首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A group of (E)-3-(4-methanesulfonylphenyl)acrylic acids possessing a substituted-phenyl ring (4-H, 4-Br, 3-Br, 4-F, 4-OH, 4-OMe, 4-OAc, and 4-NHAc) attached to the acrylic acid C-2 position were prepared using a stereospecific Perkin condensation reaction. A related group of compounds having 4- and 3-(4-isopropyloxyphenyl)phenyl, 4- and 3-(2,4-difluorophenyl)phenyl and 4- and 3-(4-methanesulfonylphenyl)phenyl substituents attached to the acrylic acid C-2 position were also synthesized, using a palladium-catalyzed Suzuki cross-coupling reaction, for evaluation as dual cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors. (E)-2-(3-Bromophenyl)-3-(4-methanesulfonylphenyl)acrylic acid (9h), and compounds having 4-(4-isopropyloxyphenyl-, 2,4-difluorophenyl-, or 4-methylsulfonylphenyl)phenyl moieties at the acrylic acid C-2 position (11a,b,d), were particularly potent COX-2 inhibitors with a high COX-2 selectivity index (COX-2 IC50 approximately 0.32 microM, SI > 316) similar to the reference drug rofecoxib (COX-2 IC50 = 0.5 microM, SI > 200). Acrylic acid analogs with a C-2 4-hydoxyphenyl (9d, IC50 = 0.56 microM), or 4-acetamidophenyl (9g, IC50 = 0.11 microM), substituent were particularly potent 5-LOX inhibitors that may participate in an additional specific hydrogen-bonding interaction. A number of compounds possessing a C-2 substituted-phenyl moiety (4-Br, 4-F, and 4-OH), or a 4- or 3-(2,4-difluorophenyl)phenyl moiety, showed potent 15-LOX inhibitory activity (IC50 values in the 0.31-0.49 microM range) relative to the reference drug luteolin (IC50 = 3.2 microM). Compounds having a C-2 4-acetylaminophenyl, or 4-(2,4-difluorophenyl)phenyl, moiety exhibited anti-inflammatory activities that were equipotent to aspirin, but less than that of celecoxib. The structure-activity data acquired indicate the acrylic acid moiety constitutes a suitable scaffold (template) to design novel acyclic dual inhibitors of the COX and LOX isozymes.  相似文献   

2.
Six analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP, (1)] bearing various heteroaryl groups at C-4 were synthesized and examined for their monoamine oxidase B substrate properties. The C-4 substituents include the 1-ethylpyrrol-2-yl, 1-propylpyrrol-2-yl, 1-isopropylpyrrol-2-yl, 1-cyclopropylpyrrol-2-yl, 3-ethylfuran-2-yl and 3-ethylthien-2-yl groups. The results provide information concerning steric and polar interactions between the C-4 substituent and the active site of MAO-B that are transmitted to the position of oxidation at C-6 of the tetrahydropyridinyl moiety.  相似文献   

3.
A group of regioisomeric (E)-1,3-diarylprop-2-en-1-one derivatives possessing a COX-2 SO2Me pharmacophore at the para position of the C-1 or C-3 phenyl ring, in conjunction with a C-3 or C-1 phenyl (4-H) or substituted-phenyl ring (4-F, 4-OMe and 4-Me), were designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. These target (E)-1,3-diarylprop-2-en-1-ones were synthesized via a Claisen-Schmidt condensation reaction. In vitro COX-1/COX-2 isozyme inhibition structure-activity studies identified (E)-1-(4-methanesulfonylphenyl)-3-(4-methylphenyl)prop-2-en-1-one (9f) as a potent COX-2 inhibitor (IC50=0.3 microM) with a high COX-2 selectivity index (SI=106) comparable to that of the reference drug rofecoxib (COX-2 IC50=0.5 microM; COX-2 SI>200). A molecular modeling study where 9f was docked in the binding site of COX-2 showed that the para-SO2Me substituent on the C-1 phenyl ring is oriented in the vicinity of the secondary COX-2 binding site near Val523. The structure-activity data acquired indicate that the propenone moiety constitutes a suitable scaffold to design novel acyclic 1,3-diarylprop-2-en-1-ones with selective COX-2 inhibitory activity.  相似文献   

