首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species-specific adhesion of dissociated cells from the marine sponge Microciona prolifera is mediated by a Mr = 2 x 10(7) proteoglycan-like aggregation factor (MAF) via two highly polyvalent functional domains, a cell-binding and a self-interaction domain. Glycopeptide N-glycosidase F release of a major glycan of Mr = 6.3 gamma 10(3) (G-6) from the MAF protein core resulted in the loss of cell binding activity, indicating a role of this polysaccharide molecule in MAF-cell association. The G-6 glycan was isolated and purified after complete Pronase digestion of MAF using gel electrophoresis, gel filtration, and ion exchange chromatography. Quantification of the amount of carbohydrate recovered in G-6 showed that one MAF molecule has about 950 repeats of this glycan. In its monomeric state G-6 did not display any measurable binding to cells (K alpha less than or equal to 10(3) M-1). Intermolecular cross-linking of the G-6 glycan with glutaraldehyde resulted, however, in the concomitant recovery of polyvalency (about 2200 repeats of G-6 per polymer of Mr greater than or equal to 1.5 x 10(7) and species-specific high cell binding affinity (K alpha = 1.6 x 10(9) M-1) but not of the MAF-MAF self-interaction activity. Thus, the G-6 glycan is the multiple low affinity cell-binding site involved in cell-cell recognition and adhesion of sponge cells. The G-6 glycan has 7 glucuronic acids, 3 fucoses, 2 mannoses, 5 galactoses, 14 N-acetylglucosamines, 2 sulfates, and 1 asparagine. Such a unique chemical composition indicates a new type of structure which includes features of glycosaminolycans and N-linked polysaccharides.  相似文献   

2.
Cell aggregation in the marine sponge Microciona prolifera is mediated by a multimillion molecular weight aggregation factor (MAF) and is based on two functional properties, a Ca2+-independent cell binding activity and a Ca2+-dependent factor-factor self-interaction. Monoclonal antibodies were prepared against purified MAF, and one clone was characterized which selectively inhibited the MAF-MAF association activity. Binding of the blocking antibody (Block 1) to MAF demonstrated that this epitope structure was present in 1100 copies per one MAF molecule of Mr = 2 X 10(7). Such blocking antibodies precipitated a small molecular weight protein-free glycan fraction prepared from MAF by Pronase digestion, thus indicating that the highly repetitive epitope is located in the carbohydrate portion of the molecule. Since the inhibitory activity of the Block 1 antibody could only be achieved when most of the sites were occupied by Fab fragments of this antibody, the self-association of MAF seemed to be based on the polyvalency of the carbohydrate determinants. The affinity of the protein-free glycans was very low as shown by the fact that they did not display any measurable self or MAT binding activity in their monomeric form. After cross-linking them with glutaraldehyde into polymers of the size of MAF, however, the self-interaction could be reconstituted. Thus, the MAF-MAF association activity, which is needed for cell aggregation in sponges, seems to be based on multiple low affinity carbohydrate-carbohydrate interactions, which is different from most interactions mediated by adhesion molecules characterized so far.  相似文献   

3.
Using solid phase systems, the kinetics of binding of monoclonal antibody (LRB 45, IgG2b,kappa) to apoC-I and apoC-I on lipoproteins were investigated. At 25 degrees C, the association constant of LRB 45 antibody to apoC-I (3.56 X 10(6) M-1 X sec-1) was almost three times slower than the association constant LRB 45 antibody to lipoproteins (10.4 X 10(6) M-1 X sec-1). However, the dissociation constant of apoC-I from LRB 45 antibody (0.865 X 10(-4) sec-1) was also slower than the dissociation constant of lipoprotein from antibody (1.5 X 10(-4) sec-1). Thus, the calculated affinity constant (association constant/dissociation constant) of LRB 45 antibody for apoC-I was approximately half of that for lipoproteins (4.12 X 10(10) M-1 vs. 6.92 X 10(10) M-1). The intrinsic affinity constants for antibody binding to apoC-I and apoC-I on lipoproteins were determined by Scatchard analysis. The intrinsic affinity constant of antibody bound to apoC-I was estimated to be 5.49 X 10(10) M-1 whereas that of antibody binding to lipoproteins was 30 to 200 times less. Furthermore, ascites fluid from LRB 45 cell lines could immunoprecipitate serum lipoproteins. Thus, it is concluded that there is multiple binding of antibody to apoC-I on lipoproteins. This binding appears to increase the calculated affinity constant (avidity) for antibody-antigen interaction.  相似文献   

