首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: Leaf dry matter content (LDMC) is widely used as an indicator of plant resource use in plant functional trait databases. Two main methods have been proposed to measure LDMC, which basically differ in the rehydration procedure to which leaves are subjected after harvesting. These are the 'complete rehydration' protocol of Garnier et al. (2001, Functional Ecology 15: 688-695) and the 'partial rehydration' protocol of Vendramini et al. (2002, New Phytologist 154: 147-157). METHODS: To test differences in LDMC due to the use of different methods, LDMC was measured on 51 native and cultivated species representing a wide range of plant families and growth forms from central-western Argentina, following the complete rehydration and partial rehydration protocols. KEY RESULTS AND CONCLUSIONS: The LDMC values obtained by both methods were strongly and positively correlated, clearly showing that LDMC is highly conserved between the two procedures. These trends were not altered by the exclusion of plants with non-laminar leaves. Although the complete rehydration method is the safest to measure LDMC, the partial rehydration procedure produces similar results and is faster. It therefore appears as an acceptable option for those situations in which the complete rehydration method cannot be applied. Two notes of caution are given for cases in which different datasets are compared or combined: (1) the discrepancy between the two rehydration protocols is greatest in the case of high-LDMC (succulent or tender) leaves; (2) the results suggest that, when comparing many studies across unrelated datasets, differences in the measurement protocol may be less important than differences among seasons, years and the quality of local habitats.  相似文献   

2.
A procedure for extracting and identifying plant hormones, particularly abscisic acid (ABA) and the gibberellins (GA) was developed through modification of methods described in the literature. The procedure is particularly useful for studying more than one hormone simultaneously in a given sample, and when the supply of plant material is limited. The procedure was used to isolate ABA and GA-like substances from olive tissue (i.e., leaves, buds and inflorescences). Gibberellin-like substances were identified by their action on α-amylase release from embryoless barley half-seeds. Characterization of an acidic inhibitor extracted from olive inflorescences by thin-layer chromatography, fluorescence under ultraviolet light, gas chromatography, and physiological effects on wheat coleoptile sections indicate that this inhibitor, or at least a component of it, is very similar if not identical with at least one isomeric form of synthetic abscisic acid.  相似文献   

3.
The details of a convenient laboratory press are presented anda procedure by which plant sap is readily obtained is described.The pressing procedure has been shown to release 53–74per cent. of the total plant water as expressed sap. Preliminary observations on the uptake and translocation ofantibiotics by higher plants obtained by examining expressedsap are described. It is shown that the assay of expressed sapprovides a measure of the griseofulvin and chloramphenicol concentrationin leaves of plants grown in solutions of these antibioticsthat does not differ significantly from the value obtained bythe assay of water extracts. Extraction of leaves from plants grown in griseofulvin solutionswith organic solvents demonstrates a much greater antibioticcontent than is indicated by the assay of expressed sap. Toexplain this difference a ‘free’ antibiotic fraction,obtainable in expressed sap or water extracts, and a ‘bound’fraction recovered from the leaf only by organic solvent extractionare postulated.  相似文献   

4.
Several transgenic tobacco lines expressing human apolipoprotein A-I (ApoA-I) were obtained. Western blot analyses indicated the expression of the recombinant protein in plant organs at various stages of development, including senescent leaves. A cell line expressing human ApoA-I was established from a T1 transgenic plant. Recombinant ApoA-I was isolated either from extracts of transgenic leaves and from the culture medium of transgenic cells using an antibody-based one-step procedure.  相似文献   