4.
A series of 2-(4-biphenylyl)-3,3'-hydroxy-substituted phenyl propionic acid, with anti-inflammatory properties, bearing two chiral centres, were studied by HPLC upon HSA-CSP (human serum albumin-based chiral stationary phase). The compounds were analysed in their stereoisomeric erythro and threo forms. The study involved the enantioselective analysis on HSA-CSP, the determination of the racemate lipophilicity (log k'(w)), a QSRR (quantitative structure-retention relationship) analysis and CD study for the assessment of the absolute configuration of the most retained enantiomer. Lipophilicity was found to be an important factor affecting the affinity of the compounds for the HSA stationary phase, but electronic properties seemed to play a role. The position of the substituent of the phenyl group on carbon 3 was found important to modulate stereoselective interaction, the highest value of enantioselectivities being found for the erythro ortho-substituted phenyl derivatives. The previously proposed two steps mechanism of enantiodiscrimination for cyclohexylphenyl substituted derivatives was confirmed for this series of derivatives bearing the biphenylyl moiety.  相似文献   

5.
A new group of 3-(4-substituted-phenyl)-4-(4-methylsulfonamidophenyl)-2(5H)furanones in which the methylsulfonyl (MeSO(2)) COX-2 pharmacophore present in rofecoxib was replaced by a methanesulfonamido (MeSO(2)NH) moiety, and where the substituent at the para-position of the C-3 phenyl ring was simultaneously varied (H, F, Cl, Br, Me, OMe), were evaluated to determine the combined effects of steric and electronic substituent properties upon COX-1 and COX-2 inhibitory potency and COX isozyme selectivity. Structure-activity relationship (SAR) studies showed that compounds having a neutral (H), or electronegative halogen (F, Cl, Br), substituent at the para-position of the C-3 phenyl ring inhibited both COX-1 and COX-2 with COX-2 selectivity indexes in the 3.1-39.4 range. In contrast, compounds having an electron-donating Me or OMe substituent were selective inhibitors of COX-2 (COX-1 IC(50)>100 microM). These SAR data indicate the 3-aryl-4-(4-methylsulfonamidophenyl)-2(5H)furanone scaffold provides a suitable template to design COX inhibitors with variable COX-2 selectivity indexes.  相似文献   

6.
Novel chiral ionic liquid stationary phases based on chiral imidazolium were prepared. The ionic liquid chiral selector was synthesized by ring opening of cyclohexene oxide with imidazole or 5,6‐dimethylbenzimidazole, and then chemically modified by different substitute groups. Chiral stationary phases were prepared by bonding to the surface of silica sphere through thioene “click” reaction. Their enantioselective separations of chiral acids were evaluated by high‐performance liquid chromatography. The retention of acid sample was related to the counterion concentration and showed a typical ion exchange process. The chiral separation abilities of chiral stationary phases were greatly influenced by the substituent group on the chiral selector as well as the mobile phase, which indicated that, besides ion exchange, other interactions such as steric hindrance, π‐π interaction, and hydrogen bonding are important for the enantioselectivity. In this report, the influence of bulk solvent components, the effects of varying concentration, and the type of the counterion as well as the proportion of acid and basic additives were investigated in detail.  相似文献   

7.
A group of methyl 2-methyl-7,7-dihalo-5-(substituted-phenyl)-2-azabicyclo[4.1.0]hept-3-ene-4-carboxylates were prepared by reaction of dihalocarbenes (:CX2, X = Br, Cl) with methyl 1-methyl-4-(substituted-phenyl)-1,4-dihydropyridine-3-carboxylates. In vitro calcium channel antagonist activities were determined using a guinea pig ileum longitudinal smooth muscle assay. The title compounds exhibited weaker CC antagonist activity (10(-5)-10(-6)M range) than the reference drug nifedipine (1.4 x 10(-8)M). Structure-activity relationship studies showed that the position of a nitro substituent on the C-5 phenyl ring where the relative potency order was ortho > meta > para, and the size and/or electronegativity of the C-7 geminal-dihalo substituents (Br > Cl), were determinants of calcium channel antagonist activity. This class of compounds did not exhibit any inotropic effect on guinea pig left atria. A dihalocyclopropyl moiety is a potential bioisostere for the 2-methyl-3-methoxycarbonylvinyl moiety present in the calcium channel antagonist nifedipine.  相似文献   

