首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined nitrate assimilation and root gas fluxes in a wild-type barley (Hordeum vulgare L. cv Steptoe), a mutant (nar1a) deficient in NADH nitrate reductase, and a mutant (nar1a;nar7w) deficient in both NADH and NAD(P)H nitrate reductases. Estimates of in vivo nitrate assimilation from excised roots and whole plants indicated that the nar1a mutation influences assimilation only in the shoot and that exposure to NO3 induced shoot nitrate reduction more slowly than root nitrate reduction in all three genotypes. When plants that had been deprived of nitrogen for several days were exposed to ammonium, root carbon dioxide evolution and oxygen consumption increased markedly, but respiratory quotient—the ratio of carbon dioxide evolved to oxygen consumed—did not change. A shift from ammonium to nitrate nutrition stimulated root carbon dioxide evolution slightly and inhibited oxygen consumption in the wild type and nar1a mutant, but had negligible effects on root gas fluxes in the nar1a;nar7w mutant. These results indicate that, under NH4+ nutrition, 14% of root carbon catabolism is coupled to NH4+ absorption and assimilation and that, under NO3 nutrition, 5% of root carbon catabolism is coupled to NO3 absorption, 15% to NO3 assimilation, and 3% to NH4+ assimilation. The additional energy requirements of NO3 assimilation appear to diminish root mitochondrial electron transport. Thus, the energy requirements of NH4+ and NO3 absorption and assimilation constitute a significant portion of root respiration.  相似文献   

2.
Carbon exchange capacity of cucumber (Cucumis sativus L.) germinated and grown in controlled environment chambers at 1000 microliters per liter CO2 decreased from the vegetative growth stage to the fruiting stage, during which time capacity of plants grown at 350 microliters per liter increased. Carbon exchange rates (CERs) measured under growth conditions during the fruiting period were, in fact, lower in plants grown at 1000 microliters per liter CO2 than those grown at 350. Progressive decreases in CERs in 1000 microliters per liter plants were associated with decreasing stomatal conductances and activities of ribulose bisphosphate carboxylase and carbonic anhydrase. Leaf starch concentrations were higher in 1000 microliters per liter CO2 grown-plants than in 350 microliters per liter grown plants but calcium and nitrogen concentrations were lower, the greatest difference occurring at flowering. Sucrose synthase and sucrose-P-synthase activities were similar in 1000 microliters per liter compared to 350 microliters per liter plants during vegetative growth and flowering but higher in 350 microliters per liter plants at fruiting. The decreased carbon exchange rates observed in this cultivar at 1000 microliters per liter CO2 could explain the lack of any yield increase (MM Peet 1986 Plant Physiol 80: 59-62) when compared with plants grown at 350 microliters per liter.  相似文献   

3.
The relationship between net photosynthesis and CO2 concentration was investigated for four species of lichen using an infrared gas analyzer operating in a closed loop system. All species showed a linear relationship at low CO2 levels (100 microliters per liter) with CO2 saturation levels being in excess of 400 microliters per liter. Detailed studies of Sticta latifrons showed a strong influence of thallus water content which resulted in the net photosynthetic response at high water contents still being nearly linear at 1000 microliters per liter CO2. Very low CO2 compensation values (5 microliters per liter) were obtained under some conditions but the value varied between thalli and with thallus water content. The results differ from previous studies which reported low CO2 saturation levels (200 microliters per liter) and no apparent effect of water content. It is suggested that some of these differences may result from the use of a discrete sampling injection infrared gas analyzer system in the earlier studies and an assessment is made of the influence of nonsaturating CO2 levels, lack of cuvette ventilation, and data presentation for this technique.  相似文献   

4.
The photosynthetic rates of intact sporophytes or gametophytes of the fern Todea barbara grown in sterile culture were measured using an infrared gas analyzer. Sporophytes consisted of single whole plants with roots and leaves grown in tubes of agar. Gametophytes were grown as several plants covering the surface of the agar. Sporophytes had photosynthetic rates at light saturation of 8.50 microliters CO2 per hour per milligram dry weight and 1,300 microliters CO2 per hour per milligram chlorophyll, whereas rates for gametophytes were lower, 2.36 microliters CO2 per hour per milligram dry weight and 236 microliters CO2 per hour per milligram chlorophyll.  相似文献   

