated and greening seedlings and in light-grown albinophenotype plants was insensitive to light and cytokinins. In the upper parts of leaves of streptomycin-treated plants, exhibiting 60% Chl deficit, the cells with three types of chloroplasts could be observed: normally developed chloroplasts, chloroplasts composed of single thylakoids and grana, and completely undifferentiated plastids. In this Chl-deficient tissue, ALA synthesis was found to be stimulated by kinetin but much less than in leaves of the control plants. The endogenous cytokinin content in etiolated and greening seedlings treated with streptomycin was almost the same as it was in untreated control seedlings. The cytokinin level in the white tissue of plants grown in the light was on average twice as high as that in green leaves of the control plants. The capability of kinetin to stimulate the synthesis of ALA used for Chl biosynthesis was found to correlate with the Chl content and organization of the chloroplast internal structure. This correlation confirms the hypothesis that the normally developed internal structure of plastids is essential for the adequate phytohormone response in plants.  相似文献   

6.
Electrophoresis of thylakoid membrane polypeptides from Chlamydomonas reinhardi revealed two major polypeptide fractions. But electrophoresis of the total protein of green cells showed that these membrane polypeptides were not major components of the cell. However, a polypeptide fraction whose characteristics are those of fraction c (a designation used for reference in this paper), one of the two major polypeptides of thylakoid membranes, was resolved in the electrophoretic pattern of total protein of green cells. This polypeptide could not be detected in dark-grown, etiolated cells. Synthesis of the polypeptide occurred during greening of etiolated cells exposed to light. When chloramphenicol (final concentration, 200 µg/ml) was added to the medium during greening to inhibit chloroplastic protein synthesis, synthesis of chlorophyll and formation of thylakoid membranes were also inhibited to an extent resulting in levels of chlorophyll and membranes 20–25% of those found in control cells. However, synthesis of fraction c was not affected by the drug. This polypeptide appeared in the soluble fraction of the cell under these conditions, indicating that this protein was synthesized in the cytoplasm as a soluble component. When normally greening cells were transferred from light to dark, synthesis of the major membrane polypeptides decreased. Also, it was found that synthesis of both subunits of ribulose 1, 5-diphosphate carboxylase was inhibited by chloramphenicol, and that synthesis of this enzyme stopped when cells were transferred from light to dark.  相似文献   

7.
Schönbohm, E., Stute, U., Thienhaus, P. and Werner, U. 1988. The stimulating effect of a cold, dark pretreatment on the etioplast/chloroplast transformation of angiosperms I. The stimulating effect of cold predarkening on different stages of greening under white light. - Physiol. Plant. 72: 541–546.
The etioplast/chloroplast transformation in angiosperms is controlled by light; most of the processes are mediated by phytochrome. We have shown that in the primary leaves of etiolated seedlings of wheat ( Triticum aestivum L. cv. Kolibri), fire-bean ( Phaseolus multiflorus L. cv. Preisgewinner) and in the cotyledons of etiolated sun flower seedlings ( Helianthus annuus L. cv. macrocarpa) the chlorophyll accumulation in the phase after the end of the lag phase can be greatly stimulated by a cold predarkening period. This effect is not necessarily coupled with a red preirradiation. Furthermore the lag phase can be dramatically shortened by the cold, dark pretreatment, whereas the amount of photoconvertible protochlorophyll(ide) in the darkness remains unaffected by the cold, dark pretreatment. The stimulating effect of a cold, predarkening period on greening is fully reversible by a warm, dark phase that is placed between the cold period and the onset of the continuous white light phase. These findings cannot be generalized: We could demonstrate that in the tropical plant Momordica charantia greening under white light was not affected by different temperature pretreatments during predarkening. The stimulating effect of a cold, predarkening period on greening is assumed to have ecological relevance.  相似文献   

8.
CMU inhibits oxygen evolution in greening etiolated bean leaves.In the presence of this compound chlorophyll content is reducedand fine structure development of the chloroplasts is markedlyaffected. The number of grana per chloroplast is reduced butthe grana are larger and contain more thylakoids than the granain chloroplasts of the greening control leaves. Sucrose reversesthe effect of CMU on pigment content and fine structure developmentof chloroplasts. (Received September 14, 1965; )  相似文献   