8.
Several chiral Schiff-base ligands with sugar moieties at C-3 (3′) or C-5 (5′) of salicylaldehyde were synthesized from reaction of salicylaldehyde derivatives with diamine. These ligands coordinated with Mn(III) to afford the corresponding chiral salen-Mn(III) complexes characterized by FT-IR, MS, and elementary analysis. These complexes were used as catalysts for the asymmetric epoxidation of unfunctionalized alkenes. Only weak enantioselectivity is induced by the chiral sugar moieties at C-3 (3′) or C-5 (5′) in the case of absence of chirality in the diimine bridge moiety. It was also shown that the sugars at C-5 (5′) having the same rotation direction of polarized light as the diimine bridge in the catalyst could enhance the chiral induction in the asymmetric epoxidation, but the sugars with the opposite rotation direction would reduce the chiral induction.  相似文献   

9.
Considering the worth of developing non-steroidal estrogen analogues, the present research explores the pharmacophores of 1-trifluoromethyl-1,2,2-triphenylethylenes (Fig. 1) for post-coital antifertility activity using electrotopological state atom (E-state) index. The study shows the efficacy of E-state index in developing statistically acceptable model, which explains the electronic environment and topological states of different atoms in a molecule. The exploration concluded that phenyl ring attached to an ethylenic moiety, para substitution by nucleophilic group on the phenyl ring and presence of strong electronegative group as the 4th substituent on the 1st carbon of the ethylenic moiety might be crucial for activity.  相似文献   

10.
Specificity of substrate recognition in lactose permease is directed toward the galactosyl moiety of lactose. In this study, binding of 31 structural analogues of D-galactose was examined by site-directed N-[(14)C]ethylmaleimide-labeling of the substrate-protectable Cys148 in the binding site. Alkylation of Cys148 is blocked by D-galactose with an apparent affinity of approximately 30 mM. Epimers of D-galactose at C-3 (D-gulose) and C-4 (D-glucose) or deoxy derivatives at these positions exhibit no binding whatsoever, indicating that these OH groups participate in essential interactions. Interestingly, the C-2 epimer alpha-D-talose binds almost as well as D-galactose, while 2-deoxy-D-galactose affords no substrate protection, indicating that nonstereospecific H-bonding at C-2 is required for stable binding. No substrate protection is detected with D-fucose, L-arabinose, 6-deoxy-6-fluoro-D-galactose, 6-O-methyl-D-galactose, or D-galacturonic acid, suggesting that the C-6 OH is an essential H-bond donor. Both alpha- and beta-methyl D-galactopyranosides bind more strongly than galactose, supporting the notion that the cyclic pyranose conformation is the bound form and that the anomeric configuration at C-1 does not contribute to substrate specificity. However, methyl or allyl alpha-D-galactopyranosides exhibit 60-fold lower apparent K(d)'s than D-galactose, demonstrating that binding affinity is significantly influenced by the functional group at C-1 and its orientation. Taken together, the observations confirm and extend the current binding site model [Venkatesan, P., and Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807] and indicate that specificity toward galactopyranosides is governed by H-bonding interactions at C-2, C-3, C-4, and C-6 OH groups, while binding affinity can be increased dramatically by hydrophobic interactions with the nongalactosyl moiety.  相似文献   

11.
Chiral resolutions of trifluoroacetyl‐derivatized 1‐phenylalkylamines with different type and position of substituent were investigated by capillary gas chromatography by using heptakis(2,3‐di‐O‐methyl‐6‐Otert‐butyldimethylsilyl)‐β‐cyclodextrin diluted in OV‐1701 as a chiral stationary phase. The influence of column temperature on retention and enantioselectivity was examined. All enantiomers of meta‐substituted analytes as well as fluoro‐substituted analytes could be resolved. Temperature had a favorable influence on enantioselectivity for small amines with substituents at the ortho‐position. The type of substituent at the stereogenic center of amines also had a crucial effect as the ethyl group led to poor enantioseparation. Among all analytes studied, trifluoroacetyl‐derivatized 1‐(2′‐fluorophenyl)ethylamine exhibited baseline resolution with the shortest analysis time.  相似文献   