5.
Additive or synergistic effects among introduced and native insect and plant pathogen agents are necessary to achieve biological control of waterhyacinth (Eichhornia crassipes), a globally damaging aquatic weed. In field plots, plants were infested with waterhyacinth weevils (Neoechetina bruchi and N. eichhorniae) and leaves were scarred by weevil feeding. Subsequent infection by the fungal pathogen Cercospora piaropi caused necrotic lesions to form on leaves. Necrosis development was 7.5- and 10.5-fold greater in plots augmented with both weevils and C. piaropi and weevils alone, respectively, than in plots receiving only C. piaropi. Twenty-four days after weevil infestation, the percentage of laminar area covered by lesions on third-youngest and oldest live leaves was elevated 2.3–2.5-fold in plots augmented with weevils. Scar density and necrosis coverage on young leaf laminae were positively correlated, even though antipathogenic soluble peroxidases were elevated 3-fold in plots augmented with weevils alone or weevils and C. piaropi. Combined weevil and fungal augmentation decreased shoot densities and leaves per plant. In a no-choice bioassay, weevil feeding on oldest but not young leaves was reduced 44 two weeks after C. piaropi inoculation. Protein content and peroxidase activities were elevated 2–6-fold in oldest leaves three weeks after inoculation. Augmentation with both waterhyacinth weevils and C. piaropi led to the development of an additive biological control impact, mediated by one or more direct interactions between these agents, and not plant quality effects.  相似文献   

6.
Beauveria bassiana strain EABb 04/01-Tip isolated from stem-borer larvae of Timaspis papaveris (Hymenoptera: Cynipidae), a serious pest of opium poppy in Spain, was shown to be able to become established endophytically in this pharmaceutical crop. Microbiological, molecular and light and electron microscopic methods were used to study fungal colonisation and to describe its mode of penetration. After inoculation with a foliar spray of conidia, microbiological methods showed 100% of plants examined 24, 48, 72 and 144 h after treatment to be colonised endophytically by the fungus, although the percentage of previously surface sterilised leaf pieces showing fungal growth was 100% at 24 and 48 h, and 80 and 75% at 72 and 144 h after treatment, respectively. The fungus was also observed in leaf pieces obtained from newly formed leaves, indicating that it could spread from treated leaves to leaves formed after fungal application. For molecular studies, a polymerase chain reaction (PCR) protocol was used to amplify the ITS1-5.8S-ITS2 regions of the rDNA of the plant and the fungus. This procedure allowed the detection of the fungus on the surface of the leaves and also endophytically, but only at 72 h after treatment. A nucleotide BLAST search revealed that the ITS1-5.8S-ITS2 sequence of strain EABb 04/01-Tip showed 100% homology with a similar sequence from Cordyceps bassiana. SEM images revealed that although numerous conidia were observed on the leaf surface, few germinated and penetrated. Intracellular colonisation by B. bassiana was not observed, but hyphae were detected growing into the xylem vessels. The fungus was found to colonise 40.5 ± 4.3% of seedlings (with two cotyledons and the two first real leaves) from seeds dressed with a fungal spore suspension. These results may have implications in the biological control of T. papaveris, including the possible systemic protection of the plant against this cynipid.  相似文献   

7.
The isolation, detection and quantification of betulinic acid in Doliocarpus schottianus are described. The isolation from the plant extract was made by column chromatography and centrifugal TLC, and betulinic acid was characterized by spectrometric methods. The detection and quantification were made by HPLC using a C18 column eluted with acetonitrile: water and detected at 210 nm. The results showed that the metabolite accumulates in the bark of the plant, but very small concentrations were also found in the leaves and wood.  相似文献   

8.
A rapid and simple procedure is described for obtaining CsCl-purified DNA from multiple small samples of cells or tissue. The DNA is recovered in a high-molecular-weight form (greater than or equal to 50 kb) that is readily cleaved with restriction enzymes. Sufficient quantities of DNA (10-50 micrograms) are recovered to allow multiple analyses by Southern blotting and most cloning procedures. The isolation procedure involves addition of intact cells or powders of frozen tissues directly to a simple lysis buffer containing detergent (sodium dodecyl sulfate or sodium sarcosinate) and high concentrations of EDTA. Ultra-high-speed centrifugation of CsCl gradients allows the isolation of DNA from 10 different samples in as little as 5 h. Applications are described for mammalian cells (HeLa cells), insect tissues (Drosophila melanogaster adults and pupa, Manduca sexta pupa, and Musca domestica pupa), higher plant tissues (Vicia faba leaves and meristems), algal cells (walled and wall-less Chlamydomonas reinhardi), yeast cells (Saccharomyces cerevisiae), and bacterial cells (Escherichia coli spheroplasts for preparation of both chromosomal and plasmid DNA). The procedure can be scaled up with larger sample sizes and longer centrifugation times to provide bulk quantities of DNA.  相似文献   

