首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose-sensing mechanisms in pancreatic beta-cells   总被引:9,自引:0,他引:9  
The appropriate secretion of insulin from pancreatic beta-cells is critically important to the maintenance of energy homeostasis. The beta-cells must sense and respond suitably to postprandial increases of blood glucose, and perturbation of glucose-sensing in these cells can lead to hypoglycaemia or hyperglycaemias and ultimately diabetes. Here, we review beta-cell glucose-sensing with a particular focus on the regulation of cellular excitability and exocytosis. We examine in turn: (i) the generation of metabolic signalling molecules; (ii) the regulation of beta-cell membrane potential; and (iii) insulin granule dynamics and exocytosis. We further discuss the role of well known and putative candidate metabolic signals as regulators of insulin secretion.  相似文献   

2.
Type 2 diabetes mellitus manifests itself in individuals who lose the ability to produce sufficient amounts of insulin to maintain normoglycaemia in the face of insulin resistance. The ability to secrete adequate amounts of insulin depends on beta-cell function and mass. Chronic hyperglycaemia is detrimental to pancreatic beta-cells, causing impaired insulin secretion and playing an essential role in the regulation of beta-cell turnover. This paper will address the effect of chronically elevated glucose levels on beta-cell turnover and function. In previous studies we have shown that elevated glucose concentrations induce apoptosis in human beta-cells due to an interaction between constitutively expressed Fas ligand and upregulated Fas. Human beta-cells produce interleukin (IL)-1beta in response to high glucose concentrations, independently of an immune-mediated process. This was antagonized by the IL-1 receptor antagonist (IL-1Ra), a naturally occurring anti-inflammatory cytokine also found in the beta-cell. Therefore the balance of IL-1beta and IL-1Ra may play a crucial role in the pathogenesis of diabetes. Inhibition of glucotoxicity represents a promising therapeutic stratagem in diabetes therapy to preserve functional beta-cell mass.  相似文献   

3.
The proper regulation of blood glucose homeostasis in mammals requires an adequate relation between the capacity to produce insulin and metabolic demand. Insulin receptor substrate proteins (IRS) are signalling intermediates that are required to keep this balance because they are needed for insulin action in target tissues but also for insulin production in pancreatic beta-cells. The total functional beta-cell mass in an individual sets the limit of how much insulin can be produced at a given time. It can change adaptively to meet demand and studies in vivo indicate that the regulation of beta-cell mass involves IRS2, while IRS1 is only required for proper insulin production in beta-cells. Overexpression studies in isolated islets have shown that IRS2, but not IRS1 or Shc, is sufficient to induce proliferation of beta-cells and to protect against d-glucose-induced apoptosis. In light of the finding that many growth factors can regulate Irs2 in islets, this signalling intermediate could balance capacity for insulin production with demand. This review summarizes observations in mouse models and in primary beta-cells and proposes a new hypothetical model of how IRS2 might control beta-cell mass.  相似文献   

4.
Detection of variations in blood glucose concentrations by pancreatic beta-cells and a subsequent appropriate secretion of insulin are key events in the control of glucose homeostasis. Because a decreased capability to sense glycemic changes is a hallmark of type 2 diabetes, the glucose signalling pathway leading to insulin secretion in pancreatic beta-cells has been extensively studied. This signalling mechanism depends on glucose metabolism and requires the presence of specific molecules such as GLUT2, glucokinase and the K(ATP) channel subunits Kir6.2 and SUR1. Other cells are also able to sense variations in glycemia or in local glucose concentrations and to modulate different physiological functions participating in the general control of glucose and energy homeostasis. These include cells forming the hepatoportal vein glucose sensor, which controls glucose storage in the liver, counterregulation, food intake and glucose utilization by peripheral tissues and neurons in the hypothalamus and brainstem whose firing rates are modulated by local variations in glucose concentrations or, when not protected by a blood-brain barrier, directly by changes in blood glucose levels. These glucose-sensing neurons are involved in the control of insulin and glucagon secretion, food intake and energy expenditure. Here, recent physiological studies performed with GLUT2-/- mice will be described, which indicate that this transporter is essential for glucose sensing by pancreatic beta-cells, by the hepatoportal sensor and by sensors, probably located centrally, which control activity of the autonomic nervous system and stimulate glucagon secretion. These studies may pave the way to a fine dissection of the molecular and cellular components of extra-pancreatic glucose sensors involved in the control of glucose and energy homeostasis.  相似文献   

