首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Proteasomes are large supramolecular protein complexes present in all prokaryotic and eukaryotic cells, where they perform targeted degradation of intracellular proteins. Until recently, it was generally accepted that prior to proteolytic degradation in proteasomes the proteins had to be targeted by ubiquitination: ATP-dependent attachment of (typically four sequential) residues of the low-molecular protein, ubiquitin, which involves the ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin ligase. Cytoplasmic and nucleoplasmic proteins labeled in this way are then digested in 26S proteasomes. However, it becomes increasingly clear that using this route the cell eliminates only a part of unwanted proteins. Many proteins can be cleaved by the 20S proteasome in an ATP-independent manner and without previous ubiquitination. Ubiquitin-independent degradation of proteins in proteasomes is a relatively new area of studies of the role of the ubiquitin-proteasome system. However, recent data obtained in this direction already correct existing concepts about proteasomal degradation of proteins and its regulation. Ubiquitin-independent proteasome degradation needs the main structural precondition in proteins: the presence of unstructured regions in the amino acid sequences that provide interaction with the proteasome. Taking into consideration that in humans almost half of all genes encode proteins that contain a certain proportion of intrinsically disordered regions, it appears that the list of proteins undergoing ubiquitin-independent degradation will demonstrate a further increase. Since 26S proteasomes account for only 30% of the total proteasome content in mammalian cells, most of the proteasomes exist in the form of 20S complexes. The latter suggests that ubiquitin-independent proteolysis performed by the 20S proteasome is a natural process of removing damaged proteins from the cell and maintaining a constant level of intrinsically disordered proteins. In this case, the functional overload of proteasomes in aging and/or other types of pathological processes, if it is not accompanied by triggering more radical mechanisms for the elimination of damaged proteins, organelles, and whole cells, has the most serious consequences for the whole organism.  相似文献   

2.
Mammalian 26S proteasomes remain intact during protein degradation   总被引:1,自引:0,他引:1  
It has been suggested that degradation of polyubiquitylated proteins is coupled to dissociation of 26S proteasomes. In contrast, using several independent types of experiments, we find that mammalian proteasomes can degrade polyubiquitylated proteins without disassembling. Thus, immobilized, (35)S-labeled 26S proteasomes degraded polyubiquitylated Sic1 and c-IAP1 without releasing any subunits. In addition, it is predicted that if 26S proteasomes dissociate into 20S proteasomes and regulatory complexes during a degradation cycle, the reassembly rate would be limiting at low proteasome concentrations. However, the rate with which each proteasome degraded polyubiquitylated Sic1 was independent of the proteasome concentration. Likewise, substrate-dependent dissociation of 26S proteasomes could not be detected by nondenaturing electrophoresis. Lastly, epoxomicin-inhibited 20S proteasomes can trap released regulatory complexes, forming inactive 26S proteasomes, but addition of epoxomicin-inhibited 20S proteasomes had no effect on the degradation of either polyubiquitylated Sic1 or UbcH10 by 26S proteasomes or of endogenous substrates in cell extracts.  相似文献   

3.
The role of proteasomes in ubiquitin (Ub)-dependent protein degradation was studied by analyzing lysates of human promyelocytic leukemia HL-60 cells by glycerol density gradient centrifugation. High succinyl-Leu-Leu-Val-Tyr-4-methylcoumaryl-7-amide hydrolyzing activity was found in the 26S fraction, whereas the 20S fraction containing proteaomes had no activity. Addition of 0.05% sodium dodecylsulfate to the latter fraction, however, induced marked activity. The 26S, but not the 20S fraction catalyzed ATP-dependent degradation of [125I]lysozyme-Ub conjugate. Depletion from the lysate of ATP caused complete shift of the active 26S complex to the latent 20S form, whereas in the lysate prepared from ATP-depleted cells, ATP converted 20S proteasomes to 26S complexes. The immunoprecipitated 26S complexes were found to consist of proteasomes and 13-15 other proteins ranging in size from 35 to 110 kDa. We conclude that in the lysate, latent proteasomes undergo reversible, ATP-dependent association with multiple protein components to form 26S complexes that catalyze ATP-dependent degradation of Ub-protein conjugates.  相似文献   

