首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ancient DNA     
Chelomina GN 《Genetika》2006,42(3):293-309
The review is devoted to molecular genetic studies of ancient DNA. The problems of DNA preservation and modification after cell death, as well as techniques of working with ancient DNA, including its retrieval, removal of inhibitors, PCR amplification, and phylogenetic analysis, are discussed in detail. The possibilities are considered of using ancient DNA in resolving issues of systematics and evolution of various animal taxa, population genetics of humans and rare species, taxonomic identification and paleontological reconstructions, geographic origin of populations, microbiological analysis of paleontological and archeological finds, as well as some humanitarian aspects of its use.  相似文献   

2.
古代DNA研究实验技术   总被引:5,自引:1,他引:4  
杨淑娟  赖旭龙  唐先华  盛桂莲 《遗传》2002,24(5):551-554
现代分子生物技术的发展,使从古代样品中获取微量DNA成为现实。在过去的十多年里,古DNA研究取得了重大进展,但实验方案还需要加以改进,其结果的分析与推论也需要多方面的验证。本综述着重介绍了古DNA研究的实验技术及可靠性分析。 Experimental Techniques for Ancient DNA Research YANG Shu-juan1,LAI Xu-long1,2,TANG Xian-hua1,SHENG Gui-lian1,2 1.Faculty of Earth Sciences,China University of Geosciences,Wuhan,430074,China; 2.Institute of Life Sciences,China University of Geosciences,Wuhan,430074,China Abstract:The development of modern molecular biological techniques makes it possible to study minimum DNA from ancient materials.During past decade,a lot of significant achievements on ancient DNA research have been made in many fields especially in molecular evolutionary biology.The nature of degradation and contamination of ancient DNA from ancient biological materials pose a dominating problem in ancient DNA research.Therefore,the experiments should be modified based on the modern molecular techniques and more factors should be considered when the results are analyzed.In this paper,authors review the general experimental protocols on sampling,extraction and amplification as well as authenticity of ancient DNA. Key words:ancient DNA;authenticity;ancient DNA techniques  相似文献   

3.
The study of ancient DNA plays an important role in archaeological and palaeontological research as well as in pathology and forensics. Here, we present a new tool for ancient DNA analysis, which overcomes contamination problems, DNA degradation, and the negative effects of PCR inhibitors while reducing the amount of starting target material in the picogram range. Ancient bone samples from four Egyptian mummies were examined by combining laser microdissection, conventional DNA extraction, and low‐volume PCR. Initially, several bone particles (osteons) in the micrometer range were extracted by laser microdissection. Subsequently, ancient DNA amplification was performed to verify our extraction method. Amelogenin and β‐actin gene specific fragments were amplified via low‐volume PCR in a total reaction volume of 1 μl. Results of microdissected mummy DNA samples were compared to mummy DNA, which was extracted using a standard DNA extraction method based on pulverization of bone material. Our results highlight the combination of laser microdissection and low‐volume PCR as a promising new technique in ancient DNA analysis. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Now that the hype surrounding Jurassic Park has settled down and we have become relatively used to dramatic headlines announcing the recovery of DNA from exotic fossilized remains, scientists working on ancient DNA are beginning to reflect on the long-term prospects and implications of the subject.1 The science of ancient DNA has grown exponentially since its birth only ten years ago, and despite serious technical difficulties, it promises to become a revolutionary research tool in anthropology and molecular evolution. The use of bone DNA typing in particular has already yielded useful insights into Polynesian prehistory as well as spectacular applications in the forensic identification of skeletal remains.  相似文献   

5.
A computer analysis of human and primate alphoid DNA was performed. The number and localization of short inverted complete repeats within alphoid DNA dimers (but not monomers) remain conserved. Thus, in spite of high heterogeneity of the primary structure the conserved secondary structure of alphoid DNA might be functionally important. The analysis of internal periodicity of the monomeric sequences of human and primate alphoid DNA revealed its potential ancient sequence, that is a simple satellite DNA with a reiterated heptanucleotide TGAAAAA, which is suggested to be the ancestor of satellite DNase of rodents. The facts reported propose the ancient origin and possible functional role of alphoid-like DNA as a universal pericentromeric superfamily of DNA.  相似文献   