9.
The assignment is presented for the principal phosphorescence bands of protochlorophyll(ide), chlorophyllide and chlorophyll in etiolated and greening bean leaves measured at -196°C using a mechanical phosphoroscope. Protochlorophyll(ide) phosophorescence spectra in etiolated leaves consist of three bands with maxima at 870, 920 and 970 nm. Excitation spectra show that the 870 nm band belongs to the short wavelength protochlorophyll(ide), P627. The latter two bands correspond to the protochlorophyll(ide) forms, P637 and P650. The overall quantum yield for P650 phosphorescence in etiolated leaves is near to that in solutions of monomeric protochlorophyll, indicating a rather high efficiency of the protochlorophyll(ide) triplet state formation in frozen plant material. Short-term (2–20 min) illumination of etiolated leaves at the temperature range from -30 to 20°C leads to the appearance of new phosphorescence bands at about 990–1000 and 940 nm. Judging from excitation and emission spectra, the former band belongs to aggregated chlorophyllide, the latter one, to monomeric chlorophyll or chlorophyllide. This indicates that both monomeric and aggregated pigments are formed at this stage of leaf greening. After preillumination for 1 h at room temperature, chlorophyll phosphorescence predominates. The spectral maximum of this phosphorescence is at 955–960 nm, the lifetime is about 2 ms, and the maximum of the excitation spectrum lies at 668 nm. Further greening leads to a sharp drop of the chlorophyll phosphorescence intensity and to a shift of the phosphorescence maximum to 980 nm, while the phosphorescence lifetime and a maximum of the phosphorescence excitation spectrum remains unaltered. The data suggest that chlorophyll phosphorescence belongs to the short wavelength, newly synthesized chlorophyll, not bound to chloroplast carotenoids. Thus, the phosphorescence measurement can be efficiently used to study newly formed chlorophyll and its precursors in etiolated and greening leaves and to address various problems arising in the analysis of chlorophyll biosynthesis.Abbreviations Pchl protochlorophyll and protochlorophyllide - Chld chlorophyllide - Chl chlorophyll  相似文献   

10.
An antibody for ferredoxin was used to investigate the developmentof ferredoxin during the greening of spinach cotyledons. Ferredoxinwas present in 8-day-old etiolated cotyledons and increasedwith illumination, which means that the synthesis of ferredoxinwas both light dependent and independent. The ferredoxin purified from etiolated cotyledons, greeningcotyledons, and mature leaves was a mixture of two chemicallydistinct molecular species; ferredoxin I and II. The relativecontents of these two species varied with the stage of developmentand the conditions used. Ferredoxin I was identical with that isolated previously asvalidated by its amino acid sequence [Matsubara and Sasaki (1968)J. Biol. Chem. 243: 1732]. The complete amino acid sequenceof the second component, ferredoxin II, was determined as well.It was composed of 97 amino acid residues and differed fromferredoxin I by 25 residues. (Received October 16, 1982; Accepted December 14, 1982)  相似文献   

11.
Klein S  Katz E  Neeman E 《Plant physiology》1977,60(3):335-338
A short illumination of etiolated maize (Zea mays) leaves with red light causes a protochlorophyll(ide)-chlorophyll(ide) conversion and induces the synthesis of δ-aminolevulinic acid (ALA) during a subsequent dark period. In leaves treated with levulinic acid, more ALA is formed in the dark than in control leaves. Far red light does not cause a conversion of protochlorophyll(ide) into chlorophyll(ide) and does not induce accumulation of ALA in the dark. Both red and far red preilluminations cause a significant potentiation of ALA synthesis during a period of white light subsequent to the dark period. The results indicate a dual light control of ALA formation. The possible role of phytochrome and protochlorophyllide as photoreceptors in this control system is discussed.  相似文献   