4.
Myocardial proteasomes are comprised of 20S core particles and 19S regulatory particles, which together carry out targeted degradation of cardiac proteins. The 19S complex is unique among the regulators of proteasomes in that it affects both the capacity and specificity of protein degradation. However, a comprehensive molecular characterization of cardiac 19S complexes is lacking. In this investigation, we tailored a multidimensional chromatography-based purification strategy to isolate structurally intact and functionally viable 19S complexes from murine hearts. Two distinct subpopulations of 19S complexes were isolated based upon (1) potency of activating 20S proteolytic activity, and (2) molecular composition using a combination of immuno-detection, two-dimensional-differential gel electrophoresis, and MS-based approaches. Heat shock protein 90 (Hsp90) was identified to be characteristic to 19S subpopulation I. The physical interaction of Hsp90 with 19S complexes was demonstrated via multiple approaches. Inhibition of Hsp90 activity using geldanamycin or BIIB021 potentiated the ability of subpopulation I to activate 20S proteasomes in the murine heart, thus demonstrating functional specificity of Hsp90 in subpopulation I. This investigation has advanced our understanding of the molecular heterogeneity of cardiac proteasomes by identifying molecularly and functionally distinct cardiac 19S complexes. The preferential association of Hsp90 with 19S subpopulation I unveils novel targets for designing proteasome-based therapeutic interventions for combating cardiac disease.  相似文献   

5.
Eukaryotic cells contain various types of proteasomes. Core 20 S proteasomes (abbreviated 20 S below) have two binding sites for the regulatory particles, PA700 and PA28. PA700-20 S-PA700 complexes are known as 26 S proteasomes and are ATP-dependent machines that degrade cell proteins. PA28 is found both in previously described complexes of the type PA28-20 S-PA28 and in complexes that also contain PA700, as PA700-20 S-PA28. We refer to the latter as "hybrid proteasomes." The relative amounts of the various types of proteasomes in HeLa extracts were determined by a combination of immunoprecipitation and immunoblotting. Hybrid proteasomes accounted for about a fourth of all proteasomes in the extracts. Association of PA28 and proteasomes proved to be ATP-dependent. Hybrid proteasomes catalyzed ATP-dependent degradation of ornithine decarboxylase (ODC) without ubiquitinylation, as do 26 S proteasomes. In contrast, the homo-PA28 complex (PA28-20 S-PA28) was incapable of degrading ODC. Intriguingly, a major immunomodulatory cytokine, interferon-gamma, appreciably enhanced the ODC degradation in HeLa and SW620 cells through induction of the hybrid proteasome, which may also be responsible for the immunological processing of intracellular antigens. Taken together, we report here for the first time the existence of two types of ATP-dependent proteases, the 26 S proteasome and the hybrid proteasome, which appear to share the ATP-dependent proteolytic pathway in mammalian cells.  相似文献   

6.
Tsvetkov P  Asher G  Paz A  Reuven N  Sussman JL  Silman I  Shaul Y 《Proteins》2008,70(4):1357-1366
Intrinsically unstructured proteins (IUPs), also known as natively unfolded proteins, lack well-defined secondary and tertiary structure under physiological conditions. In recent years, growing experimental and theoretical evidence has accumulated, indicating that many entire proteins and protein sequences are unstructured under physiological conditions, and that they play significant roles in diverse cellular processes. Bioinformatic algorithms have been developed to identify such sequences in proteins for which structural data are lacking, but still generate substantial numbers of false positives and negatives. We describe here a simple and reliable in vitro assay for identifying IUP sequences based on their susceptibility to 20S proteasomal degradation. We show that 20S proteasomes digest IUP sequences, under conditions in which native, and even molten globule states, are resistant. Furthermore, we show that protein-protein interactions can protect IUPs against 20S proteasomal action. Taken together, our results thus suggest that the 20S proteasome degradation assay provides a powerful system for operational definition of IUPs.  相似文献   

