首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have found that ribonuclease S-peptide can work as a novel peptidyl substrate in protein cross-linking reactions catalyzed by microbial transglutaminase (MTG) from Streptomyces mobaraensis. Enhanced green fluorescent protein tethered to S-peptide at its N-terminus (S-tag-EGFP) appeared to be efficiently cross-linked by MTG. As wild-type EGFP was not susceptible to cross-linking, the S-peptide moiety is likely to be responsible for the cross-linking. A site-directed mutation study assigned Gln15 in the S-peptide sequence as the sole acyl donor. Mass spectrometric analysis showed that two Lys residues (Lys5 and Lys11) in the S-peptide sequence functioned as acyl acceptors. We also succeeded in direct monitoring of the cross-linking process by virtue of fluorescence resonance energy transfer (FRET) between S-tag-EGFP and its blue fluorescent color variant (S-tag-EBFP). The protein cross-linking was tunable by either engineering S-peptide sequence or capping the S-peptide moiety with S-protein, the partner protein of S-peptide for the formation of ribonuclease A. The latter indicates that S-protein can be used as a specific inhibitor of S-peptide-directed protein cross-linking by MTG. The controllable protein cross-linking of S-peptide as a potent substrate of MTG will shed new light on biomolecule conjugation.  相似文献   

2.
Functional cross-linking of a single chain Fv fragment of anti-hen egg-white lysozyme antibody (scFv) and alkaline phosphatase (AP) was explored using microbial transglutaminase (MTG) from Streptomyces mobaraensis. A specific peptidyl linker for MTG was genetically fused to the N-terminus of each protein and the resultant proteins were obtained separately by bacterial expression. The recombinant peptide-tagged scFv and AP were site-specifically cross-linked by MTG through the extra peptidyl linkers in vitro, which mainly yielded the heterodimer (i.e., scFv-AP conjugate). The enzymatic cross-linking reaction had little influence on either the antigen-binding ability of the scFv moiety or the enzymatic activity of the AP moiety of the conjugate, allowing use within an enzyme-linked immunosorbent assay. The results obtained suggest that the enzymatic approach with MTG facilitates the posttranslational construction of functional fusion proteins.  相似文献   

3.
Tanaka T  Kamiya N  Nagamune T 《FEBS letters》2005,579(10):2092-2096
Here, we report the N-terminal glycine (Gly) residue of a target protein can be a candidate primary amine for site-specific protein conjugation catalyzed by microbial transglutaminase (MTG) from Streptomyces mobaraensis. Gly5-enhanced green fluorescent protein (EGFP) (EGFP with five additional Gly residues at its N-terminus) was cross-linked with Myc-dihydrofolate reductase (DHFR) (DHFR with the myc epitope sequence at its N-terminus) to yield DHFR-EGFP heterodimers. The reactivities of additional peptidyl linkers were investigated and the results obtained suggested that at least three additional Gly residues at the N-terminus were required to yield the EGFP-DHFR heterodimeric form. Site-directed mutagenesis analysis revealed marked preference of MTG for amino acids adjacent to the N-terminal Gly residue involved in the protein conjugation. In addition, peptide-protein conjugation was demonstrated by MTG-catalyzed N-terminal Gly-specific modification of a target protein with the myc epitope peptide.  相似文献   

4.
High affinity interaction between S-protein and S-peptide fragments of bovine pancreatic RNase A has been recently used for construction of molecular vehicles for targeted drug delivery. The vehicle is assembled as a complex of drug carrier conjugated S-protein with S-peptide-tagged targeting protein. To avoid random chemical crosslinking of drug carriers to S-protein, we constructed a mutant 16-124aa fragment of RNase A in which 122ala is replaced with a cysteine residue. The mutant and the corresponding wild type fragments expressed in Escherichia coli are refolded into functional conformations only in the presence of S-peptide. After the removal of S-peptide, both fragments retain the ability to bind S-peptide and S-peptide-tagged proteins. The 122cys residue in the mutant fragment is available for site-specific conjugation.  相似文献   