12.
Evidence is given that a selective light-pretreatment of the embryonic axis exerts a deep influence on the greening in primary leaves of 8-day-old etiolated bean seedlings (Phaseolus vulgaris cv. Limburg). After a subsequent dark incubation of sufficient length and a final exposure of the entire plants to continuous illumination the lag phase of chlorophyll synthesis is completely removed. In particular the highly meristematic hook tissue seems to be responsible for this light effect. Lengthening of the dark period following pre-irradiation increased the capability of chlorophyll production in the main white light period, reaching its maximum after about 12 hours of darkness. The period of dark incubation for elimination of the lag phase is considerably longer in plants with shielded leaves than the length of the lag phase in etiolated seedlings of the same age, exposed entirely to continuous light. This difference may be explained by the synergistic effect between leaves and embryonic axis. Evidence for this interorgan cooperation is given by experiments with a selective light-pretreatment of leaves and embryonic axis. After a 5 min pre-exposure to white light of whole plants the leaves of some of the plants were shielded and these plants received a further pre-illumination of 2 hours on their embryonic axis. In all the pre-irradiated, etiolated plants the lag phase of chlorophyll synthesis was eliminated during the main white light period, following a dark incubation of 2 hours. Additional and preferential light activation of the embryonic axis during the pretreatment had no significant effect on chlorophyll production during the white light illumination after a 2 hours dark incubation, but resulted in a lower yield of chlorophylls after 18 hours dark incubation compared to the white light controls, receiving no selective light-pretreatment on the embryonic axis. From our results we can decisively conclude that a simultaneous light-pretreatment of both, leaves and embryonic axis, is more effective and beneficial for building up a capacity of chlorophyll synthesis in the leaves than either a selective light-pretreatment of the embryonic axis alone or a simultaneous pre-illumination of leaves and embryonic axis, immediately followed by an additional preirradiation of the embryonic axis. Therefore, we think that several photoactive sites are involved in de-etiolation processes of intact, etiolated seedings. Light activation of the embryonic axis stimulates the development of this organ and contributes to the greening processes in the leaf. At the same time, by irradiating the leaf, light activates the photo-sensitive site in the leaf itself, which also develops a capacity for chlorophyll synthesis. Both photo-acts are cooperative, explaining the enhanced chlorophyll production. Additional pre-irradiation of the embryonic axis after a short illumination of whole plants favours its own development and reduces the synthetic capacity of the leaf. A prolonged far-red pretreatment induces qualitatively the same response as white light. We assume that these effects on lag phase removal and chlorophyll production, induced in etiolated, primary bean leaves by selective irradiation of the embryonic axis, is a phytochrome-mediated process. Our results indicate a transmission of light-induced stimuli from one organ to another.  相似文献   

13.
Light operating through phytochrome controls the proportion of total ribosomes present as polyribosomes in etiolated leaves of Phaseolus vulgaris. Similar responses but with slightly different time courses are elicited by brief red light treatment and by continuous far-red or white light. The increase in polyribosome proportions after red light treatment reaches a maximum within 2 h, after which the proportion steadily declines. Light treatment appears to lead to increased proportions of polyribosomes in higher size classes. This is most evident with continuous white light, but probably also occurs with red and far-red light. The increase in polyribosomes is due principally to cytoplasmic ribosomes although proportionately greater effects are observed in chloroplast ribosomes. Although cordycepin inhibits RNA synthesis by 85-90% within 3 h there is no depression of the light-mediated increase in polyribosome proportions when leaves are preincubated in the inhibitor for 3 h. The data therefore indicate that phytochrome is capable of controlling protein synthesis, and thus development, at a post-transciptional level.  相似文献   

14.
Transformation of protochlorophyllide forms in etiolated barley seedlings and biogenesis of photosynthetic apparatus in greening leaves of 7-day-old etiolated barley seedlings (Hordeum vulgare L.) were studied under the inhibition of energy processes during illumination. Repression of electron transport between photosystem 2 and 1 (PS2 and PS1, respectively) with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron) inhibited the photochemical activity of PS2 but did not affect chlorophyll biosynthesis and ATP content in leaves compared to the control. Inhibition of mitochondrial electron transport with sodium azide increased relative content of nonphotoactive protochlorophyllide in etiolated leaves, decreased the content of ATP, chlorophylls, and carotenoids and completely suppressed the functional activity of PS 2. The inhibitor of glycolysis sodium fluoride affected all the parameters even more strongly. We observed synchronism in the accumulation of chlorophylls and carotenoids during greening for all inhibitor variants other than fluoride (correlation coefficient, r, equal to 0.98, 0.97, 0.97, and 0.47 with the significance level of 0.01; 0.015; 0.015, and 0.27 for control, diuron, azide, and sodium fluoride, respectively). The change in chlorophyll content under the influence of inhibitors positively correlated with the amount of ATP in the leaf tissue (for 24 h greening, r = 0.97 with significance level of 0.015). We suggest that sources of ATP involved in the synthesis of chlorophyll during greening of etiolated barley seedlings are mostly of non-plastid origin.  相似文献   

15.
Chloroplast development and chlorophyll biosynthesis are co-regulated. Treatment by levulinic acid resulted in a linear relation in both chlorophyll and carotenoid contents, during greening of etiolated French bean leaf discs. Chlorophyll biosynthesis appeared to control that of caroteins. In the presence of levulinic acid; at different levels, photosystem II (PS II) activity decreased when expressed on a chlorophyll basis. Chlorophyllase activity was increased progressively by increasing levulinic acid concentration. Thus, levulinic acid could be used to arrest the light-induced chloroplast development at a desired phase of greening and acts as determinator of chloroplast development in green tissues.  相似文献   

