首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The genetic incorporation of the 22nd proteinogenic amino acid, pyrrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNAPyl. Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNAPyl. These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs.  相似文献   

2.
Methanogenesis from trimethylamine, dimethylamine or monomethylamine is initiated by a series of corrinoid-dependent methyltransferases. The non-homologous genes encoding the full-length methyltransferases each possess an in-frame UAG (amber) codon that does not terminate translation. The amber codon is decoded by a dedicated tRNA, and corresponds to the novel amino acid pyrrolysine in one of the methyltransferases, indicating pyrrolysine to be the 22nd genetically encoded amino acid. Pyrrolysine has the structure of lysine with the (epsilon)N in amide linkage with a pyrroline ring. The reactivity of the electrophilic imine bond is the basis for the proposed function of pyrrolysine in activating and optimally orienting methylamine for methyl transfer to the cobalt ion of a cognate corrinoid protein. This reaction is essential for methane formation from methylamines, and may underlie the retention of pyrrolysine in the genetic code of methanogens.  相似文献   

3.
At the time of its discovery four decades ago, the genetic code was viewed as the result of a "frozen accident." Our current knowledge of the translation process and of the detailed structure of its components highlights the roles of RNA structure (in mRNA and tRNA), RNA modification (in tRNA), and aminoacyl-tRNA synthetase diversity in the evolution of the genetic code. The diverse assortment of codon reassignments present in subcellular organelles and organisms of distinct lineages has 'thawed' the concept of a universal immutable code; it may not be accidental that out of more than 140 amino acids found in natural proteins, only two (selenocysteine and pyrrolysine) are known to have been added to the standard 20-member amino acid alphabet. The existence of phosphoseryl-tRNA (in the form of tRNACys and tRNASec) may presage the discovery of other cotranslationally inserted modified amino acids.  相似文献   

4.
The genetic code discovered 40 years ago, consists of 64 triplets (codons) of nucleotides. The genetic code is almost universal. The same codons are assigned to the same amino acids and to the same START and STOP signals in the vast majority of genes in animals, plants, and microorganisms. Each codon encodes for one of the 20 amino acids used in the synthesis of proteins. That produces some redundancy in the code and most of the amino acids being encoded by more than one codon. The two cases have been found where selenocysteine or pyrrolysine, that are not one of the standard 20 is inserted by a tRNA into the growing polypeptide.  相似文献   

5.
The expansion of the genetic code consisting of four bases and 20 amino acids into diverse building blocks has been an exciting topic in synthetic biology. Many biochemical components are involved in gene expression; therefore, adding a new component to the genetic code requires engineering many other components that interact with it. Genetic code expansion has advanced significantly for the last two decades with the engineering of several components involved in protein synthesis. These components include tRNA/aminoacyl-tRNA synthetase, new codons, ribosomes, and elongation factor Tu. In addition, biosynthesis and enhanced uptake of non-canonical amino acids have been attempted and have made meaningful progress. This review discusses the efforts to engineer these translation components, to improve the genetic code expansion technology.  相似文献   

6.
7.
In nature, ribosomally synthesized proteins can contain at least 22 different amino acids: the 20 common amino acids as well as selenocysteine and pyrrolysine. Each of these amino acids is inserted into proteins codon-specifically via an aminoacyl-transfer RNA (aa-tRNA). In most cases, these aa-tRNAs are biosynthesized directly by a set of highly specific and accurate aminoacyl-tRNA synthetases (aaRSs). However, in some cases aaRSs with relaxed or novel substrate specificities cooperate with other enzymes to generate specific canonical and non-canonical aminoacyl-tRNAs.  相似文献   

