首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
The possible participation of capsaicin-sensitive sensory nerves in the modulation of neurogenic contractions was studied in nonpregnant and term pregnant rat uteri. Neurogenic contractions were elicited by electric field stimulation (40 V, 1-70 Hz, 0.6 msec) in intact uteri and uteri that were previously exposed to capsaicin in vitro. In capsaicin pretreated preparations obtained both from nonpregnant and term pregnant rats, a dose-dependent increase in the amplitude of uterine contractions was detected. Prior systemic treatment of the rats with capsaicin (130 mg/kg, s.c.) abolished the effect of in vitro capsaicin administration on the amplitude of neurogenic contractions. Use of a specific antagonist of calcitonin gene-related peptide revealed that depletion of this peptide, which normally elicits uterine smooth muscle relaxation, may be responsible for the increased responsiveness of the uterus to low-frequency stimulation. Experiments on the localization of calcitonin gene-related peptide in uterine tissue specimens exposed to capsaicin revealed dose-dependent depletion of calcitonin-gene related peptide-immunoreactive nerves innervating blood vessels and the myometrium. The findings indicate that capsaicin-sensitive afferent nerves, by the release of sensory neuropeptides, significantly contribute to the modulation of uterine contractility both in nonpregnant and term pregnant rats. It is suggested that uterine sensory nerve activation may be part of a trigger mechanism leading to preterm contractions evoked by, for example, inflammation.  相似文献   

2.
Myometria of pregnant and nonpregnant Myotis lucifugus were studied in vitro by using electrical field stimulation as well as autonomic agonists and antagonists to determine whether functional responses corresponded with structural evidence showing abundant adrenergic and sparse cholinergic innervation, which uniquely does not disappear during pregnancy. Field stimulation (70 V, 0.6 ms, 5.0-s pulse train, 2.5 - 60 Hz) of myometria from nonpregnant (hibernating) bats produced graded responses consisting of an initial alpha-adrenergic contraction and a subsequent beta-adrenergic relaxation phase. Responses were sensitive to both the nerve poison tetrodotoxin and the adrenergic antagonist guanethidine, demonstrating that they resulted from stimulation of intrinsic adrenergic nerves. Field stimulation responses were unaffected by atropine indicating that there was no functional cholinergic innervation, even though carbachol-induced contraction showed that muscarinic receptors were present. In contrast, functional innervation of cervical tissue was cholinergic and nonadrenergic-non-cholinergic, but not adrenergic. At the beginning of active gestation, some myometrial preparations exhibited little of no response to field stimulation. However, as uterine size increased, the biphasic response to field stimulation was enhanced, particularly the inhibitory (beta-adrenergic) phase. Moreover, the contractile phases, though reduced, was not abolished by alpha-adrenergic antagonists. The residual contractile response was also tetrodotoxin-resistant, suggesting that the myometrium was sensitive to direct electrical stimulation. Near the end of pregnancy, myometrial tissue became nonresponsive to both field stimulation and autonomic agonists, suggesting an absence of available receptor sites on muscle cells.  相似文献   

3.
Mechanical activities of the uterus, cervix, and bladder were recorded in vivo in anesthetized rats during electrical stimulation of either the hypogastric or pelvic nerve. Ovariectomized controls and hormone-treated groups were used as well as pregnant and postpartum rats. Stimulation of either hypogastric or pelvic nerve produced voltage- and frequency-dependent contractions of the three organs with no evidence of apparent inhibition. All evoked responses were completely abolished by tetrodotoxin, suggesting that these nerves are common pathways of innervation to the three organs. Atropine abolished uterine and cervical responses to both hypogastric and pelvic nerve stimulation, whereas bladder responses were only partly reduced. Hexamethonium almost totally blocked the evoked responses of the uterus and cervix. Phentolamine partly blocked uterine and cervical responses, and propranolol or physostigmine enhanced uterine and cervical responses to both hypogastric and pelvic nerve stimulation. These results suggest that motor innervation to the rat uterus and cervix is predominantly postganglionic cholinergic, with some alpha- and beta-adrenergic components, and that the bladder is innervated by mainly cholinergic and also noncholinergic nerves. Estrogen and estrogen-plus-progesterone pretreatment significantly increased the responses of uterus and cervix but not bladder. Uterine and cervical responses to either hypogastric or pelvic nerve stimulation were markedly reduced late in pregnancy and reappeared within 7 days after delivery.  相似文献   