4.
A proteoglycan-like aggregation factor from the marine sponge Microciona prolifera (MAF) mediates cell-cell recognition via a cell-binding and a self-association domain. After repetitive and prolonged treatment of MAF with glycopeptide-N-glycosidase (PNGase) the specific binding of MAF to homotypic cells was decreased by 72%. Polyacrylamide gel electrophoresis and gel filtration analysis of such PNGase digests showed that: 1) the enzyme released a single glycan type of Mr = 6 X 10(3) (G-6) from MAF, 2) 1 mole of MAF contains at least 830 moles of N-linked chains of G-6 glycan. The correlation between the loss of the binding activity of MAF and the extent of the release of the repetitive G-6 polysaccharide strongly suggests its involvement in MAF-cell association via highly polyvalent interactions.  相似文献   

5.
A thyroid hormone binding protein(s) has been characterized in the cytosol of fetal rat brain cells in primary cultures. This protein is closely related to the one described in brain supernatants with respect to its electrophoretic mobility, binding kinetic parameters and estimated molecular weight (65 000 daltons). However, in contrast to the brain cytosolic binding protein, two classes of affinity sites for triiodothyronine (T3) and thyroxine (T4) have been demonstrated: a high affinity site (KA = 1.2-3.7(3) X 10(9) M-1 for T3 and KA = 3.7-5 X 10(8) M-1 for T4) and a low affinity site (KA = 0.8-1.4 X 10(8) M-1 for T3 and 1.6-2.9 X 10(7) M-1 for T4). The results are discussed with respect to their cellular significance.  相似文献   

6.
Crude receptor preparations of rabbit mammary gland were made by differential centrifugation and reacted with lactoperoxidase-iodinated ovine prolactin (oPRL) in order to determine their binding characteristics. Receptors prepared from the mammary glands of animals less than 4 days postpartum bound oPRL with high affinity (Ka = 3.50 X 10(9) M-1), in good agreement with previous results of other investigators. The binding capacity of these preparations was 107 +/- 16.3 fmol/mg of protein. In contrast, receptors prepared from the mammary glands of late lactating rabbits (Days 25 to 30 of lactation) showed a 2.5-fold increase in binding affinity (Ka = 8.63 X 10(9) M-1, p less than 0.001) without a significant increase in binding capacity (135 +/- 21.4 fmol/mg, p greater than 0.2). Kinetic experiments revealed that the rates of association of hormone and receptor were identical in early and late receptor preparations, and that the 2.5-fold decrease the dissociation rate observed in the late preparations was fully explanatory of the differences in equilibrium binding. The mechanism of this affinity increase is not known. Such a change in binding characteristics, which would tend to enhance tissue responsiveness, may underlie the well characterized maintenance of full lactation in women despite falling concentrations of prolactin.  相似文献   

7.
M Kloczewiak  S Timmons  J Hawiger 《Biochemistry》1987,26(19):6152-6156
It has been established that the binding domain for the staphylococcal clumping receptor exists in fragment D of human fibrinogen [Hawiger J., Timmons, S., Strong, D. D., Cottrell, B. A., Riley, M., & Doolittle, R. F. (1982) Biochemistry 21, 1407; Strong, D. D., Laudano, A., Hawiger, J., & Doolittle, R. F. (1982) Biochemistry 21, 1414]. To examine the role of valency in the adhesive function of fibrinogen, its fragments were prepared by digestion with plasmin in the presence of calcium and purified by a two-step chromatographic procedure. Fragments D1 and E did not induce the staphylococcal clumping reaction. After they were prepared in oligomeric form by chemical cross-linking with glutaraldehyde, fragment D1 (Mr 94,000) became functionally reactive toward the staphylococcal clumping receptor, and fragment D3 (Mr 75,000) and fragment E (Mr 50,000) remained inactive. Fragment D dimer derived from enzymatic cross-linking was not reactive. Human fibrinogen cross-linked with glutaraldehyde usually reached a 250 times higher reactivity toward the staphylococcal clumping receptor, depending on the condition of the cross-linking reaction. It is concluded that the valency of fibrinogen in regard to its receptor binding domain and the availability of this domain are essential for the staphylococcal clumping reaction.  相似文献   