12.
The normal phase mode liquid chromatographic enantiomer separation capability of a quinine tert-butyl-carbamate-type chiral stationary phase (CSP) has been investigated for a set of polar [1,5-b]-quinazoline-1,5-dione derivatives. This class of chiral heterocycles is currently under development as potential alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and/or N-methyl-D-aspartic acid (NMDA) receptor antagonists. The effect of the nature and concentration of polar modifier, i.e., ethanol and isopropanol, in n-hexane-based mobile phases, as well as the substituent pattern of the phenyl ring attached to the quinazolone framework on retention factor, enantioselectivity, and resolution was investigated. The Soczewiński competitive adsorption model was used to describe the relationship between the retention and the binary mobile phase compositions. According to this model, linear plots of the logarithms of retention factor versus molar fractions of the polar modifiers were obtained over a wide concentration range (X(B) between 0.15 and 0.35). Addition of equimolar ethanol yields higher resolution than isopropanol, R(S) values ranging between 1.54 and 2.75, whereas the latter allows to achieve moderately increased enatioselectivity. The resolution was further improved by using a ternary mixture of n-hexane:methanol:isopropanol/85:5:10 (v/v). The most pronounced selectivity factor alpha and resolution R(S) values were obtained for the para-hydroxy substituted compound, indicating that chiral recognition is sensitive to steric and stereoelectronic factors. In the course of optimization, the temperature-dependence on the chiral separation was also investigated. It turned out that the enantiomer separation is predominantly enthalpically driven in normal phase mode.  相似文献   

13.
Lipoxygenases (LOXs) consist of a class of enzymes that catalyze the regio- and stereospecific dioxygenation of polyunsaturated fatty acids. Current reports propose that a conserved glycine residue in the active site of R-lipoxygenases and an alanine residue at the corresponding position in S-lipoxygenases play a crucial role in determining the stereochemistry of the product. Recently, a bifunctional lipoxygenase with a linoleate diol synthase activity from Nostoc sp. PCC7120 with R stereospecificity and the so far unique feature of carrying an alanine instead of the conserved glycine in the position of the sequence determinant for chiral specificity was identified. The recombinant carboxy-terminal domain was purified after expression in Escherichia coli. The ability of the enzyme to use linoleic acid esterified to a bulky phosphatidylcholine molecule as a substrate suggested a tail-fist binding orientation of the substrate. Site directed mutagenesis of the alanine to glycine did not cause alterations in the stereospecificity of the products, while mutation of the alanine to valine or isoleucine modified both regio- and enantioselectivity of the enzyme. Kinetic measurements revealed that substitution of Ala by Gly or Val did not significantly influence the reaction characteristics, while the A162I mutant showed a reduced vmax. Based on the mutagenesis data obtained, we suggest that the existing model for stereocontrol of the lipoxygenase reaction may be expanded to include enzymes that seem to have in general a smaller amino acid in R and a bulkier one in S lipoxygenases at the position that controls stereospecificity.  相似文献   

14.
Kinetic measurements were made with cortisone reductase (20-dihydrocortisone-NAD(+) oxidoreductase, EC 1.1.1.53) and a series of substrates which differed in shape, size and electronic character in the region adjacent to C-11, C-14 and C-18. Structural changes at C-11 in these substrates resulted in up to 660-fold changes in the apparent K(m) value, up to 200-fold changes in the apparent V(max.) value and up to 800-fold changes in the ratio of these kinetic constants. It is suggested that interactions important for substrate function normally occur between the enzyme and the C ring in the region of C-11, that these interactions arise from so-called hydrophobic forces between the generally hydrophobic C ring portion of the substrate and a hydrophobic region of the enzyme, but that when the substrate contains a polar substituent in this portion of the molecule, then polar interactions with polar moieties of the enzyme can also be important. It is further suggested that the part of the enzyme that interacts with the region of C-11 in the substrate is flexible, and that substrate binding involves at least some degree of induced fit.  相似文献   