4.
Summary Nerves in the uterine cervix of the rat were examined with regard to co-existence of markers for noradrenaline and neuropeptide Y, and differential tissue innervation by nerves containing different combinations of these markers. Immunohistochemical labeling of single and adjacent serial cryostat sections, and double labeling was employed. Some animals were treated with the noradrenergic neurotoxin, 6-hydroxydopamine. In control animals neuropeptide Y-immunoreactive fibers were numerous in the myometrium and around arteries; noradrenergic fibers were few in the myometrium and moderate in number around arteries. Myometrial neuropeptide Y-immunoreactive fibers were not decreased, but apparently increased, in 6-hydroxydopamine-treated rats; in contrast, perivascular neuropeptide Y-immunoreactive fibers were markedly reduced, but not totally absent. Noradrenergic fibers were absent in the myometrium and around arteries following 6-hydroxydopamine treatment. Labeling of adjacent sections and double labeling revealed coincident labeling of markers for neuropeptide Y and noradrenaline in perivascular, but not myometrial, nerves. We concluded that most myometrial neuropeptide Y-immunoreactive nerves did not contain noradrenaline since they were not sensitive to 6-hydroxydopamine and did not stain doubly; however, perivascular neuropeptide Y-immunoreactive fibers which degenerated after 6-hydroxydopamine treatment and did label doubly must co-store noradrenaline. Some neuropeptide Y-immunoreactive perivascular fibers may contain neuropeptide Y but not noradrenaline. Thus, it appears there is a differential innervation of tissues in the cervix by neuropeptide Y/noradrenergic nerves; this could reflect a differential regulation of tissues innervated by these nerves.  相似文献   

5.
The perivascular neuropeptide Y (NPY) innervation and its relation to adrenergic nerves of uterine arteries from non-pregnant and pregnant guinea pigs was analyzed immunocytochemically. The NPY content of the uterine artery was, in addition, measured radioimmunologically (RIA). Vasomotor effects of NPY per se and in combination with other vasoconstrictors were examined using a sensitive in vitro method. Pregnancy did not visibly affect density and distribution of NPY-immunoreactive fibres. The NPY fibres contained in addition immunoreactivity to dopamine-beta-hydroxylase (marker for noradrenergic neurons). RIA revealed a slight decrease of NPY content during pregnancy, probably due to the increased smooth muscle volume of uterine arteries. The contractile effect of NPY on uterine arteries was weak, while vasoconstriction induced by various agonists was potentiated by NPY, particularly during pregnancy. It is concluded that perivascular NPY-containing nerve fibres may be involved in the dramatic blood flow alterations that occur in the uterine circulation in connection with pregnancy and partus.  相似文献   

6.
To determine whether gestation-related changes in responsiveness of the rat uterus to beta-adrenergic agonists are mediated at the level of adenylyl cyclase, we measured myometrial adenylyl cyclase activity and protein quantities during pregnancy and labor. In rat myometrial membranes, basal adenylyl cyclase activity increased from the nonpregnant state to mid (Days 12-14) and then late (Days 18-20) gestation and then decreased intrapartum (Day 22). Stimulated adenylyl cyclase activity, at the level of the beta-adrenergic receptor (isoproterenol, 10(-4) M), the G protein (GTP, 10(-5) M), or the adenylyl cyclase enzyme (MnCl(2), 20 mM), was similarly altered during gestation. Total adenylyl cyclase protein was quantified by [(3)H]forskolin binding assay in myometrial membranes from nonpregnant and pregnant (Day 14, Day 20, Day 21, and intrapartum Day 22) rats. Adenylyl cyclase protein increased progressively from nonpregnant rats to pregnant rats at mid (Day 14) and late (Day 20) gestation, but it decreased abruptly to nonpregnant levels on Day 21, the day before parturition, and remained at similar levels on Day 22 (intrapartum). The gestation-related increase in expression of myometrial adenylyl cyclase protein may facilitate uterine quiescence during pregnancy, and the abrupt decrease of adenylyl cyclase protein on the last day of pregnancy may be a contributing mechanism for the initiation of labor.  相似文献   