9.
Espinosa-Urgel M 《Plasmid》2004,52(3):139-150
Bacteria of the genus Pseudomonas are usual colonizers of plant leaves, roots, and seeds, establishing at relatively high cell densities on plant surfaces, where they aggregate and form microcolonies similar to those observed during biofilm development on abiotic surfaces. These plant-associated biofilms undergo chromosomal rearrangements and are hot spots for conjugative plasmid transfer, favored by the close proximity between cells and the constant supply of nutrients coming from the plant in the form of exudates or leachates. The molecular determinants known to be involved in bacterial colonization of the different plant surfaces, and the mechanisms of horizontal gene transfer in plant-associated Pseudomonas populations are summarized in this review.  相似文献   

10.
As the field of plant molecular biology is swiftly advancing, a need has been created for methods that allow rapid and reliable in situ localization of proteins in plant cells. Here we describe a whole-mount 'immunolocalization' technique for various plant tissues, including roots, hypocotyls, cotyledons, young primary leaves and embryos of Arabidopsis thaliana and other species. The detailed protocol, recommended controls and troubleshooting are presented, along with examples of applications. The protocol consists of five main procedures: tissue fixation, tissue permeation, blocking, primary and secondary antibody incubation. Notably, the first procedure (tissue fixation) includes several steps (4-12) that are absolutely necessary for protein localization in hypocotyls, cotyledons and young primary leaves but should be omitted for other tissues. The protocol is usually done in 3 days, but could also be completed in 2 days.  相似文献   

11.
C3和C4植物叶片对光氧化响应的日变化   总被引:5,自引:1,他引:4  
田间生长的C3植物花生和C4植物玉米分别于晴天上午9:00、中午12:00、下午15:00取样。中午12:00花生叶片的Fv/Fm较早上9:见下降16%,出现了光抑制现象,玉米叶片的Fv/Fm则未下降。不同时间取样的花生和玉米叶片经甲基紫精(MV) 强光的人为光氧化处理,叶绿素和类胡萝卜素出现不同程度的氧化降解,中午12:00降解幅度最大,15时降幅最小。植物叶片的抗氧化能力与其SOD活性相关,而与PEPCase的活性没有明显的相关性。光氧化处理后,花生和玉米的叶绿素荧光参数FV/Fm、qp、pSII都下降,花生在12:00的降幅最小,玉米的降幅最大。光氧化引起花生的qN和热耗散系数(KD)上升,玉米则都下降.结果显示C3植物花生和C4植物玉米对光氧化的响应可能存在不同的机制。  相似文献   

12.
The feasibility of using Kjeldahl digests of plant tissue, specifically pecan leaves, for measurement of phosphorous and zinc content was examined. Analyses of organic mixture digests with known amounts of phosphorus and zinc showed that no inorganic or organic phosphorus and no zince was lost in the digestive process. Analysis of Kjeldahl digests of pecan leaves yielded results equivalent to those from wet and dry ash solubilization procedures. It is proposed that Kjeldahl digestion is a suitable procedure for extraction and measurement of phosphorus and zinc, at least in pecan leaves. This procedure has the advantage that both elements as well as nitrogen can be assayed in the same digest, using commonly available equipment.  相似文献   

13.
Membrane proteins are of great interest to plant physiologists because of their important function in many physiological processes. However, their study is hampered by their low abundance and poor solubility in aqueous buffers. Proteomics studies of non-model plants are generally restricted to gel-based methods. Unfortunately, all gel-based techniques for membrane proteomics lack resolving power. Therefore, a very stringent enrichment method is needed before protein separation. In this study, protein extraction in a mixture of chloroform and methanol in combination with gel electrophoresis is evaluated as a method to study membrane proteins in non-model plants. Benefits as well as disadvantages of the method are discussed. To demonstrate the pitfalls of working with non-model plants and to give a proof of principle, the method was first applied to whole leaves of the model plant Arabidopsis. Subsequently, a comparison with proteins extracted from leaves of the non-model plant, banana, was made. To estimate the tissue and organelle specificity of the method, it was also applied on banana meristems. Abundant membrane or lipid-associated proteins could be identified in both tissues, with the leaf extract yielding a higher number of membrane proteins.  相似文献   