5.
The histidine C-2 proton NMR titration curves of ribonuclease S-peptide (residues 1 to 20) and S-protein (residues 21 to 124) are reported. Although S-protein contains 3 histidine residues, four discrete resonances are observed to titrate. One of these arises from the equivalent histidine residues of unfolded S-protein. The variation in area of the four resonances indicate that there is a reversible pH-dependent equilibrium between the folded and unfolded forms of S-protein, with some unfolded material being present at most pH values. Two of the resonances of the folded S-protein can be assigned to 2 of the histidine residues, 48 and 105, from the close similarity of their titration curves to those in ribonuclease. These similarities indicate a homology of portions of the folded conformation of S-protein to that of ribonuclease in solution. These results indicate that the complete amino acid sequence is not required to produce a folded conformation similar to the native globular protein, and they appear to eliminate the possibility that proteins fold from their NH2 terminus during protein synthesis. The low pH inflection present in the titration curve assigned to histidine residue 48 in ribonuclease is absent from this curve in S-protein. This is consistent with our previous conclusion that this inflection arises from the interaction of histidine 48 with aspartic acid residue 14, which is also absent in S-protein. The third titrating resonance of native S-protein is assigned to the remaining histidine residue at position 119. The properties of this resonance are not identical with either of the titration curves of the active site histidine residues 12 and 119 of ribonuclease. The resonance assigned to histidine 119 is the only one significantly affected on the addition of sodium phosphate to S-protein, indicating that some degree of phosphate binding occurs. In both the absence and presence of phosphate this curve also lacks the low pH inflection observed in the histidine 119 NMR titration curve in ribonuclease. This difference presumably arise from a conformational between ribonuclease and the folded S-protein involving a carboxyl group.  相似文献   

6.
Ribonuclease S-peptide as a carrier in fusion proteins.   总被引:16,自引:1,他引:15       下载免费PDF全文
S-peptide (residues 1-20) and S-protein (residues 21-124) are the enzymatically inactive products of the limited digestion of ribonuclease A by subtilisin. S-peptide binds S-protein with high affinity to form ribonuclease S, which has full enzymatic activity. Recombinant DNA technology was used to produce a fusion protein having three parts: carrier, spacer, and target. The two carriers used were the first 15 residues of S-peptide (S15) and a mutant S15 in which Asp 14 had been changed to Asn (D14N S15). The spacer consisted of three proline residues and a four-residue sequence recognized by factor Xa protease. The target was beta-galactosidase. The interaction between the S-peptide portion of the fusion protein and immobilized S-protein allowed for affinity purification of the fusion protein under denaturing (S15 as carrier) or nondenaturing (D14N S15 as carrier) conditions. A sensitive method was developed to detect the fusion protein after sodium dodecyl sulfate-polyacrylamide gel electrophoresis by its ribonuclease activity following activation with S-protein. S-peptide has distinct advantages over existing carriers in fusion proteins in that it combines a small size (> or = 15 residues), a tunable affinity for ligand (Kd > or = 10(-9) M), and a high sensitivity of detection (> or = 10(-16) mol in a gel).  相似文献   

7.
Two fragments of pancreatic ribonuclease A, a truncated version of S-peptide (residues 1-15) and S-protein (residues 21-124), combine to give a catalytically active complex designated ribonuclease S. Residue 13 in the peptide is methionine. According to the X-ray structure of the complex of S-protein and S-peptide (1-20), this residue is almost fully buried. We have substituted Met-13 with seven other hydrophobic residues ranging in size from glycine to phenylalanine and have determined the thermodynamic parameters associated with the binding of these analogues to S-protein by titration calorimetry at 25 degrees C. These data should provide useful quantitative information for evaluating the contribution of hydrophobic interactions in the stabilization of protein structures.  相似文献   

8.
Recent work has shown that, with synthetic analogues of C-peptide (residues 1-13 of ribonuclease A), the stability of the peptide helix in H2O depends strongly on the charge on the N-terminal residue. We have asked whether, in semisynthetic ribonuclease S reconstituted from S-protein plus an analogue of S-peptide (1-15), the stability of the peptide helix is correlated with the Tm of the reconstituted ribonuclease S. Six peptides have been made, which contain Glu9----Leu, a blocked alpha-COO- group (-CONH2), and either Gln11 or Glu11. The N-terminal residue has been varied; its charge varies from +2 (Lys) to -1 (succinyl-Ala). We have measured the stability of the peptide helix, the affinity of the peptide for S-protein (by C.D. titration), and the thermal stability of the reconstituted ribonuclease S. All six peptide analogues show strongly enhanced helix formation compared to either S-peptide (1-15) or (1-19), and the helix content increases as the charge on the N-terminal residue changes from +2 to -1. All six peptides show increased affinity for S-protein compared to S-peptide (1-19), and all six reconstituted ribonucleases S show an increase in Tm compared to the protein with S-peptide (1-19). The Tm increases as the charge on residue 1 changes from +2 to -1. The largest increment in Tm is 6 degrees. The results suggest that the stability of a protein can be increased by enhancing the stability of its secondary structure.  相似文献   