7.
The course of the cholinergic and adrenergic nerve fibers in the cervix of the ewe was investigated in nonpregnant and pregnant animals using an acetylcholinesterase method and fluorescence histochemistry. Both technics in nonpregnant animals revealed a rich network of acetylcholinesterase and norepinephrine positive nerves around the blood vessels while the muscular innervation was moderately positive. Acetylcholinesterase fibers were also concentrated beneath the surface epithelium forming a plexus-like arrangement where isolated ganglion cells could be seen. At mid pregnancy cholinergic and adrenergic fibers decreased in density. The intensity of fluorescence was weaker and nerve fiber morphology was modified. We endeavoured to relate our findings to the problem of the neural control of contractions and the opening of the cervix of the ewe which is poorly supplied in nerve fibers, particularly at mid pregnancy.  相似文献   

8.
The oxytocin-like peptide of most Australian marsupials is mesotocin, which stimulates uterine contractions and is important for normal birth in the tammar wallaby. Female marsupials have two uteri and, in monovular species such as the tammar, one uterus is gravid with a single fetus, whereas the contralateral uterus is nongravid. A significant increase in myometrial mesotocin receptor concentrations occurs only in the gravid uterus on Day 23 of the 26-day gestation. This study examined whether or not mesotocin receptors are present in the myometrium and are up-regulated at the equivalent stage of the luteal phase in unmated tammars. In contrast to the marked increase in mesotocin receptor mRNA and protein concentrations in the myometrium of the gravid uterus during pregnancy, receptors did not increase in the unmated animals. There were also no significant differences between the two uteri, except on Day 27. Plasma profiles of peripheral estradiol-17beta and progesterone did not differ significantly between pregnant and nonpregnant cycles. However, progesterone concentrations were significantly lower on Day 1 postpartum compared with Day 27 of the nonpregnant cycle. In pregnant tammars, the molar ratio of circulating estradiol-17beta to progesterone increased significantly between Day 25 of gestation and 1 day postpartum, but was not correlated with an increase in mesotocin receptor concentrations in either uterus. The data confirm that a local fetal influence is more important than systemic factors, such as estrogen, in the regulation of uterine mesotocin receptors in the tammar wallaby.  相似文献   

9.
Summary The course of the cholinergic and adrenergic nerve fibers in the cervix of the ewe was investigated in nonpregnant and pregnant animals using an acetylcholinesterase method and fluorescence histochemistry. Both technics in nonpregnant animals revealed a rich network of acetylcholinesterase and norepinephrin positive nerves around the blood vessels while the muscular innervation was moderately positive. Acetylcholinesterase fibers were also concentrated beneath the surface epithelium forming a plexuslike arrangement where isolated ganglion cells could be seen. At mid pregnancy cholinergic and adrenergic fibers decreased in density. The intensity of fluorescence was weaker and nerve fiber morphology was modified. We endeavoured to relate our findings to the problem of the neural control of contractions and the opening of the cervix of the ewe which is poorly supplied in nerve fibers, particularly at mid pregnancy.  相似文献   

10.
The pattern of uterine innervation by noradrenergic (NA) and acetylcholinesterase-positive (AChE) nerves in different reproductive stages of the adult Japanese long-fingered bats were investigated histochemically and immunohistochemically. In the non-pregnant bat, the uterine horn was supplied with abundant NA and AChE nerves. These two types of nerves were closely associated with the uterine arteries and myometrial smooth muscles. In the pregnant bat, NA and AChE nerves supplying the uterus did not degenerate much during hibernating period, but reduced markedly after arousal. In the postpartum bat, the density of nerves recovered progressively. The significant change in the innervation pattern of uterine NA and AChE nerves in the pregnant bats under and after hibernation, and in the postpartum bat must be considered in relation to the adrenergic and cholinergic controlling mechanisms on the uterine function that is matched for the unique reproductive cycle of this bat.  相似文献   