8.
The expansion of the genetic code is gradually becoming a core discipline in Synthetic Biology. It offers the best possible platform for the transfer of numerous chemical reactions and processes from the chemical synthetic laboratory into the biochemistry of living cells. The incorporation of biologically occurring or chemically synthesized non-canonical amino acids into recombinant proteins and even proteomes via reprogrammed protein translation is in the heart of these efforts. Orthogonal pairs consisting of aminoacyl-tRNA synthetase and its cognate tRNA proved to be a general tool for the assignment of certain codons of the genetic code with a maximum degree of chemical liberty. Here, we highlight recent developments that should provide a solid basis for the development of generalist tools enabling a controlled variation of chemical composition in proteins and even proteomes. This will take place in the frame of a greatly expanded genetic code with emancipated codons liberated from the current function or with totally new coding units.  相似文献   

9.
The discovery of two atypical amino acids, selenocysteine and pyrrolysine, in the genetic code is discussed. These findings have expanded our understanding of the genetic code, since the repertoire of amino acids in the genetic code was supplemented by two novel ones, in addition of the standard 20 amino acids. Current views on specific mechanisms of selenocysteine insertion in forming selenoproteins are considered, as well as the results of studies of new translational components involved in biosynthesis and incorporation of selenocysteine at different stages of translation. Similarity in the strategies of decoding UGA and UAG as codons for respectively selenocysteine and pyrrolysine is discussed. The review also presents evidence on the medical and biological role of selenium and selenoproteins containing selenocysteine as the main biological form of selenium.  相似文献   

10.
Xue H  Ng SK  Tong KL  Wong JT 《Gene》2005,360(2):59-130
Among 60 organisms, the intraspecies genetic distances between tRNAs cognate for different amino acids, between the initiator and elongator tRNAs for Met, and between potentially paralogous pairs of aminoacyl-tRNA synthetases are found to be at a minimum within the Methanopyrus kandleri genome. These results indicate an exact congruence between the evidence from tRNA and aminoacyl-tRNA synthetase genes locating the root of life closest to this organism.  相似文献   

11.
Aminoacyl-tRNA synthetases attach amino acids to the 3' termini of cognate tRNAs to establish the specificity of protein synthesis. A recent Asilomar conference (California, January 13-18, 2002) discussed new research into the structure-function relationship of these crucial enzymes, as well as a multitude of novel functions, including participation in amino acid biosynthesis, cell cycle control, RNA splicing, and export of tRNAs from nucleus to cytoplasm in eukaryotic cells. Together with the discovery of their role in the cellular synthesis of proteins to incorporate selenocysteine and pyrrolysine, these diverse functions of aminoacyl-tRNA synthetases underscore the flexibility and adaptability of these ancient enzymes and stimulate the development of new concepts and methods for expanding the genetic code.  相似文献   

12.
Accurate aminoacyl-tRNA synthesis is essential for correct translation of the genetic code in all organisms. Whereas many aspects of this process are conserved, others display a surprisingly high level of divergence from the canonical Escherichia coli model system. These differences are most pronounced in archaea where novel mechanisms have recently been described for aminoacylating tRNAs with asparagine, cysteine, glutamine and lysine. Whereas these mechanisms were initially assumed to be uniquely archaeal, both the alternative asparagine and lysine pathways have subsequently been demonstrated in numerous bacteria. Similarly, studies of the means by which archaea insert the rare amino acid selenocysteine in response to UGA stop codons have helped provide a better understanding of both archaeal and eukaryal selenoprotein synthesis. Most recently a new co-translationally inserted amino acid, pyrrolysine, has been found in archaea although again there is some suggestion that it may also be present in bacteria. Thus, whereas archaea contain a preponderance of non-canonical aminoacyl-tRNA synthesis systems most are also found elsewhere albeit less frequently.  相似文献   

13.
C J Kolman  M Snyder  D S?ll 《Genomics》1988,3(3):201-206
The genomic organization in Saccharomyces cerevisiae of the tRNA and aminoacyl-tRNA synthetase genes for two amino acids was investigated. Aspartic acid and serine were chosen for the study because of the number and diversity of their tRNA gene sequences and the availability of cloned tRNA and aminoacyl-tRNA synthetase genes. Chromosome assignments were determined by hybridization to DNA gel blots of chromosomal DNA resolved by contour-clamped homogeneous electric field gel electrophoresis. Our results show that the tRNA and the cognate synthetase genes in such a family are dispersed and, therefore, cannot be regulated via a mechanism dependent on close proximity of genes. In general, the genome of S. cerevisiae contains randomly dispersed tRNA genes that are transcribed individually. We have supported and expanded this view by applying the facile method of contour-clamped homogeneous electric field gel electrophoresis to the investigation of these small multigene families.  相似文献   