8.
The kinetics of the interaction between the 50 S subunits (R) of bacterial ribosomes and the antibiotics virginiamycin S (VS), virginiamycin M (VM), and erythromycin have been studied by stopped flow fluorimetric analysis, based on the enhancement of VS fluorescence upon its binding to the 50 S ribosomal subunit. Virginiamycin components M and S exhibit a synergistic effect in vivo, which is characterized in vitro by a 5- to 10-fold increase of the affinity of ribosomes for VS, and by the loss of the ability of erythromycin to displace VS subsequent to the conformational change (from R to R*) produced by transient contact of ribosomes with VM. Our kinetic studies show that the VM-induced increase of the ribosomal affinity for VS (K*VS = 25 X 10(6) M-1 instead of KVS = 5.5 X 10(6) M-1) is due to a decrease of the dissociation rate constant (k*-VS = 0.008 s-1 instead of 0.04 s-1). The association rate constant remains practically the same (k+VS approximately k*+VS = 2.8 X 10(5) M-1 s-1), irrespective of the presence of VM. VS and erythromycin bind competitively to ribosomes. This effect has been exploited to determine the dissociation rate constant of VS directly by displacement experiments from VS . 50 S complexes, and the association rate constant of erythromycin (k+Ery = 3.2 X 10(5) M-1 S-1) on the basis of competition experiments for binding of free erythromycin and VS to ribosomes. By making use of the change in competition behavior of erythromycin and VS, after interaction of ribosomes with VM, the conformational change induced by VM has been explored. Within the experimentally available concentration region, the catalytic effect of VM has been shown to be coupled to its binding kinetics, and the association rate constant of VM has been determined (k+VM = 1.4 X 10(4) M-1 S-1). Evidence is presented for a low affinity binding of erythromycin (K*Ery approximately 3.3 X 10(4) M-1) to ribosomes altered by contact with VM. A model involving a sequence of 5 reactions has been proposed to explain the replacement of ribosome-bound erythromycin by VS upon contact of 50 S subunits with VM.  相似文献   

9.
Human brain S100b (beta beta) protein was purified using zinc-dependent affinity chromatography on phenyl-Sepharose. The calcium- and zinc-binding properties of the protein were studied by flow dialysis technique and the protein conformation both in the metal-free form and in the presence of Ca2+ or Zn2+ was investigated with ultraviolet spectroscopy, sulfhydryl reactivity and interaction with a hydrophobic fluorescence probe 6-(p-toluidino)naphthalene-2-sulfonic acid (TNS). Flow dialysis measurements of Ca2+ binding to human brain S100b (beta beta) protein revealed six Ca2+-binding sites which we assumed to represent three for each beta monomer, characterized by the macroscopic association constants K1 = 0.44 X 10(5) M-1; K2 = 0.1 X 10(5) M-1 and K3 = 0.08 X 10(5) M-1. In the presence of 120 mM KCl, the affinity of the protein for calcium is drastically reduced. Zinc-binding studies on human S100b protein showed that the protein bound two zinc ions per beta monomer, with macroscopic constants K1 = 4.47 X 10(7) M-1 and K2 = 0.1 X 10(7) M-1. Most of the Zn2+-induced conformational changes occurred after the binding of two zinc ions per mole of S100b protein. These results differ significantly from those for bovine protein and cast doubt on the conservation of the S100 structure during evolution. When calcium binding was studied in the presence of zinc, we noted an increase in the affinity of the protein for calcium, K1 = 4.4 X 10(5) M-1; K2 = 0.57 X 10(5) M-1; K3 = 0.023 X 10(5) M-1. These results indicated that the Ca2+- and Zn2+-binding sites on S100b protein are different and suggest that Zn2+ may regulate Ca2+ binding by increasing the affinity of the protein for calcium.  相似文献   