5.
The insulin/insulin-like growth factor-1 (IGF-1) signalling pathways are present in most mammalian cells and play important roles in the growth and metabolism of tissues. Most proteins in these pathways have also been identified in the beta-cells of the pancreatic islets. Tissue-specific knockout of the insulin receptor (betaIRKO) or IGF-1 receptor (betaIGFRKO) in pancreatic beta-cells leads to altered glucose-sensing and glucose intolerance in adult mice, and betaIRKO mice show an age-dependent decrease in islet size and beta-cell mass. These data indicate that these receptors are important for differentiated function and are unlikely to play a major role in the early growth and/or development of the pancreatic islets. Conventional insulin receptor substrate-1 (IRS-1) knockouts manifest growth retardation and mild insulin resistance. The IRS-1 knockouts also display islet hyperplasia, defects in insulin secretory responses to multiple stimuli both in vivo and in vitro, reduced islet insulin content and an increased number of autophagic vacuoles in the beta-cells. Re-expression of IRS-1 in cultured beta-cells is able to partially restore the insulin content indicating that IRS-1 is involved in the regulation of insulin synthesis. Taken together, these data provide evidence that insulin and IGF-1 receptors and IRS-1, and potentially other proteins in the insulin/IGF-1 signalling pathway, contribute to the regulation of islet hormone secretion and synthesis and therefore in the maintenance of glucose homeostasis.  相似文献   

6.
Ramey G  Faye A  Durel B  Viollet B  Vaulont S 《FEBS letters》2007,581(5):1053-1057
Diabetes Mellitus is found with increasing frequency in iron overload patients with hemochromatosis. In these conditions, the pancreas shows predominant iron overload in acini but also islet beta-cells. We assess glucose homeostasis status in iron-overloaded hepcidin-deficient mice. These mice presented with heavy pancreatic iron deposits but only in the acini. The beta-cell function was found unaffected with a normal production and secretion of insulin. The mutant mice were not diabetic, responded as the control group to glucose and insulin challenges, with no alteration of insulin signalling in the muscle and the liver. These results indicate that, beta-cells iron deposits-induced decreased insulin secretory capacity might be of primary importance to trigger diabetes in hemochromatosic patients.  相似文献   

7.
Insulin secretion from pancreatic islet beta-cells is a tightly regulated process, under the close control of blood glucose concentrations, and several hormones and neurotransmitters. Defects in glucose-triggered insulin secretion are ultimately responsible for the development of type II diabetes, a condition in which the total beta-cell mass is essentially unaltered, but beta-cells become progressively "glucose blind" and unable to meet the enhanced demand for insulin resulting for peripheral insulin resistance. At present, the mechanisms by which glucose (and other nutrients including certain amino acids) trigger insulin secretion in healthy individuals are understood only in part. It is clear, however, that the metabolism of nutrients, and the generation of intracellular signalling molecules including the products of mitochondrial metabolism, probably play a central role. Closure of ATP-sensitive K+(K(ATP)) channels in the plasma membrane, cell depolarisation, and influx of intracellular Ca2+, then prompt the "first phase" on insulin release. However, recent data indicate that glucose also enhances insulin secretion through mechanisms which do not involve a change in K(ATP) channel activity, and seem likely to underlie the second, sustained phase of glucose-stimulated insulin secretion. In this review, I will discuss recent advances in our understanding of each of these signalling processes.  相似文献   

8.
Critical nodes in signalling pathways: insights into insulin action   总被引:11,自引:0,他引:11  
Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role using insulin signalling as a model system.  相似文献   

9.
10.
A mathematical model of normal regulation of carbohydrate metabolism by the pancreas endocrine apparatus is presented. In a numerical experiment the model imitated changed levels of sucrose, insulin glucagon and gastrointestinal hormones in the blood in response to the ingested 50 g of glucose. The model of normal regulation was damaged in the way which theoretically should result in diabetes development. Then an estimation was made to what extent the disturbances of carbohydrate metabolism characteristic of diabetes were reproduced by the changed model. It has been shown that disturbances specific for diabetes appear when the sensitivity of beta-cells to glucose stimulus or hyperproduction of glucagon decreased. No changes in the behaviour of blood glucose typical of diabetes were obtained in the model when a decrease of the sensitivity of insulin receptors due to hyperinsulinemia in insulin-dependent tissues was imitated, as well as an increased activity of liver insulinase or hyposecretion of gastrointestinal hormones. These results point to the necessity of further development of these hypotheses.  相似文献   