6.
方兴未艾的古代DNA的研究   总被引:9,自引:2,他引:7  
蔡胜和  杨焕明 《遗传》2000,22(1):41-46
保留在古代生物遗骸中的遗传物质DNA是一种重要的遗传资源。古代DNA的研究对于了解包括人类在内的各种生物的起源、进化和迁徙有重要意义。古代DNA的研究有其自身的特点,并且已经取得一系列重要成就。本文综述古代DNA研究的历史、方法和进展。 Abstract:DNA present in ancient samples can be recovered,amplified and analysed.It opens a new window for genetic analysis in many different disciplines,such as anthropology,archaeology,human population genetics,animal and plant evolutionary taxonomy and forensic science.In general,ancient DNA is rare in quantity,damaged in quality.To ensure the reproducibility and reliability of the results,great cares should be taken,such as various measurements against contamination and phylogenetic analysis of ancient DNA sequences.In this paper we review recovery,amplification and analysis of ancient DNA,also discuss the guidelines to ensure the authenticity of ancient DNA and the recent advances in ancient DNA study.  相似文献   

7.
Under favorable conditions DNA can survive for thousands of years in the remains of dead organisms. The DNA extracted from such remains is invariably degraded to a small average size by processes that at least partly involve depurination. It also contains large amounts of deaminated cytosine residues that are accumulated toward the ends of the molecules, as well as several other lesions that are less well characterized.In living cells, DNA molecules continuously suffer chemical insults, which are countered by enzymatic repair mechanisms that maintain the integrity of the genome (Lindahl 1993). On death, these cellular repair mechanisms cease to function. As a consequence, the genome becomes exposed to the unmitigated effects of numerous factors that threaten its stability. These factors include intracellular nucleases, which are no longer sequestered in the cell and can thus gain access to DNA and degrade it, as well as microorganisms that spread in the decaying tissues. Together these factors may lead to the loss of all retrievable DNA. However, under favorable environmental conditions, for example when tissues are frozen or become desiccated quickly after death, these processes become inhibited before the complete destruction of all DNA endogenous to the organism. In these instances other destructive factors, particularly hydrolytic and oxidative processes, become limiting to the time that DNA survives in a tissue.When DNA is extracted and analyzed from ancient samples these destructive factors manifest themselves in three different ways: (i) a reduction in DNA fragment size, (ii) lesions that block the replication of the DNA molecules by polymerases, thus impeding many forms of analysis, and (iii) lesions that cause incorrect nucleotides to be incorporated when the DNA is replicated. Here, we summarize what is known about each of these forms of damage in ancient DNA.  相似文献   

8.
The detection of ancient microbial DNA offers a new approach for the study of infectious diseases, their occurrence, frequency and host-pathogen interaction in historic times and populations. Moreover, data obtained from skeletal and mummified tissue may represent an important completion of contemporary phylogenetic analyses of pathogens. In the last few years, a variety of bacterial, protozoal and viral infections have been detected in ancient tissue samples by amplification and characterization of specific DNA fragments. This holds particularly true for the identification of the Mycobacterium tuberculosis complex, which seems to be more robust than other microbes due to its waxy, hydrophobic and lipid-rich cell wall. These observations provided useful information about the occurrence, but also the frequency of tuberculosis in former populations. Moreover, these studies suggest new evolutionary models and indicate the route of transmission between human and animals. Until now, other pathogens, such as Mycobacterium leprae, Yersinia pestis, Plasmodium falciparum and others, have occasionally been identified - mostly in single case studies or small sample sizes - as well, although much less information is available on these pathogens in ancient settings. The main reason therefore seems to be the degradation and modification of ancient DNA by progressive oxidative damage. Furthermore, the constant risk of contamination by recent DNA forces to take time and cost effective measures and renders the analysis of ancient microbes difficult. Nevertheless, the study of microbial ancient DNA significantly contributes to the understanding of transmission and spread of infectious diseases, and potentially to the evolution and phylogenetic pathways of pathogens.  相似文献   

9.
古DNA是指从已经死亡的古代生物的遗体和遗迹中得到的DNA。本文回顾了近20年古DNA研究所经历的3个阶段, 从早期参与研究的科学家较少并主要利用克隆技术, 到后来由于PCR技术的出现以及提取化石DNA技术的成熟从而出现大量有关古DNA的报道; 近几年由于发现不少问题, 并引起激烈的争论, 科学家们因此而开始考虑古DNA的真实性问题, 并且提出了开展古DNA研究的严格标准。本文还讨论了古DNA在人类起源、系统发育重建、动植物驯化及考古研究中的重要意义以及现状, 表明古DNA的研究给某些原先的观点如人类的非洲起源说提供了重要证据, 也对某些观点提出了挑战; 古DNA研究还提供了某些已经灭绝生物的形态学和分子资料, 为从序列上确定古代材料的系统位置并有效地补充仅用现代DNA建立起来的谱系提供了来自古生物的依据。在动植物驯化及考古方面, 古DNA证据也为科学家提供了许多有价值的信息。最后, 本文还对古DNA研究的应用前景进行了展望。  相似文献   