14.
The genetic code of living organisms has been expanded to allow the site-specific incorporation of unnatural amino acids into proteins in response to the amber stop codon UAG. Numerous amino acids have been incorporated including photo-crosslinkers, chemical handles, heavy atoms and post-translational modifications, and this has created new methods for studying biology and developing protein therapeutics and other biotechnological applications. Here we describe a protocol for reprogramming the amino-acid substrate specificity of aminoacyl-tRNA synthetase enzymes that are orthogonal in eukaryotic cells. The resulting aminoacyl-tRNA synthetases aminoacylate an amber suppressor tRNA with a desired unnatural amino acid, but no natural amino acids, in eukaryotic cells. To achieve this change of enzyme specificity, a library of orthogonal aminoacyl-tRNA synthetase is generated and genetic selections are performed on the library in Saccharomyces cerevisiae. The entire protocol, including characterization of the evolved aminoacyl-tRNA synthetase in S. cerevisiae, can be completed in approximately 1 month.  相似文献   

15.
The universal genetic code includes 20 common amino acids. In addition, selenocysteine (Sec) and pyrrolysine (Pyl), known as the twenty first and twenty second amino acids, are encoded by UGA and UAG, respectively, which are the codons that usually function as stop signals. The discovery of Sec and Pyl suggested that the genetic code could be further expanded by reprogramming stop codons. To search for the putative twenty third amino acid, we employed various tRNA identification programs that scanned 16 archaeal and 130 bacterial genomes for tRNAs with anticodons corresponding to the three stop signals. Our data suggest that the occurrence of additional amino acids that are widely distributed and genetically encoded is unlikely.  相似文献   

16.
Various post-translational modifications can naturally occur on proteins, regulating the activity, subcellular localization, interaction, or stability of the proteins. However, it can be challenging to decipher the biological implication or physiological roles of site-specific modifications due to their dynamic and sub-stoichiometric nature. Genetic code expansion method, relying on an orthogonal aminoacyl-tRNA synthetase/tRNA pair, enables site-specific incorporation of non-canonical amino acids. Here we focus on the application of genetic code expansion to study site-specific protein post-translational modification in vitro and in vivo. After a brief introduction, we discuss possibilities of incorporating non-canonical amino acids containing post-translational modifications or their mimics into target proteins. This approach is applicable for Ser/Thr/Tyr phosphorylation, Tyr sulfation/nitration/hydroxylation, Lys acetylation/acylation, Lys/His mono-methylation, as well as Arg citrullination. The next section describes the use of a precursor non-canonical amino acid followed by chemical and/or enzymatic reactions to afford the desired modification, such as Cys/Lys acylation, ubiquitin and ubiquitin-like modifications, as well as Lys/Gln methylation. We also discuss means for functional regulation of enzymes involving in post-translational modifications through genetically incorporated non-canonical amino acids. Lastly, the limitations and perspectives of genetic code expansion in studying protein post-translational modification are described.  相似文献   

17.
All living organisms conduct protein synthesis with a high degree of accuracy maintained in the transmission and flow of information from a gene to protein product. One crucial 'quality control' point in maintaining a high level of accuracy is the selectivity by which aminoacyl-tRNA synthetases furnish correctly activated amino acids, attached to tRNA species, as the building blocks for growing protein chains. When differences in binding energies of amino acids to an aminoacyl-tRNA synthetase are inadequate, editing is used as a major determinant of enzyme selectivity. Some incorrect amino acids are edited at the active site before the transfer to tRNA (pre-transfer editing), while others are edited after transfer to tRNA at a separate editing site (post-transfer editing). Access of natural non-protein amino acids, such as homocysteine, homoserine, or ornithine to the genetic code is prevented by the editing function of aminoacyl-tRNA synthetases. Disabling editing function leads to tRNA mischarging errors and incorporation of incorrect amino acids into protein, which is detrimental to cell homeostasis and inhibits growth. Continuous homocysteine editing by methionyl-tRNA synthetase, resulting in the synthesis of homocysteine thiolactone, is part of the process of tRNA aminoacylation in living organisms, from bacteria to man. Excessive homocysteine thiolactone synthesis in hyperhomocysteinemia caused by genetic or nutritional deficiencies is linked to human vascular and neurological diseases.  相似文献   