16.
A chloroplast-associated fatty acid synthetase system in Euglena   总被引:4,自引:0,他引:4  
Fatty acid synthetase activity in etiolated Euglena gracilis strain Z is independent of added ACP and associated with a high-molecular-weight complex of the type found in yeast. Cells grown in the dark and then greened by illumination in a resting medium develop a second enzyme system which is dependent on added ACP and generally resembles the corresponding E. coli and plant enzymes. Cycloheximide has no effect on the appearance of the ACP-dependent fatty acid synthetase in greening cells whereas chloramphenicol causes complete inhibition at concentrations which decrease chlorophyll synthesis by 66%. An induction of the ACP-dependent fatty acid synthetase in the absence of chloroplast development occurs on exposure of dark-grown cells to doses of ultraviolet light which selectively affect proplastid nucleoprotein. This enzyme induction by ultraviolet light is inhibited by chloramphenicol. The protein synthesis machinery of the chloroplast appears to be responsible, either directly or indirectly, for the appearance of the ACP-dependent fatty acid synthetase of Euglena.  相似文献   

17.
Glutamate synthase from rice (Oryza sativa) green leaves was assayed in a chloroplast reconstituted system. The enzyme activity was totally dependent on externally supplied thylakoid membranes and ferredoxin in the light. Glutamate synthase activity was also detected from etiolated leaves with photoreduced ferredoxin as an electron donor.  相似文献   

18.
Red Light-Independent Instability of Oat Phytochrome mRNA in Vivo   总被引:5,自引:0,他引:5       下载免费PDF全文
Phytochrome A (phyA) mRNA abundance decreased rapidly in total RNA samples isolated from 4-day-old etiolated oat seedlings following a red light pulse. Putative in vivo phyA mRNA degradation products were detectable both before and after red light treatment. Cordycepin-treated coleoptiles were unable to accumulate the chlorophyll a/b-binding protein mRNA in response to red light, indicating that cordycepin effectively inhibited mRNA synthesis. In cordycepin-treated coleoptiles, phyA mRNA rapidly decreased in abundance, consistent with the hypothesis that phyA mRNA is inherently unstable, rather than being destabilized after red light treatment of etiolated oat seedlings.  相似文献   

19.
The appearance of the light harvesting II (LHC II) protein in etiolated bean leaves, as monitored by immunodetection in LDS-solubilized leaf protein extracts, is under phytochrome control. A single red light pulse induces accumulation of the protein, in leaves kept in the dark thereafter, which follows circadian oscillations similar to those earlier found for Lhcb mRNA (Tavladoraki et al. (1989) Plant Physiol 90: 665–672). These oscillations are closely followed by oscillations in the capacity of the leaf to form Chlorophyll (Chl) in the light, suggesting that the synthesis of the LHC II protein and its chromophore are in close coordination. Experiments with levulinic acid showed that PChl(ide) resynthesis does not affect the LHC II level nor its oscillations, but new Chl a synthesis affects LHC II stabilization in thylakoids, implicating a proteolytic mechanism. A proteolytic activity against exogenously added LHC II was detected in thylakoids of etiolated bean leaves, which was enhanced by the light pulse. The activity, also under phytochrome control, was found to follow circadian oscillations in verse to those in the stabilization of LHC II protein in thylakoids. Such a proteolytic mechanism therefore, may account for the circadian changes observed in LHC II protein level, being implicated in pigment-protein complex assembly/stabilization during thylakoid biogenesis.Abbreviations Chl chlorophyll - CL continuous light - D dark - FR far-red light - LA levulinic acid - LHC II light-harvesting complex serving Photosystem II - PChl(ide) protochlorophyllide - PCR protochlorophyllide oxidoreductase - R red light  相似文献   

20.
Shoots of anaerobically germinated Echinochloa crus-galli var oryzicola are nonpigmented whether germinated in light or dark, and chlorophyll synthesis is minimal for the first 12 to 18 hours of greening after exposure to ambient conditions. When chlorophyll development is compared between greening anoxic and etiolated shoots, there is a 100-fold difference in chlorophyll levels at 8 hours, an 8-fold difference at 24 hours, but roughly equal amounts at 60 hours. The chlorophyll a/b ratio approaches 3 earlier in greening anoxic shoots than in greening etiolated shoots, relative to total chlorophyll. The long lag in chlorophyll synthesis can be shortened by giving dark-grown anoxic shoots a 24-hour midtreatment of air before light.

Development of photosynthetic activity in etiolated shoots, determined by CO2 gas exchange, 14CO2 uptake, and activity of carboxylating enzymes closely parallels development of chlorophylls. However, development of photosynthetic capability in greening anoxic shoots does not parallel chlorophyll development; ability to fix carbon lags behind chlorophyll synthesis. A reason for this lag is the very low activity of RuBP carboxylase during the first 36 hours of greening in anoxic shoots. The activity of phosphoenolpyruvate carboxylase is also delayed, but its kinetics more closely match those of chlorophyll development.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号