9.
A ubiquitin-protein ligase specific for type III protein substrates   总被引:9,自引:0,他引:9  
A previously studied species of ubiquitin-protein ligase contains specific sites for the binding of basic (Type I) and bulky hydrophobic (Type II) NH2-terminal amino acid residues of protein substrates. We now describe another enzyme that ligates ubiquitin specifically to proteins that have NH2-terminal residues other than the above two categories (Type III substrates). The new species of ligase, that we call E3 beta, is separable from the formerly described ligase (termed E3 alpha) by affinity chromatography on protein substrate columns. E3 beta was partially purified from extracts of rabbit reticulocytes and was shown to be required for the breakdown of Type III proteins. Apart from its different substrate specificity, it resembles E3 alpha in some physical properties, in a requirement for ubiquitin carrier protein (E2) for conjugate formation, and in its action to ligate multiple ubiquitin units to the substrate protein. The denatured derivative of bovine pancreatic ribonuclease is a specific substrate for E3 alpha, while that of ribonuclease S-protein is a good substrate for E3 beta. Since S-protein is formed by the removal from ribonuclease of NH2-terminal S-peptide, it is suggested that E3 beta interacts with an NH2-terminal determinant exposed in ribonuclease S-protein.  相似文献   

10.
Microbial transglutaminase (TGase) from Streptomyces mobaraensis (MTG) has been used in many industrial applications because it effectively catalyzes the formation of covalent cross-linking between glutamine residues in various substrate proteins and lysine residues or primary amines. To better understand the sequence preference around the reactive glutamine residue by this enzymatic reaction, we screened preferred peptide sequences using a phage-displayed random peptide library. Most of the peptides identified contained a consensus sequence, which was different from those previously found for mammalian TGases. Of these, most sequences had a specific reactivity toward MTG when produced as a fusion protein with glutathione-S-transferase. Furthermore, the representative sequence was found to be reactive even in the peptide form. The amino acid residues in the sequence critical for the reactivity were further analyzed, and the possible interaction with the enzyme has been discussed in this paper.  相似文献   

11.
BACKGROUND: Development of spectrally distinct green fluorescent protein (GFP) variants has allowed for simultaneous flow cytometric detection of two different colored mutants expressed in a single cell. However, the dual-laser methods employed in such experiments are not widely applicable since they require a specific, expensive laser, and single-laser analysis at 488 nm exhibits considerable spectral overlap. The purpose of this work was to evaluate detection of enhanced cyan fluorescent protein (ECFP) in combination with the enhanced green (EGFP) and enhanced yellow (EYFP) fluorescent proteins by flow cytometry. METHODS: Cells transfected with expression constructs for EGFP, EYFP, or ECFP were analyzed by flow cytometry using excitation wavelengths at 458, 488, or 514 nm. Fluorescence signals were separated with a custom optical filter configuration: 525 nm shortpass and 500 nm longpass dichroics; 480/30 (ECFP), 510/20 (EGFP) and 550/30 (EYFP) bandpasses; 458 nm laser blocking filters. RESULTS: All three fluorescent proteins when expressed individually or in combination in living cells were excited by the 458 nm laser line and their corresponding signals could be electronically compensated in real time. CONCLUSIONS: This method demonstrates the detection of three fluorescent proteins expressed simultaneously in living cells using single laser excitation and is applicable for use on flow cytometers equipped with a tunable argon ion laser.  相似文献   