10.
古DNA及其在生物系统与进化研究中的应用   总被引:2,自引:0,他引:2  
古DNA是指从已经死亡的古代生物的遗体和遗迹中得到的DNA.本文回顾了近20年古DNA研究所经历的3个阶段,从早期参与研究的科学家较少并主要利用克隆技术,到后来由于PCR技术的出现以及提取化石DNA技术的成熟从而出现大量有关古DNA的报道;近几年由于发现不少问题,并引起激烈的争论,科学家们因此而开始考虑古DNA的真实性问题,并且提出了开展古DNA研究的严格标准.本文还讨论了古DNA在人类起源、系统发育重建、动植物驯化及考古研究中的重要意义以及现状,表明古DNA的研究给某些原先的观点如人类的非洲起源说提供了重要证据,也对某些观点提出了挑战;古DNA研究还提供了某些已经灭绝生物的形态学和分子资料,为从序列上确定古代材料的系统位置并有效地补充仅用现代DNA建立起来的谱系提供了来自古生物的依据.在动植物驯化及考古方面,古DNA证据也为科学家提供了许多有价值的信息.最后,本文还对古DNA研究的应用前景进行了展望.  相似文献   

11.
We propose a simple and effective approach to simultaneously co‐amplify both cytochrome b and D‐loop fragments to evaluate DNA preservation and to monitor possible contaminations in the analysis of degraded animal DNA samples. We have applied this approach to over 200 ancient salmon samples and 25 ancient whale DNA samples, clearly demonstrating its multiple benefits for analysis of degraded DNA samples, and the ease in which co‐amplification can be optimized for different taxa. This simple, cost‐efficient and genomic DNA‐saving approach can be used routinely in the analysis of minute and degraded DNA samples in wildlife forensics, food inspection, conservation biology and ancient faunal remains.  相似文献   

12.
Ancient human DNA has been treated cautiously ever since the problems related to this type of material were exposed in the early 1990s, but as sequential genetic data from ancient specimens have been key components in several evolutionary and ecological studies, interest in ancient human DNA is on the increase again. It is especially tempting to approach archaeological and anthropological questions through this type of material, but DNA from ancient human tissue is notoriously complicated to work with due to the risk of contamination with modern human DNA. Various ways of authenticating results based on ancient human DNA have been developed to circumvent the problems. One commonly used method is to predict what the contamination is expected to look like and then test whether the ancient human DNA fulfils this prediction. If it does, the results are rejected as contamination, while if it does not, they are often considered authentic. We show here that human contamination in ancient material may well deviate from local allele frequencies or the distributions to be found among the laboratory workers and archaeologists. We conclude that it is not reliable to authenticate ancient human DNA solely by showing that it is different from what would be expected from people who have handled the material.  相似文献   

13.
Mutations induced by ancient DNA extracts?   总被引:3,自引:1,他引:2  
We have investigated whether some factor in ancient DNA extractsinduces site-specific mutations in modern DNA. We find no evidencefor higher mutation rates when extracts from three differentPleistocene mammals are added to modern DNA than when wateror extraction blanks are added. We also fail to find evidencethat any such factor affects ancient DNA sequences determinedfrom the same extracts. This as well as the patterns of nucleotidesubstitutions seen in DNA sequences determined from hundredsof other specimens leads us to doubt that a previously unknownmutagenic factor can be a general feature of extracts from oldtissues.  相似文献   

14.
饶慧芸 《人类学学报》2022,41(6):1083-1096
东亚古人类演化是学术界关注的热点科学问题,国内外学者对此进行了多学科的相关研究,取得了很多重要进展,但仍然存在许多尚未解决的问题。古蛋白质分析近年来成为古生物演化领域的又一个前沿和热点方向,取得了一系列重要突破。较之古DNA,古蛋白质的保存优势使其可以在时间上和地域上突破古DNA的限制,在古人类演化领域大有可为。东亚古人类化石丰富且时段大致连续,但更新世或更早时期的分子证据非常缺乏。本文从古蛋白质分析的发展史、研究潜力、难点与挑战以及思考与展望等几方面,对古蛋白质分析在东亚古人类演化研究中的应用前景进行梳理与思考。相信随着更多分子证据的积累,古蛋白质分析可为东亚古人类的演化脉络提供更多关键性的线索,极大地促进人类演化研究。  相似文献   