5.
The effect of sink strength on photosynthetic rates under conditions of long-term exposure to high CO2 has been investigated in soybean. Soybean plants (Merr. cv. Fiskeby V) were grown in growth chambers containing 350 microliters CO2 per liter air until pod set. At that time, plants were trimmed to three trifoliolate leaves and either 21 pods (high sink treatment) or 6 pods (low sink treatment). Trimmed plants were either left in 350 microliters CO2 per liter of air or placed in 1000 microliters CO2 per liter of air (high CO2 treatment) until pod maturity. Whole plant net photosynthetic rates of all plants were measured twice weekly, both at 350 microliters CO2 per liter of air and 1000 microliters CO2 per liter of air. Plants were also harvested at this time for dry weight measurements. Photosynthetic rates of high sink plants at both measurement CO2 concentrations were consistently higher than those of low sink plants, and those of plants given the 350 microliter CO2 per liter of air treatment were higher at both measurement CO2 concentrations than those of plants given the 1000 microliters CO2 per liter of air treatment. When plants were measured under treatment CO2 levels, however, rates were higher in 1,000 microliter plants than 350 microliter CO2 plants. Dry weights of all plant parts were higher in the 1,000 microliters CO2 per liter air treatment than in the 350 microliters CO2 per liter air treatment, and were higher in the low sink than in the high sink treatments.  相似文献   

6.
Cotton (Gossypium hirsutum L. cv Stoneville 213) was grown at 350 and 1000 microliters per liter CO2. The plants grown at elevated CO2 concentrations contained large starch pools and showed initial symptoms of visible physical damage. Photosynthetic rates were lower than expected based on instantaneous exposure to high CO2.

A group of plants grown at 1000 microliters per liter CO2 was switched to 350 microliters per liter CO2. Starch pools and photosynthetic rates were monitored in the switched plants and in the two unswitched control groups. Photosynthetic rates per unit leaf area recovered to the level of the 350 microliters per liter CO2 grown control group within four to five days. To assess only nonstomatal limitations to photosynthesis, a measure of photosynthetic efficiencies was calculated (moles CO2 fixed per square meter per second per mole intercellular CO2). Photosynthetic efficiency also recovered to the levels of the 350 microliters per liter CO2 grown controls within three to four days.

Recovery was correlated to a rapid depletion of the starch pool, indicating that the inhibition of photosynthesis is primarily a result of feedback inhibition. However, complete recovery may involve the repair of damage to the chloroplasts caused by excessive starch accumulation. The rapid and complete reversal of photosynthetic inhibition suggests that the appearance of large, strong sinks at certain developmental stages could result in reduction of the large starch accumulations and that photosynthetic rates could recover to near the theoretical capacity during periods of high photosynthate demand.

  相似文献   

7.
For the leaf succulent Agave deserti and the stem succulent Ferocactus acanthodes, increasing the ambient CO2 level from 350 microliters per liter to 650 microliters per liter immediately increased daytime net CO2 uptake about 30% while leaving nighttime net CO2 uptake of these Crassulacean acid metabolism (CAM) plants approximately unchanged. A similar enhancement of about 30% was found in dry weight gain over 1 year when the plants were grown at 650 microliters CO2 per liter compared with 350 microliters per liter. Based on these results plus those at 500 microliters per liter, net CO2 uptake over 24-hour periods and dry weight productivity of these two CAM succulents is predicted to increase an average of about 1% for each 10 microliters per liter rise in ambient CO2 level up to 650 microliters per liter.  相似文献   

8.
Osmotic adjustment occurred during drought in expanded leaves of sunflowers (Helianthus annuus var Hysun 30) which had been continuously exposed to 660 microliters CO2 per liter or had been previously acclimated to drought. The effect was greatest when the treatments were combined and was negligible in nonacclimated plants grown at 340 microliters CO2 per liter. The concentrations of ethanol soluble sugars and potassium increased during drought but they did not account for the osmotic adjustment. The delay in the decline in conductance and relative water content and in the loss of structural integrity with increasing drought was dependent on the degree of osmotic adjustment. Where it was greatest, conductance fell from 5.8 millimeters per second on the first day of drought to 1.3 millimeters per second on the fourth day and was at approximately the same level on the eighth day. The relative water content remained constant at 85% for three days and fell to 36% on the sixth day. There was no evidence of leaf desiccation even on the eighth day. In contrast, the conductance of leaves showing minimal adjustment fell rapidly after the first day of drought and was negligible after the fourth, at which time the relative water content was 36%. By the sixth day of drought, areas near the margins of the leaves were desiccating and the plants did not recover upon rewatering. Despite the differences in the rate of change of conductance and relative water content during drought, photosynthetic electron transport activity, inferred from measurements of chlorophyll a fluorescence in vivo and PSII activity of isolated thylakoids, remained functional until desiccation occurred.  相似文献   