11.
Innervation of the cervix is important for normal timing of birth because transection of the pelvic nerve forestalls birth and causes dystocia. To discover whether transection of the parasympathetic innervation of the cervix affects cervical ripening in the process of parturition was the objective of the present study. Rats on Day 16 of pregnancy had the pelvic nerve (PnX) or the vagus nerve (VnX) or both pathways (PnX+VnX) transected, sham-operated (Sham) or nonpregnant rats served as controls. Sections of fixed peripartum cervix were stained for collagen or processed by immunohistochemistry to identify macrophages and nerve fibers. All Sham controls delivered by the morning of Day 22 postbreeding, while births were delayed in more than 75% of neurectomized rats by more than 12 h. Dystocia was evident in more than 25% of the PnX and PnX+VnX rats. Moreover, on prepartum Day 21, serum progesterone was increased severalfold in neurectomized versus Sham rats. Assessments of cell nuclei counts indicated that the cervix of neurectomized rats and Sham controls had become equally hypertrophied compared to the unripe cervix in nonpregnant rats. Collagen content and structure were reduced in the cervix of all pregnant rats, whether neurectomized or Shams, versus that in nonpregnant rats. Stereological analysis of cervix sections found reduced numbers of resident macrophages in prepartum PnX and PnX+VnX rats on Day 21 postbreeding, as well as in VnX rats on Day 22 postbreeding compared to that in Sham controls. Finally, nerve transections blocked the prepartum increase in innervation that occurred in Sham rats on Day 21 postbreeding. These findings indicate that parasympathetic innervation of the cervix mediates local inflammatory processes, withdrawal of progesterone in circulation, and the normal timing of birth. Therefore, pelvic and vagal nerves regulate macrophage immigration and nerve fiber density but may not be involved in final remodeling of the extracellular matrix in the prepartum cervix. These findings support the contention that immigration of immune cells and enhanced innervation are involved in processes that remodel the cervix and time parturition.  相似文献   

12.
The uterine musculature, or myometrium, demonstrates tremendous plasticity during pregnancy under the influences of the endocrine environment and mechanical stresses. Expression of the small stress protein heat shock protein B1 (HspB1) has been reported to increase dramatically during late pregnancy, a period marked by myometrial hypertrophy caused by fetal growth-induced uterine distension. Thus, using unilaterally pregnant rat models and ovariectomized nonpregnant rats with uteri containing laminaria tents to induce uterine distension, we examined the effect of uterine distension on myometrial HspB1 expression. In unilaterally pregnant rats, HspB1 mRNA and Ser(15)-phosphorylated HspB1 (pSer(15) HspB1) protein expression were significantly elevated in distended gravid uterine horns at days 19 and 23 (labor) of gestation compared with nongravid horns. Similarly, pSer(15) HspB1 protein in situ was only readily detectable in the distended horns compared with the nongravid horns at days 19 and 23; however, pSer(15) HspB1 was primarily detectable in situ at day 19 in membrane-associated regions, while it had primarily a cytoplasmic localization in myometrial cells at day 23. HspB1 mRNA and pSer(15) HspB1 protein expression were also markedly increased in ovariectomized nonpregnant rat myometrium distended for 24 h with laminaria tents compared with empty horns. Therefore, uterine distension plays a major role in the stimulation of myometrial HspB1 expression, and increased expression of this small stress protein could be a mechanoadaptive response to the increasing uterine distension that occurs during pregnancy.  相似文献   

13.
The ontogenetic development of the guinea pig uterine autonomic innervation was studied immunohistochemically using neurofibrillary protein (NF) and neuron specific enolase (NSE) as general neuronal markers, tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) as specific markers for adrenergic innervation and S-100 protein as marker for Schwann cell structure and/or function. In addition, comparisons were made of the development of the different populations of peptide-containing nerves. The structure and time of appearance were similar for nerves with NF-, NSE-, TH- and DBH-immunoreactivities, which were first present in the organ periphery as coarse nerve trunks, then extending centrally and branching into non-varicose nerves. From these, varicose nerves developed first in relation to vessels and then in association with the myometrial smooth musculature. Development was completed earlier in the cervix than in the uterine horns suggesting differences in local environment. In comparison, S-100 nerve-immunoreactivity appeared later but attained complete development more rapidly than axonal structures. Neuropeptide Y-immunoreactive nerves showed a similar developmental pattern to presumed adrenergic nerves, further verifying the assumption of intraneuronal localization of NPY in uterine adrenergic nerves. Other peptide-containing nerves were developed later probably reflecting differences in neuronal growth properties.  相似文献   