15.
Michaelis constants (Kms) and molecular activities (kos) of phenyl, p-nitrophenyl and p-methylphenyl alpha-maltoside for taka-amylase A catalyzed hydrolyses were determined in H2O and in D2O at pH or pD 5.3 and at 25 degrees C. Production of alpha-maltose in the hydrolysis was confirmed by 1H NMR. Neither substituent nor solvent deuterium isotope effects on Kms for phenyl, p-nitrophenyl and p-methylphenyl alpha-maltosides were detected. On the other hand, substituent effects on kos of these compounds were evident, but the isotope effects on kos were not marked, so that protonation of the substrate in the catalytic reaction might not be rate-limiting. The result indicates that nucleophilic attack of a carboxylate anion of the enzyme upon the protonated substrate is the rate-limiting step in the hydrolysis proceeding through the nucleophilic double displacement mechanism, which involves a covalently bonded glycosyl intermediate. The molecular orbitals of phenyl alpha-D-glucosides as model compounds of phenyl alpha-maltosides were calculated by the AM1 method. From the results, it was concluded that the lowering of the lowest unoccupied molecular orbital (LUMO) energy levels and the increase of distribution of LUMO on the anomeric carbon, C-1, of the compounds are caused by protonation at the glycosidic oxygen from the protonated carboxyl group of the enzyme. This causes acceleration of the hydrolysis of a substrate by the enzyme.  相似文献   

16.
Pyrrolo[2,3-d]pyrimidines containing a 5-(4-phenoxyphenyl) substituent are novel, potent and selective inhibitors of lck in vitro. Exploration of C-6 position of the pyrrolo[2,3-d]pyrimidine and the terminal phenyl group structure-activity relationship (SAR) is detailed. Compound 1 is orally active in animal models.  相似文献   

17.
Ricin A-chain (RTA) catalyzes the hydrolytic depurination of a specific adenosine at position 4324 of 28S rRNA. Kinetic isotope effects on the hydrolysis of a small 10mer stem-tetraloop oligonucleotide substrate established the mechanism of the reaction as D(N)*A(N), involving an oxacarbenium ion intermediate in a highly dissociative transition state. An inhibitor with a protonated 1,4-dideoxy-1,4-imino-D-ribitol moiety, a 4-azasugar mimic, at the depurination site in the tetraloop of a 14mer oligonucleotide with a 5 bp duplex stem structure had previously been shown to bind to RTA with a K(d) of 480 nM, which improved to 12 nM upon addition of adenine. Second-generation stem-tetraloop inhibitors have been synthesized that incorporate a methylene bridge between the nitrogen of a 1-azasugar mimic, namely, (3S,4R)-3-hydroxy-4-(hydroxymethyl)pyrrolidine, and substituents, including phenyl, 8-aza-9-deazaadenyl, and 9-deazaadenyl groups, that mimic the activated leaving group at the transition state. The values for the dissociation constants (K(i)) for these were 99 nM for the phenyl 10mer, 163 and 94 nM for the 8-aza-9-deazaadenyl 10- and 14mers, respectively, and 280 nM for the 9-deazaadenyl 14mer. All of these compounds are among the tightest binding molecules known for RTA. A related phenyl-substituted inhibitor with a deoxyguanosine on the 5'-side of the depurination site was also synthesized on the basis of stem-loop substrate specificity studies. This molecule binds with a K(i) of 26 nM and is the tightest binding "one-piece" inhibitor. 8-Aza-9-deaza- and 9-deazaadenyl substituents provide an increased pK(a) at N7, a protonation site en route to the transition state. The binding of these inhibitors is not improved relative to the binding of their phenyl counterpart, however, suggesting that RTA might also employ protonation at N1 and N3 of the adenine moiety to activate the substrate during catalysis. Studies with methylated adenines support this argument. That the various stem-loop inhibitors have similar potencies suggests that an optimal one-piece inhibitor remains to be identified. The second-generation inhibitors described here incorporate ribose mimics missing the 2-hydroxy group. On the basis of inhibition data and substrate specificity studies, the 2'-hydroxyl group at the depurination site seems to be critical for recruitment as well as catalysis by RTA.  相似文献   