9.
The photosynthetic nature of the initial stages of nitrate assimilation, namely, uptake and reduction of nitrate, has been investigated in cells of the cyanobacterium Anacystis nidulans treated with l-methionine dl-sulfoximine to prevent further assimilation of the ammonium resulting from nitrate reduction. The light-driven utilization of nitrate or nitrite by these cells results in ammonium release and is associated with concomitant oxygen evolution. Stoichiometry values of about 2 mol oxygen evolved per mol nitrate reduced to ammonium and 1.5 mol oxygen per mol nitrite have been determined in the presence of CO2, as well as in its absence, with nitrate or nitrite as the only Hill reagent. This indicates that in A. nidulans water photolysis directly provides, without the need for carbon metabolites, the reducing power required for the in vivo reduction of nitrate and nitrite to ammonium, processes which are besides strongly inhibited when the operation of the photosynthetic noncyclic electron flow is blocked. Evidence indicating the participation of concentrative transport system(s) in the uptake of nitrate and nitrite by A. nidulans is also presented. The operation of these energy-requiring systems seems to account for the sensitivity to ATP-synthesis inhibitors exhibited by nitrate and nitrite utilization in l-methionine dl-sulfoximine-treated cells. The utilization of nitrate by A. nidulans cells, concomitant with oxygen evolution, can therefore be considered as a genuinely CO2-independent photosynthetic process that makes direct use of photosynthetically generated assimilatory power.  相似文献   

10.
Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter x hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.  相似文献   

11.
CO2 concentrations of 1000 compared to 350 microliters per liter in controlled environment chambers did not increase total fruit weight or number in a monoecious cucumber (Cucumis sativus L. cv Chipper) nor did it increase biomass, leaf area, or relative growth rates beyond the first 16 days after seeding. Average fruit weight was slightly, but not significantly greater in the 1000 microliters per liter CO2 treatment because fruit numbers were changed more than total weight. Plants grown at 1000 and 350 microliters per liter CO2 were similar in distribution of dry matter and leaf area between mainstem, axillary, and subaxillary branches. Early flower production was greater in 1000 microliters per liter plants. Subsequent flower numbers were either lower in enriched plants or similar in the two treatments, except for the harvest at fruiting when enriched plants produced many more male flowers than the 350 microliters per liter treatments.  相似文献   

12.
Terry N 《Plant physiology》1983,71(4):855-860
Using iron stress to reduce the total amount of light-harvesting and electron transport components per unit leaf area, the influence of light-harvesting and electron transport capacity on photosynthesis in sugar beet (Beta vulgaris L. cv F58-554H1) leaves was explored by monitoring net CO2 exchange rate (P) in relation to changes in the content of Chl.

In most light/CO2 environments, and especially those with high light (≥1000 microeinsteins photosynthetically active radiation per square meter per second) and high CO2 (≥300 microliters CO2 per liter air), P per area was positively correlated with changes in Chl (a + b) content (used here as an index of the total amount of light-harvesting and electron transport components). This positive correlation of P per area with Chl per area was obtained not only with Fe-deficient plants, but also over the normal range of variation in Chl contents found in healthy, Fe-sufficient plants. For example, light-saturated P per area at an ambient CO2 concentration close to normal atmospheric levels (300 microliters CO2 per liter air) increased by 36% with increase in Chl over the normal range, i.e. from 40 to 65 micrograms Chl per square centimeter. Iron deficiency-mediated changes in Chl content did not affect dark respiration rate or the CO2 compensation point. The results suggest that P per area of sugar beet may be colimited by light-harvesting and electron transport capacity (per leaf area) even when CO2 is limiting photosynthesis as occurs under field conditions.