11.
In his lecture at the Fourth European Congress of Endocrinology, C.R. Kahn considered the effects of knock-out of genes encoding the proteins involved into insulin signal transduction on the development of insulin-resistance and non-insulin-dependent diabetes mellitus. The latter were induced in animals by knockout of genes encoding insulin receptors and intracellular substrate proteins of the insulin receptor. Using special technology, the authors achieved selective knock-out of the insulin receptor gene in muscles and pancreatic beta-cells of mice. Non-insulin-dependent diabetes mellitus developed only after the knock-out of the insulin receptor gene in beta-cells and resulted from the inability of glucose to penetrate into beta-cells and stimulate insulin secretion. The insensitivity of muscles to insulin due to the lack of its receptor did not result in diabetes. In these animals insulin and glucose blood level did not differ from the control values, but blood lipid concentration was increased. For the cases of the reduction in the insulin-dependent penetration of glucose into muscles, these data may indirectly indicate a transition of energy metabolism in muscles from carbohydrate utilization to increased fat consumption as an energy source.  相似文献   

12.
Adiponectin, also known as Acrp30, is an adipose tissue-derived hormone with anti-atherogenic, anti-diabetic and insulin sensitizing properties. Two seven-transmembrane domain-containing proteins, AdipoR1 and AdipoR2, have recently been identified as adiponectin receptors, yet signalling events downstream of these receptors remain poorly defined. By using the cytoplasmic domain of AdipoR1 as bait, we screened a yeast two-hybrid cDNA library derived from human fetal brain. This screening led to the identification of a phosphotyrosine binding domain and a pleckstrin homology domain-containing adaptor protein, APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding (PTB) domain and leucine zipper motif). APPL1 interacts with adiponectin receptors in mammalian cells and the interaction is stimulated by adiponectin. Overexpression of APPL1 increases, and suppression of APPL1 level reduces, adiponectin signalling and adiponectin-mediated downstream events (such as lipid oxidation, glucose uptake and the membrane translocation of glucose transport 4 (GLUT4)). Adiponectin stimulates the interaction between APPL1 and Rab5 (a small GTPase) interaction, leading to increased GLUT4 membrane translocation. APPL1 also acts as a critical regulator of the crosstalk between adiponectin signalling and insulin signalling pathways. These results demonstrate a key function for APPL1 in adiponectin signalling and provide a molecular mechanism for the insulin sensitizing function of adiponectin.  相似文献   

13.
14.
15.
Unlike most other mammalian cells, beta-cells of Langerhans constitutively express cyclooxygenase (COX)-2 rather than COX-1. COX-2 is also constitutively expressed in type 1 diabetes (T1D) patients' periphery blood monocytes and macrophage. To understand the role of COX-2 in the beta-cell, we investigated COX-2 expression in beta-cells and islet infiltrates of NOD and BALB/c mice using fluorescence immunohistochemistry and cytochemical confocal microscopy and Western blotting. Immunostaining showed that COX-2 is expressed in islet-infiltrating macrophages, and that the expression of insulin and COX-2 disappeared concomitantly from the beta-cells when NOD mice progressed toward overt diabetes. Also cultured INS-1E cells coexpressed insulin and COX-2 but clearly in different subcellular compartments. Treatment with celecoxib increased insulin release from these cells in a dose-dependent manner in glucose concentrations ranging from 5 to 17 mM. Excessive COX-2 expression by the islet-infiltrating macrophages may contribute to the beta-cell death during insulitis. The effects of celecoxib on INS-1E cells suggest that PGE(2) and other downstream products of COX-2 may contribute to the regulation of insulin release from the beta-cells.  相似文献   

16.
Protein degradation in eukaryotic cells is mediated primarily by the ubiquitin-proteasome system and autophagy. Turnover of protein aggregates and other cytoplasmic components, including organelles, is another function attributed to autophagy. The ubiquitin-proteasome system and autophagy are essential for normal cell function but under certain pathological conditions can be overwhelmed, which can lead to adverse effects in cells. In this review we will focus primarily on the insulin-producing pancreatic beta-cell. Pancreatic beta-cells respond to glucose levels by both producing and secreting insulin. The inability of beta-cells to secrete sufficient insulin is a major contributory factor in the development of type 2 diabetes. The aim of this review is to examine some of the crucial roles of the ubiquitin-proteasome system and autophagy in normal pancreatic beta-cell function and how these pathways may become dysfunctional under pathological conditions associated with metabolic syndromes.  相似文献   