10.
Camphor binding to a possible receptor of rat olfactory epithelium has been studied within the ligand concentration range 10(-11)-10(-6) M. At these concentrations camphor is bound by a set of receptors. They are distinguished by both the affinity to the ligand (K1 = 5 X 10(-10) M, K2 = 3.5 X 10(-8) M, K3 approximately equal to 10(-6) M) and their amount in the epithelium. The differences in the affinities are due to different values of the association rate constant of camphor (k1), which varies from 10(6) M-1 X s-1 for the receptors with high affinity up to 2 X 10(2) M-1 X s-1 for those with low affinity. These data are discussed in terms of equilibrium and kinetic models of the receptor-stimulus interaction.  相似文献   

11.
125I-Labeled colony-stimulating factor (CSF) 2 alpha (interleukin 3, multi-CSF, and mast cell growth factor) was used to characterize receptors specific for this lymphokine on the cell surface of the factor-dependent cell line FDC-P2. CSF-2 alpha binding to these cells was specific and saturable. Among a panel of lymphokines and growth factors, only unlabeled CSF-2 alpha was able to compete for the binding of 125I-labeled CSF-2 alpha to cells. Equilibrium binding studies revealed that CSF-2 alpha bound to 434 +/- 281 receptors/cell with a Ka of 8.7 +/- 3.9 X 10(9) M-1. Affinity cross-linking experiments with the homobifunctional cross-linking reagents disuccinimidyl suberate, disuccinimidyl tartrate, and dithiobis(succinimidyl propionate) produced a radiolabeled band of Mr = 97,000 on intact cells and in purified cell membranes, while an additional band of Mr = 138,000 was produced upon cross-linking to intact cells only. The relationship between these two bands is discussed. The results indicate that the receptor for CSF-2 alpha on FDC-P2 cells consists at a minimum of a subunit of Mr = 72,500.  相似文献   

12.
Anion-induced increases in the affinity of colcemid binding to tubulin   总被引:1,自引:0,他引:1  
Colcemid binds tubulin rapidly and reversibly in contrast to colchicine which binds tubulin relatively slowly and essentially irreversibly. At 37 degrees C the association rate constant for colcemid binding is 1.88 X 10(6) M-1 h-1, about 10 times higher than that for colchicine; this is reflected in the activation energies for binding which are 51.4 kJ/mol for colcemid and 84.8 kJ/mol for colchicine. Scatchard analysis indicates two binding sites on tubulin having different affinities for colcemid. The high-affinity site (Ka = 0.7 X 10(5) M-1 at 37 degrees C) is sensitive to temperature and binds both colchicine and colcemid and hence they are mutually competitive inhibitors. The low-affinity site (Kb = 1.2 X 10(4) M-1) is rather insensitive to temperature and binds only colcemid. Like colchicine, 0.6 mol of colcemid are bound/mol of tubulin dimer (at the high-affinity site) and the reaction is entropy driven (163 J K-1 mol-1). Similar to colchicine, colcemid binding to tubulin is stimulated by certain anions (viz. sulfate and tartrate) but by a different mechanism. Colcemid binding affinity at the lower-affinity site of tubulin is increased in the presence of ammonium sulfate. Interestingly, the lower-affinity site on tubulin for colcemid, even when converted to higher affinity in presence of ammonium sulfate, is not recognized by colchicine. We conclude that tubulin possesses two binding sites, one of which specifically recognized the groups present on the B-ring of colchicine molecule and is effected by the ammonium sulfate, whereas the higher-affinity site, which could accommodate both colchicine and colcemid, possibly recognized the A and C ring of colchicine.  相似文献   