  相似文献   

13.
Numerous photosynthesis and growth measurements of sour orange (Citrus aurantium L.) trees maintained in ambient air and air enriched with an extra 300 microliters per liter of CO2 have revealed the CO2-enriched trees to have consistently sequestered approximately 2.8 times more carbon than the control trees over a period of three full years. Under field conditions in the natural environment, plants may not experience the downward regulation of photosynthetic capacity typically observed in long-term CO2 enrichment experiments with plants growing in pots.  相似文献   

14.
Root excision decreases nutrient absorption and gas fluxes   总被引:11,自引:4,他引:7       下载免费PDF全文
The roots of barley plants (Hordeum vulgare L. cv Steptoe) were monitored before and after excision for net uptake of carbon dioxide, oxygen, ammonium, potassium, nitrate, and chloride and for their content of sucrose, glucose, fructose, and malic acid. All fluxes began to attenuate within 2 hours after excision. Net potassium uptake returned to control levels 6 hours after excision, but carbon dioxide, oxygen, ammonium, and nitrate fluxes continued to diminish for the remainder of the observation period. The addition of 0.1 molar glucose or 0.1 molar sucrose to excision medium had no significant effect on these changes in ion and gas fluxes. Net chloride uptake was negligible for all treatments. Sugar and malic acid content of the root declined after excision. Sucrose and glucose levels remained depressed for the entire observation period, whereas fructose and malic acid returned to control levels after 9 hours. These results indicate that excision has profound, adverse effects on root respiration and the absorption of mineral nitrogen.  相似文献   

15.
Lycopersicon esculentum Mill. cv Vedettos and Lycopersicon chmielewskii Rick, LA 1028, were exposed to two CO2 concentrations (330 or 900 microliters per liter) for 10 weeks. The elevated CO2 concentrations increased the initial ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity of both species for the first 5 weeks of treatment but the difference did not persist during the last 5 weeks. The activity of Mg2+-CO2-activated Rubisco was higher in 900 microliters per liter for the first 2 weeks but declined sharply thereafter. After 10 weeks, leaves grown at 330 microliters per liter CO2 had about twice the Rubisco activity compared with those grown at 900 microliters per liter CO2. The two species showed the same trend to Rubisco declines under high CO2 concentrations. The percent activation of Rubisco was always higher under high CO2. The phosphoenolpyruvate carboxylase (PEPCase) activity measured in tomato leaves averaged 7.9% of the total Rubisco. PEPCase showed a similar trend with time as the initial Rubisco but with no significant difference between nonenriched and CO2-enriched plants. Long-term exposure of tomato plants to high CO2 was previously shown to induce a decline of photosynthetic efficiency. Based on the current study and on previous results, we propose that the decline of activated Rubisco is the main cause of the acclimation of tomato plants to high CO2 concentrations.  相似文献   

16.
Oxygen-Nitrogen Relationships in Autotrophic Nitrification   总被引:4,自引:1,他引:3       下载免费PDF全文
Oxygen utilization by the autotrophic nitrifiers Nitrosomonas and Nitrobacter was studied. Experimental evidence is presented which reflects the effect of carbon dioxide fixation on overall oxygen utilization in autotrophic nitrification. Measurement of dissolved oxygen and inorganic nitrogen changes indicates that oxygen-nitrogen ratios in inorganic nitrogen oxidation are equal to 3.22 parts (expressed in milligrams per liter) of oxygen per part of ammonia nitrogen oxidized to nitrite nitrogen and 1.11 parts of oxygen per part of nitrite nitrogen oxidized to nitrate nitrogen. These values rather than the stoichiometric ratios should be used in nitrogenous oxygen demand calculations.  相似文献   

17.
Lycopersicon esculentum Mill. cv Vedettos and Lycopersicon chmielewskii Rick, LA 1028, were exposed to two CO2 concentrations (330 or 900 microliters per liter) for 10 weeks. Tomato plants grown at 900 microliters per liter contained more starch and more sugars than the control. However, we found no significant accumulation of starch and sugars in the young leaves of L. esculentum exposed to high CO2. Carbon exchange rates were significantly higher in CO2-enriched plants for the first few weeks of treatment but thereafter decreased as tomato plants acclimated to high atmospheric CO2. This indicates that the long-term decline of photosynthetic efficiency of leaf 5 cannot be attributed to an accumulation of sugar and/or starch. The average concentration of starch in leaves 5 and 9 was always higher in L. esculentum than in L. chmielewskii (151.7% higher). A higher proportion of photosynthates was directed into starch for L. esculentum than for L. chmielewskii. However, these characteristics did not improve the long-term photosynthetic efficiency of L. chmielewskii grown at high CO2 when compared with L. esculentum. The chloroplasts of tomato plants exposed to the higher CO2 concentration exhibited a marked accumulation of starch. The results reported here suggest that starch and/or sugar accumulation under high CO2 cannot entirely explain the loss of photosynthetic efficiency of high CO2-grown plants.  相似文献   