17.
Glucose metabolism stimulates insulin secretion in pancreatic beta-cells. A consequence of metabolism is an increase in the ratio of ATP to ADP ([ATP]/[ADP]) that contributes to depolarization of the plasma membrane via inhibition of ATP-sensitive K+ (K(ATP)) channels. The subsequent activation of calcium channels and increased intracellular calcium leads to insulin exocytosis. Here we evaluate new data and review the literature on nucleotide pool regulation to determine the utility and predictive value of a new mathematical model of ion and metabolic flux regulation in beta-cells. The model relates glucose consumption, nucleotide pool concentration, respiration, Ca2+ flux, and K(ATP) channel activity. The results support the hypothesis that beta-cells maintain a relatively high [ATP]/[ADP] value even in low glucose and that dramatically decreased free ADP with only modestly increased ATP follows from glucose metabolism. We suggest that the mechanism in beta-cells that leads to this result can simply involve keeping the total adenine nucleotide concentration unchanged during a glucose elevation if a high [ATP]/[ADP] ratio exits even at low glucose levels. Furthermore, modeling shows that independent glucose-induced oscillations of intracellular calcium can lead to slow oscillations in nucleotide concentrations, further predicting an influence of calcium flux on other metabolic oscillations. The results demonstrate the utility of comprehensive mathematical modeling in understanding the ramifications of potential defects in beta-cell function in diabetes.  相似文献   

18.
Type 2 diabetes is characterized by both peripheral insulin resistance and reduced insulin secretion by beta-cells. The reasons for beta-cell dysfunction in this disease are incompletely understood but may include the accumulation of toxic lipids within this cell type. We examined the role of Abca1, a cellular cholesterol transporter, in cholesterol homeostasis and insulin secretion in beta-cells. Mice with specific inactivation of Abca1 in beta-cells had markedly impaired glucose tolerance and defective insulin secretion but normal insulin sensitivity. Islets isolated from these mice showed altered cholesterol homeostasis and impaired insulin secretion in vitro. We found that rosiglitazone, an activator of the peroxisome proliferator-activated receptor-gamma, which upregulates Abca1 in beta-cells, requires beta-cell Abca1 for its beneficial effects on glucose tolerance. These experiments establish a new role for Abca1 in beta-cell cholesterol homeostasis and insulin secretion, and suggest that cholesterol accumulation may contribute to beta-cell dysfunction in type 2 diabetes.  相似文献   

19.
Glucagon-like peptide 1 (GLP-1) is an intestine-derived insulinotropic hormone that stimulates glucose-dependent insulin production and secretion from pancreatic beta-cells. Other recognized actions of GLP-1 are to suppress glucagon secretion and hepatic glucose output, delay gastric emptying, reduce food intake, and promote glucose disposal in peripheral tissues. All of these actions are potentially beneficial for the treatment of type 2 diabetes mellitus. Several GLP-1 agonists are in clinical trials for the treatment of diabetes. More recently, GLP-1 agonists have been shown to stimulate the growth and differentiation of pancreatic beta-cells, as well as to exert cytoprotective, antiapoptotic effects on beta-cells. Recent evidence indicates that GLP-1 agonists act on receptors on pancreas-derived stem/progenitor cells to prompt their differentiation into beta-cells. These new findings suggest an approach to create beta-cells in vitro by expanding stem/progenitor cells and then to convert them into beta-cells by treatment with GLP-1. Thus GLP-1 may be a means by which to create beta-cells ex vivo for transplantation into patients with insulinopenic type 1 diabetes and severe forms of type 2 diabetes.  相似文献   

20.
Insulin stimulates its own secretion and synthesis by pancreatic beta-cells. Although the exact molecular mechanism involved is unknown, changes in beta-cell insulin signalling have been recognized as a potential link between insulin resistance and its impaired release, as observed in non-insulin-dependent diabetes. However, insulin resistance is also associated with elevated plasma levels of free fatty acids (FFA) that are well known modulators of insulin secretion by pancreatic islets. This information led us to investigate the effect of FFA on insulin receptor signalling in pancreatic islets. Exposure of pancreatic islets to palmitate caused up-regulation of several insulin-induced activities including tyrosine phosphorylation of insulin receptor and pp185. This is the first evidence that short exposure of these cells to 100 microM palmitate activates the early steps of insulin receptor signalling. 2-Bromopalmitate, a carnitine palmitoyl-CoA transferase-1 inhibitor, did not affect the effect of the fatty acid. Cerulenin, an acylation inhibitor, abolished the palmitate effect on protein levels and phosphorylation of insulin receptor. This result supports the proposition that protein acylation may be an important mechanism by which palmitate exerts its modulating effect on the intracellular insulin signalling pathway in rat pancreatic islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号