7.
20S proteasome biogenesis   总被引:2,自引:0,他引:2  
Krüger E  Kloetzel PM  Enenkel C 《Biochimie》2001,83(3-4):289-293
26S proteasomes are multi-subunit protease complexes responsible for the turnover of short-lived proteins. Proteasomal degradation starts with the autocatalytic maturation of the 20S core particle. Here, we summarize different models of proteasome assembly. 20S proteasomes are assembled as precursor complexes containing alpha and unprocessed beta subunits. The propeptides of the beta subunits are thought to prevent premature conversion of the precursor complexes into matured particles and are needed for efficient beta subunit incorporation. The complex biogenesis is tightly regulated which requires additional components such as the maturation factor Ump1/POMP, an ubiquitous protein in eukaryotic cells. Ump1/POMP is associated with precursor intermediates and degraded upon final maturation. Mammalian proteasomes are localized all over the cell, while yeast proteasomes mainly localize to the nuclear envelope/endoplasmic reticulum (ER) membrane network. The major localization of yeast proteasomes may point to the subcellular place of proteasome biogenesis.  相似文献   

8.
26S proteasomes are composed of a 20S proteolytic core and two ATPase-containing 19S regulatory particles. To clarify the role of these ATPases in proteolysis, we studied the PAN complex, the archaeal homolog of the 19S ATPases. When ATP is present, PAN stimulates protein degradation by archaeal 20S proteasomes. PAN is a molecular chaperone that catalyzes the ATP-dependent unfolding of globular proteins. If 20S proteasomes are present, this unfoldase activity is linked to degradation. Thus PAN, and presumably the 26S ATPases, unfold substrates and facilitate their entry into the 20S particle. 26S proteasomes preferentially degrade ubiquitinated proteins. However, we found that calmodulin (CaM) and troponin C are degraded by 26S proteasomes without ubiquitination. Ca(2+)-free native CaM and in vitro 'aged' CaM are degraded faster than the Ca(2+)-bound form. Ubiquitination of CaM does not enhance its degradation. Degradation of ovalbumin normally requires ubiquitination, but can occur without ubiquitination if ovalbumin is denatured. The degradation of these proteins still requires ATP and the 19S particle. Thus, ubiquitin-independent degradation by 26S proteasomes may be more important than generally assumed.  相似文献   

9.
The critical role of the ubiquitin-26S proteasome system in regulation of protein homeostasis in eukaryotes is well established. In contrast, the impact of the ubiquitin-independent proteolytic activity of proteasomes is poorly understood. Through biochemical analysis of mammalian lysates, we find that the 20S proteasome, latent in peptide hydrolysis, specifically cleaves more than 20% of all cellular proteins. Thirty intrinsic proteasome substrates (IPSs) were identified and in vitro studies of their processing revealed that cleavage occurs at disordered regions, generating stable products encompassing structured domains. The mechanism of IPS recognition is remarkably well conserved in the eukaryotic kingdom, as mammalian and yeast 20S proteasomes exhibit the same target specificity. Further, 26S proteasomes specifically recognize and cleave IPSs at similar sites, independent of ubiquitination, suggesting that disordered regions likely constitute the universal structural signal for IPS proteolysis by proteasomes. Finally, we show that proteasomes contribute to physiological regulation of IPS levels in living cells and the inactivation of ubiquitin-activating enzyme E1 does not prevent IPS degradation. Collectively, these findings suggest a significant contribution of the ubiquitin-independent proteasome degradation pathway to the regulation of protein homeostasis in eukaryotes.  相似文献   

10.
11.
26S proteasomes are multisubunit protease complexes that play the central role in the ubiquitin-dependent protein degradation pathway. The proteolytically active core is formed by the 20S proteasome. Regulatory subunits, principally the 19S cap complex, confer the specificity towards ubiquitinated substrates and an ATP-dependence on proteolysis. Green fluorescence protein (GFP)-tagged versions of either an -subunit of the 20S core or an ATPase subunit of the 19S cap complex were functionally incorporated into the protease complex, thus allowing to monitor the subcellular distribution of 26S proteasomes in living yeast. Our localization studies suggest that proteasomal proteolysis mainly occurs at the nuclear envelope (NE)/rough ER. Implications of proteasomal functions at the NE/rough ER are discussed in the context of published work on ER degradation and with regard to possible targeting mechanisms.  相似文献   