12.
One of the four titrating histidine ring C-2 proton resonances of bovine pancreatic ribonuclease has been assigned to histidine residue 12. This was accomplished by a direct comparison of the rate of tritium incorporation into position C-2 of histidine 12 of S-peptide (residues 1 to 20) derived from ribonuclease S, with the rates of deuterium exchange of the four histidine C-2 proton resonances of ribonuclease S under the same experimental conditions. The same assignment was obtained by a comparison of the NMR titration curves of ribonuclease S, the noncovalent complex of S-peptide and S-protein (residues 21 to 124) with the results for the recombined complex in which position C-2 of histidine 12 was fully deuterated. The second active site histidine resonance was assigned to histidine residue 119 by consideration of the NMR titration results fro carboxymethylated histidines and 1-carboxymethylhistidine 119 ribonuclease. This assignment is a reversal of that originally reported, and has important implications for the interpretation of NMR titration data of ribonuclease.  相似文献   

13.
The relationship of structure to function in the recognition of ribonuclease S-peptide by S-protein was studied by several methods. Liquid phase peptide synthesis was employed to generate analogs of S-peptide in which from 1 to 8 residues were deleted from the NH2-terminal end of the S-peptide. Additional derivatives were made by substitutions in the NH2-terminal three amino acids or by modifying the S-peptide analogs by trifluoroacetylation. The analogs were generated in the following way. S-Peptide was cleaved with chymotrypsin. The fragment obtained, RNase(9-20), was purified and lengthened step by step using liquid phase peptide synthesis. A second set of analogs were prepared by cleavage of CF3CO-S-peptide with elastase and the resulting CF3CO-RNase(7-20), similarly lengthened. The various analogs of S-peptide were tested in their capacity to combine with S-protein and regenerate biological activity as measured by Vmax and Kb. This work shows a positive contribution of every one of the first 8 NH2-terminal residues of S-peptide to the molecular recognition of S-protein in the presence of RNA substrate. Substitution of the first 3 residues by alanine or blocking of the free amino groups decreases recognition, indicating that the original primary structure is the most favorable one.  相似文献   

14.
Enhanced cyan and yellow fluorescent proteins are widely used for dual color imaging and protein-protein interaction studies based on fluorescence resonance energy transfer. Use of these fluorescent proteins can be limited by their thermosensitivity, dim fluorescence, and tendency for aggregation. Here we report the results of a site-directed mutagenesis approach to improve these fluorescent proteins. We created monomeric optimized variants of ECFP and EYFP, which fold faster and more efficiently at 37 degrees C and have superior solubility and brightness. Bacteria expressing SCFP3A were 9-fold brighter than those expressing ECFP and 1.2-fold brighter than bacteria expressing Cerulean. SCFP3A has an increased quantum yield (0.56) and fluorescence lifetime. Bacteria expressing SYFP2 were 12 times brighter than those expressing EYFP(Q69K) and almost 2-fold brighter than bacteria expressing Venus. In HeLa cells, the improvements were less pronounced; nonetheless, cells expressing SCFP3A and SYFP2 were both 1.5-fold brighter than cells expressing ECFP and EYFP(Q69K), respectively. The enhancements of SCFP3A and SYFP2 are most probably due to an increased intrinsic brightness (1.7-fold and 1.3-fold for purified recombinant proteins, compared to ECFP & EYFP(Q69K), respectively) and due to enhanced protein folding and maturation. The latter enhancements most significantly contribute to the increased fluorescent yield in bacteria whereas they appear less significant for mammalian cell systems. SCFP3A and SYFP2 make a superior donor-acceptor pair for fluorescence resonance energy transfer, because of the high quantum yield and increased lifetime of SCFP3A and the high extinction coefficient of SYFP2. Furthermore, SCFP1, a CFP variant with a short fluorescence lifetime but identical spectra compared to ECFP and SCFP3A, was characterized. Using the large lifetime difference between SCFP1 and SCFP3A enabled us to perform for the first time dual-lifetime imaging of spectrally identical fluorescent species in living cells.  相似文献   