15.
Recently two developments have had a major impact on the field of ancient DNA (aDNA). First, new advances in DNA sequencing, in combination with improved capture/enrichment methods, have resulted in the recovery of orders of magnitude more DNA sequence data from ancient animals. Second, there has been an increase in the range of tissue types employed in aDNA. Hair in particular has proven to be very successful as a source of DNA because of its low levels of contamination and high level of ancient endogenous DNA. These developments have resulted in significant advances in our understanding of recently extinct animals: namely their evolutionary relationships, physiology, and even behaviour. Hair has been used to recover the first complete ancient nuclear genome, that of the extinct woolly mammoth, which then facilitated the expression and functional analysis of haemoglobins. Finally, we speculate on the consequences of these developments for the possibility of recreating extinct animals.  相似文献   

16.
Identifying the causes of past epidemics depends on the specific detection of pathogens in buried individuals; this field of research is known as paleomicrobiology, an emerging field that has benefited from technological advances in microbiology. For almost 15 years, the detection, identification, and characterization of microbes in ancient environmental and human specimens emerged on the basis of ancient DNA (aDNA) analyses. aDNA limitations due to potential contamination by modern DNA and altered aDNA led to the development of alternative methods for the detection and characterization of nonnucleotidic biomolecules, including mycolic acids (of ancient mycobacteria) and proteins. Accordingly, immunohistochemistry, immunochromatography, and enzyme-linked immunosorbent assay techniques have been developed for the specific detection of microbes from ancient human and environmental specimens. Protein analysis by mass spectrometry, a standard for ancient animal identification, has also recently emerged as a technique for ancient mycobacteria detection, while immuno-PCR is yet another promising technique. As with aDNA, strict protocols must be enforced to ensure authenticity of the data. Here we review the analysis of nonnucleotidic biomolecules from ancient microbes and the ability of these analyses to complement aDNA analyses, which opens new opportunities for identification of ancient microbes as well as new avenues to potentially resolve controversies regarding the cause of some historical pandemics and study the coevolution of microbes and hosts.  相似文献   

17.
Putative ancient microorganisms from amber nuggets.   总被引:1,自引:0,他引:1  
Evolutionary microbiology studies based on the isolation of ancient DNA and/or microbial samples are scarce due to the difficulty of finding well preserved biological specimens. However, amber is a fossil resin with natural preserving properties for microbial cells and DNA. The visualization by transmission electron microscopy of different microorganism-like specimens found in amber nuggets from both the Miocene and the Cretaceous periods was accompanied by studies of ancient DNA obtained from the nuggets. After the design of specific primers based on the present sequences of both genes in Saccharomyces cerevisiae, the ancestral AGP2 sequence from the Miocene, as well as the 18S rRNA from the Cretaceous, were amplified.  相似文献   

18.
古DNA实时荧光定量PCR实验中标准品的制备   总被引:1,自引:0,他引:1  
实时荧光定量PCR技术通过对PCR每一循环扩增产物的实时检测,可对模板的精确拷贝数进行绝对定量,从而用于古DNA实验中提取和扩增条件的比较和优化.本研究采用异硫氰酸胍碱裂解-SiO2吸附的方法,从采自黑龙江省的晚更新世斑鬣狗化石材料中提取得到了斑鬣狗线粒体基因组古DNA.经常规PCR扩增后,将纯化的扩增产物克隆到微生物体内使其大量复制,再用M13通用引物扩增出含少量外源DNA的古DNA目标片段,从而建立了适用于古DNA荧光定量PCR扩增的标准品的制备方法.经检测分析,运用该方法制备的标准品性质稳定,能够准确地指示反应体系中较为精确的古DNA模板拷贝数,从而反映古DNA的提取和扩增效率,用于比较并优化古DNA提取和扩增条件.  相似文献   

19.
The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetected cross-contamination from this step onwards. Third, the barcoded library molecules include incomplete adapters of short length that can increase the specificity of hybridization-based genomic target enrichment. The adapters are completed just before sequencing, so the same DNA library can be used in multiple experiments, and the sequences distinguished. We demonstrate this protocol on 60 ancient human samples.  相似文献   

20.
Applications of reliable DNA extraction and amplification techniques to postmortem samples are critical to ancient DNA research. Commonly used methods for isolating DNA from ancient material were tested and compared using both soft tissue and bones from fossil and contemporary museum proboscideans. DNAs isolated using three principal methods served as templates in subsequent PCR amplifications, and the PCR products were directly sequenced. Authentication of the ancient origin of obtained nucleotide sequences was established by demonstrating reproducibility under a blind testing system and by phylogenetic analysis. Our results indicate that ancient samples may respond differently to extraction buffers or purification procedures, and no single method was universally successful. A CTAB buffer method, modified from plant DNA extraction protocols, was found to have the highest success rate. Nested PCR was shown to be a reliable approach to amplify ancient DNA templates that failed in primary amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号