18.
In previous studies, we have identified a family of benzo[b]furan and benzo[b]thiophene derivatives linked to amino sugars (1-6) that are cytotoxic to a range of cancer cell lines. We describe here an exploration of the effect of structural modification of the amino group on one of the carbohydrate residues (4-amino-2,3,4,6-tetradeoxy-α-l-threo-hexopyranoside) on in vitro cytotoxicity. It has been found that maintaining at least one basic functional group around the C-4 position in the carbohydrate moiety is crucial for cytotoxicity. Furthermore, it appears that modifications around the C-4 position are limited by suitable hydrophilic/hydrophobic and/or ionic interactions, as well as steric constraints.  相似文献   

19.
A group of alkyl 7,7-dihalo-3-methyl-5-(2- or 3-nitrophenyl)-2-azabicyclo[4.1.0]hept-3-ene-4-carboxylates were prepared by reaction of dihalocarbenes (:CX(2), X=Br, Cl) with alkyl 2-methyl-4-(2- or 3-nitrophenyl)-1,4-dihydropyridine-3-carboxylates. In vitro calcium channel antagonist activities were determined using a guinea pig ileum longitudinal smooth muscle assay. The title compounds exhibited weaker CC antagonist activity (10(-5) to 10(-7)M range) than the reference drug nifedipine (1.4 x 10(-8)M). Structure-activity relationships showed that the position (ortho or meta) of the nitro-substituent on the C-5 phenyl ring, the size (van der Waal's radius for Br and Cl are 1.95 and 1.80A, respectively) and/or electronegativity (Cl>Br) of the C-7 geminal halogen atoms do not appear to have a significant effect on CC antagonist activity. In contrast, the effect of the alkyl ester substituent was more pronounced where compounds having a Me or Et alkyl ester group showed superior potency (IC(50) in the 10(-7)M range) relative to the reference drug nifedipine (IC(50)=1.40 x 10(-8)M). Replacement of a 2-methyl-3-methoxycarbonylvinyl moiety present in nifedipine by a bioisosteric geminal-dihalocyclopropyl moiety provided a novel class of calcium channel antagonists that do not exhibit any inotropic effect on guinea pig atria.  相似文献   

20.
A group of acyclic 2-alkyl-1,1-diphenyl-2-(4-methylsulfonylphenyl)ethenes was designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1 and COX-2 isozyme inhibition structure-activity studies identified 1,1-diphenyl-2-(4-methylsulfonylphenyl)hex-1-ene as a highly potent (IC(50) = 0.014 microM), and an extremely selective [COX-2 selectivity index (SI) > 7142], COX-2 inhibitor that showed superior anti-inflammatory (AI) activity (ID(50) = 2.5 mg/kg) relative to celecoxib (ID(50) = 10.8 mg/kg). This initial study was extended to include the design of a structurally related group of acyclic triaryl (Z)-olefins possessing an acetoxy (OAc) substituent at the para-position of the C-1 phenyl ring that is cis to a C-2 4-methylsulfonylphenyl substituent. COX-1 and COX-2 inhibition studies showed that (Z)-1-(4-acetoxyphenyl)-1-phenyl-2-(4-methylsulfonylphenyl)but-1-ene [(Z)-13b] is a potent (COX-1 IC(50) = 2.4 microM; COX-2 IC(50) = 0.03 microM), and selective (COX-2 SI = 81), COX-2 inhibitor which is a potent AI agent (ID(50) = 4.1mg/kg) with equipotent analgesic activity to celecoxib. A molecular modeling (docking) study showed that the SO(2)Me substituent of (Z)-13b inserts deep inside the 2 degrees -pocket of the COX-2 active site, where one of the O-atoms of SO(2) group undergoes a H-bonding interaction with Phe(518). The p-OAc substituent on the C-1 phenyl ring is oriented in a hydrophobic pocket comprised of Met(522), Gly(526), Trp(387), Tyr(348), and Tyr(385), and the C-2 ethyl substituent is oriented towards the mouth of the COX-2 channel in the vicinity of amino acid residues Arg(120), Leu(531), and Val(349). Structure-activity data acquired indicate that a (Z)-olefin having cis C-1 4-acetoxyphenyl (phenyl) and C-2 4-methylsulfonylphenyl substituents, and a C-1 phenyl substituent in conjunction with either a C-2 hydrogen or short alkyl substituent provides a novel template to design acyclic olefinic COX-2 inhibitors that, like aspirin, have the potential to acetylate COX-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号