18.
The distribution of 14C in photosynthetic metabolites of two naturally occurring higher plants with reduced photorespiration, Moricandia arvensis and Panicum milioides, in pulse and pulse-chase 14CO2 incorporation experiments was similar to that for the C3 species, M. foetida and Glycine max. After 6 seconds of 14CO2 incorporation, only about 6% of the total 14C fixed was in malate and aspartate in both M. arvensis and P. milioides. The apparent turnover of the C4 acids was very slow, and malate accumulated during the day in M. arvensis. Thus, C4 acid metabolism by M. arvensis and P. milioides had no significant role in photosynthetic carbon assimilation under the conditions of our experiments (310 microliters CO2 per liter, 21% O2, 1100 or 1900 micromoles photon per square meter per second, 27°C).

After a 36-second chase period in air containing 270 microliters CO2 per liter, about 20% of the total 14C fixed was in glycine with M. arvensis, as compared to 15% with M. foetida, 14% with P. milioides, and 9% with G. max. After a 36-second chase period in 100 microliters CO2 per liter, the percentage in glycine was about twice that at 270 microliters CO2 per liter in the C3 species and P. milioides, but only 20% more 14C was in glycine in M. arvensis. These data suggest that either the photorespiratory glycine pool in M. arvensis is larger than in the other species examined or the apparent turnover rate of glycine and the flow of carbon into glycine during photorespiration are less in M. arvensis. An unusual glycine metabolism in M. arvensis may be linked to the mechanism of photorespiratory reduction in this crucifer.

  相似文献   

19.
Zelitch I 《Plant physiology》1990,93(4):1521-1524
Experiments are described further indicating that O2-resistant photosynthesis observed in a tobacco (Nicotiana tabacum) mutant with enhanced catalase activity is associated with decreased photorespiration under conditions of high photorespiration relative to net photosynthesis. The effects on net photosynthesis of (a) increasing O2 concentrations from 1% to 42% at low CO2 (250 microliters CO2 per liter), and (b) of increasing O2 concentrations from 21% to 42% at high CO2 (500 microliters CO2 per liter) were investigated in M6 progeny of mutant and wild-type leaf discs. The mutant displayed a progressive increase in net photosynthesis relative to wild type with increasing O2 and the faster rate at 42% O2 was completely reversed on returning to 21% O2. The photosynthetic rate by the mutant was similar to wild type in 21% and 42% O2 at 500 microliters CO2 per liter, and a faster rate by the mutant was restored on returning to 250 microliters CO2 per liter. The results are consistent with a lowered release of photorespiratory CO2 by the mutant because greater catalase activity inhibits the chemical decarboxylation of α-keto acids by peroxisomal H2O2. Higher catalase activity was observed in the tip and middle regions of expanding leaves than in the basal area. On successive selfing of mutant plants with enhanced catalase activity, the percent of plants with this phenotype increased from 60% in M4 progeny to 85% in M6 progeny. An increase was also observed in the percent of plants with especially high catalase activity (averaging 1.54 times wild type) on successive selfings suggesting that homozygosity for enhanced catalase activity was being approached.  相似文献   

20.
Moll B  Levine RP 《Plant physiology》1970,46(4):576-580
A mutant strain of the unicellular green alga, Chlamydomonas reinhardi, is unable to fix carbon dioxide by photosynthesis because it is deficient in phosphoribulokinase activity. The absence of light-dependent carbon dioxide fixation in cells of the mutant strain supports the operation of the Calvin-Benson scheme of photosynthetic carbon dioxide fixation in this organism. No deficiency other than low phosphoribulokinase activity was found which would account for the inability of cells of the mutant strain to fix carbon dioxide by photosynthesis. Activities comparable to those in the wild-type strain were found for eight other enzymes of the Calvin cycle and two enzymes associated with the C4 dicarboxylic acid pathway. The normal rates of nicotinamide adenine dinucleotide phosphate photoreduction and of photosynthetic phosphorylation observed in chloroplast fragments prepared from cells of the mutant strain indicated that the photosynthetic electron transport chain in the mutant is intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号