13.
The exact nature of the curvilinearity of Scatchard plots derived from hormonal and nonhormonal binding systems has not been definitively resolved. Such plots are compatible with heterogeneous receptors with different but fixed affinities and with negatively interacting binding sites resulting in occupancy-dependent affinity. In the current study we examined in detail the effect of receptor occupancy by the ligand on receptor affinity under a variety of experimental conditions. We chose the human lymphocyte-leukoagglutinin (LPHA) system, which closely mimics the IM9-insulin model. Reliable estimates of total binding capacity (728 ng/10(6) cells) essential to our report were calculated from a wide database by the least-squares model. At occupancies greater than or equal to 0.085, receptors are associated with low and fixed affinity (1.5 X 10(6) M-1), whereas at occupancies less than or equal to 0.085, affinity is high and fixed (1.8 X 10(8) M-1) or high but variable (1 X 10(7) M-1 to 1.5 X 10(6) M-1) depending on whether the binding is assumed to be noncooperative or cooperative, respectively. Calculation of receptor-ligand complex dissociation velocity over a wide range of occupancies (0.01-0.40) suggested that occupancy exerts an inversely proportional effect on affinity that is rapid and sustained. Cell activation (DNA synthesis) is initiated at receptor occupancy of approximately equal to 0.004 and is magnified as ligand binding to high affinity receptors increases up to approximately equal to 0.07 occupancy (functional sites), beyond which point further binding (to low affinity sites) becomes increasingly ineffective and cytotoxic (redundant sites). These findings suggest that occupancy influences affinity as postulated by the hypothesis of negative cooperativity. Through this effect occupancy may play a significant role in regulating ligand-induced cell responses.  相似文献   

14.
A trimer made up of three acridine chromophores linked by a positively charged poly(aminoalkyl) chain was synthesized as a potential tris-intercalating agent. The length of the linking chain was selected to allow intercalation of each chromophore according to the excluded site model. 1H NMR studies have shown that, at 5 mM sodium, pH 5, the acridine trimer occurred under a folded conformation stabilized by stacking interactions between the three aromatic rings. DNA tris-intercalation of the dye at a low dye/base pair ratio was shown by measurements of both the unwinding of PM2 DNA and the lengthening of sonicated rodlike DNA. The trimer exhibits a high DNA affinity for poly[d(A-T)] (Kapp = 8 X 10(8) M-1, 1 M sodium) as shown by competition experiments with ethidium dimer. Kinetic studies of both the association with poly[d(A-T)] and the exchange between poly[d(A-T)] and sonicated calf thymus DNA have been performed as a function of the ionic strength. In 0.3 M sodium the on-rate constant (k1 = 2.6 X 10(7) M-1 s-1) is similar to that reported for other monoacridines or bis(acridines), whereas the off-rate constant is much smaller (k-1 = 1.2 X 10(-4) s-1), leading to an equilibrium binding constant as large as Kapp = 2.2 X 10(11) M-1. A plot of log (k1/k-1) as a function of log [Na+] yielded a straight line whose slope shows that 5.7 ion pairs (out of 7 potential) are formed upon the interaction with DNA. From this linear relationship a Kapp value of 10(14) M-1 in 0.1 M sodium can be estimated. Such a value reaches and even goes beyond that of some DNA regulatory proteins. This acridine trimer appears to be the first synthetic ligand with such a high DNA affinity.  相似文献   