12.
PA28 is a gamma-interferon-induced complex that associates with the 20S proteasome and stimulates breakdown of small peptides. Recent immunoprecipitation studies indicate that, in vivo, PA28 also exists in larger complexes that also contain the 19S particle, which is required for ATP-ubiquitin-dependent degradation of proteins. However, because of its lability, the structure and properties of this larger complex remain unclear. Here, we demonstrate that, in vitro, PA28 can associate with 'singly capped' 26S (i.e. 19S-20S) proteasomes. Electron microscopy of the resulting structures revealed one PA28 ring at one end of the 20S particle and a 19S complex at the other. These hybrid complexes show enhanced hydrolysis of small peptides, but no significant increase in rates of protein breakdown. Nevertheless, during breakdown of proteins, the complexes containing PA28alphabeta or PA28alpha generated a pattern of peptides different from those generated by 26S proteasomes, without altering mean product length. Presumably, this change in peptides produced accounts for the capacity of PA28 to enhance antigen presentation.  相似文献   

13.
Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a) origin and identification of an intrinsic degradation signal in the substrate, b) identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c) identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably catalyzed by the ATPases. Apomyoglobin emerges as a new model substrate to further explore the role of ATPases and protein structure in proteasomal degradation.  相似文献   

14.
15.
Proteasomes are ring- or cylinder-shaped particles that have a sedimentation coefficient of 20S and are composed of a characteristic set of small polypeptides. These particles have a latent multicatalytic proteinase activity. Recently, proteasomes were found to combine reversibly with multiple protein components to form 26S proteolytic complexes that catalyze ATP-dependent, selective breakdown of proteins ligated with ubiquitin. This suggests that the 26S complexes are a new type of ATP-requiring protease in eukaryotic cells. We have studied the structures of various eukaryotic proteasomes at the molecular level by physicochemical and recombinant DNA techniques and have proposed that the gross structures of proteasomes, such as their size and shape, have been highly conserved during evolution. Proteasome subunits appear to be encoded by a family of homologous genes named the "proteasome gene family," which may have evolved from a common ancestral gene. Evidence obtained by genetic analyses in yeast and studies on the levels of proteasome expression in various eukaryotic cells indicates that proteasomes have essential roles in the cell. In this review, we summarize available information on the protein and gene structures of proteasomes and discuss the biological functions of proteasomes.  相似文献   

16.
It is known that two types of high-molecular-mass protease complexes are present in the cytosol of mammalian cells; a 20S latent multicatalytic proteinase named the proteasome, and a large proteolytic complex with an apparent sedimentation coefficient of 26S that catalyzes ATP-dependent breakdown of proteins conjugated with ubiquitin. In this work, we first demonstrated that a low concentration of SDS was required for activation of the latent proteasome, whereas the 26S complex degraded substrates for proteasomes in the absence of SDS. Moreover, the 26S complex was greatly stabilized in the presence of 2 mM ATP and 20% glycerol. Based on these characteristics, we next devised a novel procedure for purification of the 26S proteolytic complexes from human kidney. In this procedure, the proteolytic complexes were precipitated from cytoplasmic extracts by ultracentrifugation for 5 h at 105000 x g, and the large 26S complexes were clearly separated from the 20S proteasomes by molecular-sieve chromatography on a Biogel A-1.5 m column. The 26S enzyme was then purified to apparent homogeneity by successive chromatographies on hydroxyapatite and Q Sepharose, then by glycerol density-gradient centrifugation. Electrophoretic and immunochemical analyses showed that the purified human 26S complex consisted of multiple subunits of proteasomes with molecular masses of 21-31 kDa and 13-15 protein components ranging in molecular mass over 35-110 kDa, which were directly associated with the proteasome. The purified 26S proteolytic complex degraded 125I-labeled lysozyme-ubiquitin conjugates in an ATP-dependent manner. The 26S enzyme also showed high ATPase activity, which was copurified with the complex. Vanadate and hemin strongly inhibited not only ATP cleavage, but also ATP-dependent breakdown of ubiquitinligated proteins, suggesting that the 26S complex hydrolyzes ATP and ubiquitinated proteins by closely linked mechanisms. These findings indicate that the 26S complex consists of a proteasome with proteolytic function and multiple other components including an ATPase that regulates energy-dependent, ubiquitin-mediated protein degradation.  相似文献   