18.
Roy H  Ling J  Irnov M  Ibba M 《The EMBO journal》2004,23(23):4639-4648
Translation of the genetic code requires attachment of tRNAs to their cognate amino acids. Errors during amino-acid activation and tRNA esterification are corrected by aminoacyl-tRNA synthetase-catalyzed editing reactions, as extensively described for aliphatic amino acids. The contribution of editing to aromatic amino-acid discrimination is less well understood. We show that phenylalanyl-tRNA synthetase misactivates tyrosine and that it subsequently corrects such errors through hydrolysis of tyrosyl-adenylate and Tyr-tRNA(Phe). Structural modeling combined with an in vivo genetic screen identified the editing site in the B3/B4 domain of the beta subunit, 40 angstroms from the active site in the alpha subunit. Replacements of residues within the editing site had no effect on Phe-tRNA(Phe) synthesis, but abolished hydrolysis of Tyr-tRNA(Phe) in vitro. Expression of the corresponding mutants in Escherichia coli significantly slowed growth, and changed the activity of a recoded beta-galactosidase variant by misincorporating tyrosine in place of phenylalanine. This loss in aromatic amino-acid discrimination in vivo revealed that editing by phenylalanyl-tRNA synthetase is essential for faithful translation of the genetic code.  相似文献   

19.

Genetic code expansion is a powerful technique for site-specific incorporation of an unnatural amino acid into a protein of interest. This technique relies on an orthogonal aminoacyl-tRNA synthetase/tRNA pair and has enabled incorporation of over 100 different unnatural amino acids into ribosomally synthesized proteins in cells. Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA from Methanosarcina species are arguably the most widely used orthogonal pair. Here, we investigated whether beneficial effect in unnatural amino acid incorporation caused by N-terminal mutations in PylRS of one species is transferable to PylRS of another species. It was shown that conserved mutations on the N-terminal domain of MmPylRS improved the unnatural amino acid incorporation efficiency up to five folds. As MbPylRS shares high sequence identity to MmPylRS, and the two homologs are often used interchangeably, we examined incorporation of five unnatural amino acids by four MbPylRS variants at two temperatures. Our results indicate that the beneficial N-terminal mutations in MmPylRS did not improve unnatural amino acid incorporation efficiency by MbPylRS. Knowledge from this work contributes to our understanding of PylRS homologs which are needed to improve the technique of genetic code expansion in the future.

  相似文献   

20.
The genetic code is established in aminoacylation reactions whereby amino acids are joined to tRNAs bearing the anticodons of the genetic code. Paradoxically, while the code is universal there are many examples of species-specific aminoacylations, where a tRNA from one taxonomic domain cannot be acylated by a synthetase from another. Here we consider an example where a human, but not a bacterial, tRNA synthetase charges its cognate eukaryotic tRNA and where the bacterial, but not the human, enzyme charges the cognate bacterial tRNA. While the bacterial enzyme has less than 10% sequence identity with the human enzyme, transplantation of a 39 amino acid peptide from the human into the bacterial enzyme enabled the latter to charge its eukaryotic tRNA counterpart in vitro and in vivo. Conversely, substitution of the corresponding peptide of the bacterial enzyme for that of the human enabled the human enzyme to charge bacterial tRNA. This peptide element discriminates a base pair difference in the respective tRNA acceptor stems. Thus, functionally important co-adaptations of a synthetase to its tRNA act as small modular units that can be moved across taxonomic domains and thereby preserve the universality of the code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号