14.
The fetal brain is thought to have a role in the onset and progression of labor. Evidence also exists for fetal oxytocin release just before and during parturition. The present study examined whether activation of the fetal brain could induce uterine myometrial contractions through oxytocin receptors in the dam. Under urethane anesthesia, electrical stimulation of the hypothalamus of fetal rats that were still connected with the dams by an intact umbilical cord induced uterine contractions in term pregnant rats. Intraperitoneal injections of synthetic oxytocin in fetuses induced uterine contractions in the dams similar to those induced by electrical stimulation of the fetal hypothalamus. Maternal intravenous injections of an oxytocin antagonist immediately attenuated uterine contractions induced by fetal oxytocin injections and electrical stimulation of the fetal hypothalamus. These findings suggest the possibility that oxytocin released from the fetal hypothalamus is involved in parturition.  相似文献   

15.
Alterations in rat myometrial ultrastructure and in vivo uterine contractile responses to oxytocin were examined in estradiol-treated (40 micrograms/kg) euglycemic and streptozotocin-induced (85 mg/kg) diabetic rats. Myometrial morphology was examined 18, 24, and 36 hr after estradiol administration. At the time points examined, nuclei of myometrial cells from euglycemic and diabetic rats were pleomorphic and contained large areas of heterochromatin dispersed throughout the nuclei. Mitochondria were round to oval in shape and contained a dense matrix with cristae that extended across the mitochondria. Myofilaments were found in both euglycemic and diabetic cells but the relative number of myofilaments in diabetic cells appeared to be less than the number found in myometrial cells removed from euglycemic animals. The number of free cytoplasmic ribosomes in diabetic cells also appeared to be less than those found in euglycemic cells. In order to determine if apparent differences in the number of myofilament found in diabetic myometrial cells could be correlated with changes in uterine contractile responses to hormones, oxytocin dose-response curves (10(-8) to 10(-5) M) were examined in isolated uteri removed from saline-injected and estradiol-injected (24-hr pretreatments) euglycemic and diabetic rats. The maximal contractile responses (milligrams tension developed per milligrams tissue) in saline-injected euglycemic and diabetic rats were 49 +/- 5 and 36 +/- 4, respectively, while maximal contractile responses in estradiol-injected euglycemic and diabetic rats were 68 +/- 7 and 45 +/- 5, respectively. Maximal contractile responses induced by oxytocin in estradiol-treated diabetic uteri were significantly smaller than the contractile responses measured in euglycemic estradiol-treated uteri. This study demonstrates that estradiol-induced changes in both myometrial cell morphology and in vitro uterine contractile responses to oxytocin are altered in diabetic rats.  相似文献   

16.
Experiments were conducted on uteri excised from 44 gilts to clarify the autonomic innervation of the longitudinal (LM) and circular muscle (CM) layers of the myometrium. Functionally and biochemically, the two layers differed markedly in their reaction to transmitters. On transmural nerve stimulation (TMS) of isolated LM strips, relaxation was elicited and spontaneous contraction was inhibited in proportion to the electrical frequency imparted. Although the relaxation was accompanied by preliminary contraction in half the LM preparations tested, the relaxation phase predominated in all the LM strips. Relaxation was sensitive to carteolol (beta-blocker) and to guanethidine (adrenergic neuron blocker), whereas the contractile response in LM was sensitive to phentolamine (alpha-adrenergic antagonist). In the CM strips, contraction resulted from TMS, and though not responsive to hexamethonium, the contractions were enhanced by neostigmine and abolished by atropine. The amount of norepinephrine (NE) and the intensity of dopamine beta-hydroxylase activity were about 2.5 times greater in LM than in CM. Conversely, choline acetyltransferase activity, associated exclusively with cholinergic nerves, was about 8 times more intense in the CM. In line with the TMS responses, alpha-receptor-mediated contractions initiated by NE were enabled exclusively in the LM. Furthermore, beta-receptor-mediated inhibition elicited by isoproterenol was also paramount in the LM. We conclude that there are layer-specific variations in the functional innervation of the myometrium of the nulliparous pig uterus such that CM layer is primarily endowed with cholinergic innervation and the LM layer with adrenergic innervation.  相似文献   