17.
26 S proteasomes fulfill final steps in the ubiquitin-dependent degradation pathway by recognizing and hydrolyzing ubiquitylated proteins. As the 26 S proteasome mainly localizes to the nucleus in yeast, we addressed the question how this 2-MDa multisubunit complex is imported into the nucleus. 26 S proteasomes consist of a 20 S proteolytically active core and 19 S regulatory particles, the latter composed of two subcomplexes, namely the base and lid complexes. We have shown that 20 S core particles are translocated into the nucleus as inactive precursor complexes via the classic karyopherin alphabeta import pathway. Here, we provide evidence that nuclear import of base and lid complexes also depends on karyopherin alphabeta. Potential classic nuclear localization sequences (NLSs) of base subunits were analyzed. Rpn2 and Rpt2, a non-ATPase subunit and an ATPase subunit of the base complex, harbor functional NLSs. The Rpt2 NLS deletion yielded wild type localization. However, the deletion of the Rpn2 NLS resulted in improper nuclear proteasome localization and impaired proteasome function. Our data support the model by which nuclear 26 S proteasomes are assembled from subcomplexes imported by karyopherin alphabeta.  相似文献   

18.
The heat shock protein 70 (Hsp70, human HSPA1A) plays indispensable roles in cellular stress responses and protein quality control (PQC). In the framework of PQC, it cooperates with the ubiquitin-proteasome system (UPS) to clear damaged and dysfunctional proteins in the cell. Moreover, Hsp70 itself is rapidly degraded following the recovery from stress. It was demonstrated that its fast turnover is mediated via ubiquitination and subsequent degradation by the 26S proteasome. At the same time, the effect of Hsp70 on the functional state of proteasomes has been insufficiently investigated. Here, we characterized the direct effect of recombinant Hsp70 on the activity of 20S and 26S proteasomes and studied Hsp70 degradation by the 20S proteasome in vitro. We have shown that the activity of purified 20S proteasomes is decreased following incubation with recombinant human Hsp70. On the other hand, high concentrations of Hsp70 activated 26S proteasomes. Finally, we obtained evidence that in addition to previously reported ubiquitin-dependent degradation, Hsp70 could be cleaved independent of ubiquitination by the 20S proteasome. The results obtained reveal novel aspects of the interplay between Hsp70 and proteasomes.  相似文献   

19.
Ubiquitin (Ub)-mediated proteasome-dependent proteolysis is critical in regulating multiple biological processes including apoptosis. We show that the unstructured BH3-only protein, NOXA, is degraded by an Ub-independent mechanism requiring 19S regulatory particle (RP) subunits of the 26S proteasome, highlighting the possibility that other unstructured proteins reported to be degraded by 20S proteasomes in vitro may be bona fide 26S proteasome substrates in vivo. A lysine-less NOXA (NOXA-LL) mutant, which is not ubiquitinated, is degraded at a similar rate to wild-type NOXA. Myeloid cell leukemia 1, but not other anti-apoptotic BCL-2 family proteins, stabilizes NOXA by interaction with the NOXA BH3 domain. Depletion of 19S RP subunits, but not alternate proteasome activator REG subunits, increases NOXA half-life in vivo. A NOXA-LL mutant, which is not ubiquitinated, also requires an intact 26S proteasome for degradation. Depletion of the 19S non-ATPase subunit, PSMD1 induces NOXA-dependent apoptosis. Thus, disruption of 26S proteasome function by various mechanisms triggers the rapid accumulation of NOXA and subsequent cell death strongly implicating NOXA as a sensor of 26S proteasome integrity.  相似文献   

20.
20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1   总被引:6,自引:0,他引:6  
Ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, is a very labile protein. ODC is a homodimeric enzyme that undergoes ubiquitin-independent proteasomal degradation via direct interaction with antizyme, a polyamine-induced protein. Binding of antizyme promotes the dissociation of ODC homodimers and marks ODC for degradation by the 26S proteasomes. We describe here an alternative pathway for ODC degradation that is regulated by NAD(P)H quinone oxidoreductase 1 (NQO1). We show that NQO1 binds and stabilizes ODC. Dicoumarol, an inhibitor of NQO1, dissociates ODC-NQO1 interaction and enhances ubiquitin-independent ODC proteasomal degradation. We further show that dicoumarol sensitizes ODC monomers to proteasomal degradation in an antizyme-independent manner. This process of NQO1-regulated ODC degradation was recapitulated in vitro by using purified 20S proteasomes. Finally, we show that the regulation of ODC stability by NQO1 is especially prominent under oxidative stress. Our findings assign to NQO1 a role in regulating ubiquitin-independent degradation of ODC by the 20S proteasomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号