15.
Oligomerization of the short (D(2S)) and long (D(2L)) isoforms of the dopamine D(2) receptor was explored in transfected Cos-7 cells by their C-terminal fusion to either an enhanced cyan or enhanced yellow fluorescent protein (ECFP or EYFP) and the fluorescent fusion protein interaction was monitored by a fluorescence resonance energy transfer (FRET) assay. The pharmacological properties of the fluorescent fusion proteins, as measured by both displacement of [(3)H]nemonapride binding and agonist-mediated stimulation of [(35)S]GTPgammaS binding upon co-expression with a G(alphao)Cys(351)Ile protein, were not different from the respective wild-type D(2S) and D(2L) receptors. Co-expression of D2S:ECFP+D2S:EYFP in a 1:1 ratio and D2L:ECFP+D2L:EYFP in a 27:1 ratio resulted, respectively, in an increase of 26% and 16% in the EYFP-specific fluorescent signal. These data are consistent with a close proximity of both D(2S) and D(2L) receptor pairs of fluorescent fusion proteins in the absence of ligand. The agonist-independent D(2S) receptor oligomerization could be attenuated by co-expression with either a wild-type, non-fluorescent D(2S) or D(2L) receptor subtype, but not with a distinct beta(2)-adrenoceptor. Incubation with the agonist (-)-norpropylapomorphine dose-dependently (EC(50): 0.23+/-0.06 nM) increased the FRET signal for the co-expression of D2S:ECFP and D2S:EYFP, in support of agonist-dependent D(2S) receptor oligomerization. In conclusion, our data strongly suggest the occurrence of dopamine D(2) receptor oligomers in intact Cos-7 cells.  相似文献   

16.
Two physico-chemical perturbations were applied to ECFP, EGFP, EYFP and DsRed fluorescent proteins: high hydrostatic pressure and encapsulation in reversed micelles. The observed fluorescence changes were described by two-state model and quantified by thermodynamic formalism. ECFP, EYFP and DsRed exhibited similar reaction volumes under pressure. The changes of the chemical potentials of the chromophore in bis(2-ethylhexyl)sulfosuccinate (AOT) micelles caused apparent chromophore protonation changes resulting in a fluorescence decrease of ECFP and EYFP. In contrast to the remarkable stability of DsRed, the highest sensitivity of EYFP fluorescence under pressure and in micelles is attributed to its chromophore structure.  相似文献   

17.
There are multiple pathways of intracellular protein degradation, and molecular determinants within proteins appear to target them for particular pathways of breakdown. We use red cell-mediated microinjection to introduce radiolabeled proteins into cultured human fibroblasts in order to follow their catabolism. A well-characterized protein, bovine pancreatic ribonuclease A (RNase A), is localized initially in the cytosol of cells after microinjection, but it is subsequently taken up and degraded by lysosomes. This lysosomal pathway of proteolysis is subject to regulation in that RNase A is taken up and degraded by lysosomes at twice the rate when serum is omitted from the culture medium. Subtilisin cleaves RNase A between residues 20 and 21, and the separated fragments are termed RNase S-peptide (residues 1–20) and RNase S-protein (residues 21–124). Microinjected RNase S-protein is degraded in a serum-independent manner, while RNase S-peptide microinjected alone shows a twofold increase in degradation in response to serum withdrawal. Furthermore, covalent linkage of S-peptide to other proteins prior to microinjection causes degradation of the conjugate to become serum responsive. These results show that recognition of RNase A and certain other proteins for enhanced lysosomal degradation during serum withdrawal is based on some feature of the amino-terminal 20 amino acids. The entire S-peptide is not required for enhanced lysosomal degradation during serum withdrawal because degradation of certain fragments is also responsive to serum. We have identified the essential region to be within residues 7–11 of RNase S-peptide (Lys-Phe-Glu-Arg-Gln; KFERQ). To determine whether related peptides exist in cellular proteins, we raised antibodies to the pentapeptide. Affinity-purified antibodies to KFERQ specifically precipitate 25–35% of cellular proteins, and these proteins are preferentially degraded in response to serum withdrawal. Computer analyses of known protein sequences indicate that proteins degraded by lysosomes at an enhanced rate in response to serum withdrawal contain peptide regions related, but not identical, to KFERQ. We suggest two possible peptide motifs related to KFERQ and speculate about possible mechanisms of selective delivery of proteins to lysosomes based on such peptide regions.  相似文献   

18.
19.
The S-peptide of the enzyme bovine pancreatic ribonuclease has been used as a model for covalent semisynthesis. Methods for side-chain protection, enzymatic cleavage of the peptide chain at the level of the single arginine-10 and for selective deprotection of the alpha-carboxyl function of this residue, have been examined. The partially protected [1-10] sequence has been coupled to a solid-phase generated [11-15] sequence attached to the polymer. After deblocking from the solid-support, the [1-15] semisynthetic peptide was complexed with native S-protein to give a complex with high biological activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号