17.
Rat myometrium exhibited a marked decrease in the concentration of beta 2-adrenergic receptors immediately before parturition, i.e., in the last 6 h of pregnancy. This phenomenon continued until the withdrawal of myometrial progesterone (-94% from Day 18 of pregnancy to term) and coincided with the sharp increase (+200%) of the myometrial concentration of estradiol. A linear positive correlation was found (r2 = 0.645) between the concentration of beta 2-adrenergic receptors and the log ratio of myometrial concentration of progesterone/myometrial concentration of estradiol (P/E2), suggesting a modulation of beta 2-adrenergic receptors by steroids. In rats with estrogen-dominated uteri (intact of ovariectomized late pregnant rats injected with estradiol), there was no change either in concentration or affinity of beta 2-adrenergic receptors relative to untreated control pregnant rats. In contrast, rats with progesterone-dominated uteri (intact or ovariectomized late pregnant rats treated with progesterone or ovariectomized rats) have an increased number of beta 2-adrenergic receptors, with a decreased affinity of these receptors compared to untreated control pregnant rats or to estrogen-treated rats. These results suggest that progesterone regulates the number of beta 2-adrenergic receptors in myometrium of late pregnant rats. The mechanisms by which progesterone exerts this regulation remains to be elucidated.  相似文献   

18.
Calcitonin gene-related peptide (CGRP) is a potent smooth muscle relaxant in a variety of tissues. We recently demonstrated that CGRP relaxes uterine tissue during pregnancy but not during labor. In the present study we examined whether uterine (125)I-CGRP binding and immunoreactive CGRP receptors are regulated by pregnancy and labor and by sex steroid hormones. We found that (125)I-CGRP binding to membrane preparations from uteri was elevated during pregnancy and decreased during labor and postpartum. Changes in immunoreactive CGRP receptors were similar to the changes in (125)I-CGRP binding in these tissues, suggesting pregnancy-dependent regulation of CGRP receptor protein. CGRP receptors were elevated by Day 7 of gestation, and a precipitous decrease in these receptors occurred on Day 22 of gestation prior to the onset of labor. Both (125)I-CGRP-binding and immunofluorescence studies indicated that CGRP receptors were localized to myometrial cells. Hormonal control of uterine CGRP receptors was assessed by the use of antiprogesterone RU-486, progesterone, and estradiol-17beta. RU-486 induced a decrease in uterine CGRP receptors during pregnancy (Day 19). On the other hand, progesterone prevented the fall in uterine CGRP receptors at term (Day 22). In addition, progesterone also increased uterine CGRP receptors in nonpregnant, ovariectomized rats, while estradiol had no effects. These hormone-induced changes in uterine CGRP receptors were demonstrated by (125)I-CGRP-binding, Western immunoblotting, and immunolocalization methods. These results indicate that CGRP receptors and CGRP binding in the rat uterus are increased with pregnancy and decreased at term. These receptors are localized to the myometrial cells, and progesterone is required for maintaining CGRP receptors in the rat uterus. Thus, the inhibitory effects of CGRP on uterine contractility are mediated through the changes in CGRP receptors and may play a role in uterine quiescence during pregnancy.  相似文献   

19.
The adrenergic innervation of the urinary bladder of normal female and pregnant rats has been studied using a fluorescence histochemical method. The bladder is richly innervated by adrenergic nerve fibres as is evidenced by the presence of numerous adrenergic nerves in the adventitia, musculosa and submucosa. However, adrenergic nerve cells could not be observed. During pregnancy, adrenergic nerve fibres showed signs of degeneration, as most of the nerve fibres disappeared and the surviving fibres were much swollen. 10 days after parturition the pattern and density of adrenergic innervation became almost similar to those of the control animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号