15.
Several strains of Staphylococcus aureus secrete a protein, staphylocoagulase, that binds stoichiometrically to human prothrombin, resulting in a coagulant complex designated staphylothrombin. In the present study, staphylocoagulase was digested with alpha-chymotrypsin and the resulting fragments were isolated by gel filtration. One fragment (Mr 43,000) exhibited a high affinity for human prothrombin (Kd = 1.7 X 10(-9) M), which is comparable to the affinity observed using intact staphylocoagulase (Kd = 4.6 X 10(-10) M). A complex of the Mr 43,000 fragment and prothrombin possessed both clotting and amidase activity essentially identical to that observed in a complex of intact staphylocoagulase and prothrombin. A second fragment (Mr 30,000) exhibited weaker affinity for prothrombin (Kd = 1.2 X 10(-7) M). While clotting activity was not observed with a complex of this fragment and prothrombin, it nonetheless possessed a weak amidase activity. A third fragment (Mr 20,000) was found to bind to prothrombin, but the resultant complex did not exhibit clotting or amidase activity. Amino-terminal sequence analyses of these staphylocoagulase fragments revealed that the Mr 43,000 fragment constitutes the amino-terminal portion of staphylocoagulase and also contains the Mr 30,000 and 20,000 fragments. Moreover, the amino-terminal sequence of the Mr 20,000 fragment was identical to that observed for the Mr 30,000 fragment. From these results, we conclude that the functional region of staphylocoagulase for binding and activation of human prothrombin is localized in the amino-terminal region of the intact bacterial protein.  相似文献   

16.
A sensitive ESR method which allows a direct quantitative determination of nucleic acid binding affinities of proteins under physiologically relevant conditions has been applied to the gene 5 protein of bacteriophage fd. This was achieved with two spin-labeled nucleic acids, (ldT, dT)n and (lA,A)n, which served as macro-molecular spin probes in ESR competition experiments. With the two different macromolecular spin probes, it was possible to determine the relative apparent affinity constants, Kapp, over a large affinity domain. In 20 mM Tris X HCl (pH 8.1), 1 mM sodium EDTA, 0.1 mM dithiothreitol, 10% (w/v) glycerol, 0.05% Triton, and 125 mM NaCl, the following affinity relationship was observed: K(dT)napp = 10(3) KfdDNAapp = 2 X 10(4) K(A)napp = 6.6 X 10(4) KrRNAapp = 1.5 X 10(5) KR17RNAapp. Increasing the [NaCl] from 125 to 200 mM caused considerably less tight binding of gene 5 protein to (lA,A)n, and a typical cooperative binding isotherm was observed, whereas at the lower [NaCl] used for the competition experiments, the binding was essentially stoichiometric. A computer fit of the experimental titration data at 200 mM NaCl gave an intrinsic binding constant, Kint, of 1300 M-1 and a cooperativity factor, omega, of 60 (Kint omega = Kapp) for (lA,A)n.  相似文献   

17.
Crude extracts from Salvia sclarea seeds were known to contain a lectin which specifically agglutinates Tn erythrocytes (Bird, G. W. G., and Wingham, G. (1974) Vox Sang. 26, 163-166). We have purified the lectin to homogeneity by ion-exchange chromatography and affinity chromatography. The agglutinin was found to be a glycoprotein of Mr = 50,000, composed of two identical subunits of Mr = 35,000 linked together by disulfide bonds. The purified lectin agglutinates specifically Tn erythrocytes and, at higher concentrations, also Cad erythrocytes. Native A, B, or O red blood cells are not agglutinated by the lectin and, even after treatment with sialidase or papain, these cells are not recognized. Tn red cells present 1.45 X 10(6) accessible sites to the lectin which binds to these erythrocytes with an association constant of 1.8 X 10(6) M-1. On Cad red cells, 1.73 X 10(6) sites are accessible to the lectin which binds with an association constant of 1.0 X 10(6) M-1. The carbohydrate specificity of the S. sclarea lectin has been determined in detail, using well defined monosaccharide, oligosaccharide, and glycopeptide structures. The lectin was found to be specific for terminal N-acetylgalactosamine (GalNAc) residues. It binds preferentially alpha GalNAc determinants either linked to Ser or Thr (as in Tn structures) or linked in 1-3 to a beta GalNAc or to an unsubstituted beta Gal. Although more weakly, the lectin binds beta GalNAc residues linked in 1-4 to a beta Gal (as in Cad structures). It does not recognize beta GalNAc determinants linked in 1-3 to a Gal (as in globoside) or the alpha GalNAc residues of blood group A structures.  相似文献   

18.
The fluorescence of N-dansylgalactosamine [N-(5-dimethylaminonaphthalene-1-sulphonyl)galactosamine] was enhanced 11-fold with a 25 nm blue-shift in the emission maximum upon binding to soya-bean agglutinin (SBA). This change was used to determine the association constants and thermodynamic parameters for this interaction. The association constant of 1.51 X 10(6) M-1 at 20 degrees C indicated a very strong binding, which is mainly due to a relatively small entropy value, as revealed by the thermodynamic parameters: delta G = -34.7 kJ X mol-1, delta H = -37.9 kJ X mol-1 and delta S = -10.9 J X mol-1 X K-1. The specific binding of this sugar to SBA shows that the lectin can accommodate a large hydrophobic substituent on the C-2 of galactose. Binding of non-fluorescent ligands, studied by monitoring the fluorescence changes when they are added to a mixture of SBA and N-dansylgalactosamine, indicates that a hydrophobic substituent at the anomeric position increases the affinity of the interaction. The C-6 hydroxy group also stabilizes the binding considerably. Kinetics of binding of N-dansylgalactosamine to SBA studied by stopped-flow spectrofluorimetry are consistent with a single-step mechanism and yielded k+1 = 2.4 X 10(5) M-1 X s-1 and k-1 = 0.2 s-1 at 20 degrees C. The activation parameters indicate an enthalpicly controlled association process.  相似文献   

19.
Human cerebrospinal fluid (CSF) has been found to contain several different molecular forms of IGF-specific binding proteins (BPs). Qualitatively, they are similar to those present in serum, although their relative proportions are very different, as well as to those present in the culture media of brain tissue from which these BPs presumably arise. One particular form of BP is predominant in CSF. It has an Mr of 34,000, as estimated by SDS-polyacrylamide gel electrophoresis followed by transfer onto nitrocellulose, and an isoelectric point around 5.0 based on chromatofocusing. It has a selective affinity for IGF-II (approximately 4 X 10(10) M-1) as shown by competitive binding experiments in which biosynthetic IGF-I was about 40-times less potent than native IGF-II in displacing 125I-labelled IGF-II. These findings are in agreement with the preponderance of IGF-II in nervous tissue and in CSF and suggest that this BP plays an important role in the interaction of IGF-II with its target cells.  相似文献   

20.
A basic lectin (pI approximately 10.0) was purified to homogeneity from the seeds of winged bean (Psophocarpus tetragonolobus) by affinity chromatography on Sepharose 6-aminocaproyl-D-galactosamine. The lectin agglutinated trypsinized rabbit erythrocytes and had a relative molecular mass of 58,000 consisting of two subunits of Mr 29,000. The lectin binds to N-dansylgalactosamine, leading to a 15-fold increase in dansyl fluorescence with a concomitant 25-nm blue shift in the emission maximum. The lectin has two binding sites/dimer for this sugar and an association constant of 4.17 X 10(5) M-1 at 25 degrees C. The strong binding to N-dansylgalactosamine is due to a relatively positive entropic contribution as revealed by the thermodynamic parameters: delta H = -33.62 kJ mol-1 and delta S0 = -5.24 J mol-1 K-1. Binding of this sugar to the lectin shows that it can accommodate a large hydrophobic substituent on the C-2 carbon of D-galactose. Studies with other sugars indicate that a hydrophobic substituent in alpha-conformation at the anomeric position increases the affinity of binding. The C-4 and C-6 hydroxyl groups are critical for sugar binding to this lectin. Lectin difference absorption spectra in the presence of N-acetylgalactosamine indicate perturbation of tryptophan residues on sugar binding. The results of stopped flow kinetics with N-dansylgalactosamine and the lectin are consistent with a simple one-step mechanism for which k+1 = 1.33 X 10(4) M-1 s-1 and k-1 = 3.2 X 10(-2) s-1 at 25 degrees C. This k-1 is slower than any reported for a lectin-monosaccharide complex so far. The activation parameters indicate an enthalpically controlled association process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号