14.
The transient expression of recombinant biopharmaceutical proteins in plants can suffer inter‐batch variation, which is considered a major drawback under the strict regulatory demands imposed by current good manufacturing practice (cGMP). However, we have achieved transient expression of the monoclonal antibody 2G12 and the fluorescent marker protein DsRed in tobacco leaves with ~15% intra‐batch coefficients of variation, which is within the range reported for transgenic plants. We developed models for the transient expression of both proteins that predicted quantitative expression levels based on five parameters: The OD600nm of Agrobacterium tumefaciens (from 0.13 to 2.00), post‐inoculation incubation temperature (15–30°C), plant age (harvest at 40 or 47 days after seeding), leaf age, and position within the leaf. The expression models were combined with a model of plant biomass distribution and extraction, generating a yield model for each target protein that could predict the amount of protein in specific leaf parts, individual leaves, groups of leaves, and whole plants. When the yield model was combined with a cost function for the production process, we were able to perform calculations to optimize process time, yield, or downstream costs. We illustrate this procedure by transferring the cost function from a production process using transgenic plants to a hypothetical process for the transient expression of 2G12. Our models allow the economic evaluation of new plant‐based production processes and provide greater insight into the parameters that affect transient protein expression in plants. Biotechnol. Bioeng. 2012; 109: 2575–2588. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Transient expression of genes using Agrobacterium is a powerful tool for the analysis of gene function in plants. We have developed this method for the analysis of genes involved in disease resistance in grapevine leaves. Our research showed that the quality of the plant material, the plant genotype used for agro-infiltration and the presence of additional virulence factors (carried on plasmid pCH32) in the Agrobacterium strain are all important factors for success of the procedure. After optimising these factors, we consistently achieve sufficient acceptable levels of expression of the markers beta-glucuronidase (GUS) and green fluorescent protein (GFP) using vacuum infiltration of grapevine leaves from plants grown in vitro. We used this procedure to investigate the proposed role of stilbenes in defense against grapevine downy mildew (Plasmopara viticola) by transiently overexpressing stilbene synthase in grapevine leaves, before infection with P. viticola. We found that agro-infiltration itself induces the synthesis of stilbenes in grapevine leaves, thus preventing us to test the effect of the overexpression of stilbene synthase in defense. However, our results revealed that agro-infiltration before P. viticola inoculation had an effect on the development of the infection. Further research is required to show whether stilbenes or some other factor are the causal agent restricting pathogen development. The method described here provides and excellent tool to exploit at the many grapevine genomic resources now available, and will contribute to a better understanding of many areas of grapevine biology.  相似文献   

16.
Acid sulfate soils, peat soils, sandy podzolic, and saline soils are widely distributed in Peninsular Thailand. Native plants adapted to such problem soils have grown well, and showed no symptom of mineral deficiency or toxicity. Dominant plants growing in low pH soils (acid sulfate and peat) were Melastoma marabathricum and Melaleuca cajuputi. Since M. marabathricum accumulated a huge amount of aluminum (Al) in leaves, especially in new growing leaves, it can be designated an Al accumulator plant. While M. cajuputi did not accumulate Al in shoot, it can be designated an Al excluder plant. Both plant species adapted well to low pH soils, though a different strategy was used for Al. On the other hand, in acid sulfate and peat soils, M. cajuputi, Panicum repens, Cyperus haspan, and Ischaemum aristatum accumulated large amounts of Na in the leaves (or shoots), even in soil with low exchangeable Na concentration. Thus, when growing in the presence of high Al and Na concentration in soils, plant species have developed two opposite strategies: (1) Al or Na accumulation in the leaf and (2) Al or Na exclusion from the leaf. Al concentration in leaves had a negative relationship with the other mineral nutrients except for N and Mn, and Na concentration in leaves also had a negative relationship with P, Zn, Mn, Cu, and Al. Consequently, Al and Na accumulator plants are characterized by their exclusion of other minerals from their leaves.  相似文献   

17.
Elevated CO2 and plant structure: a review   总被引:4,自引:0,他引:4  
Consequences of increasing atmospheric CO2 concentration on plant structure, an important determinant of physiological and competitive success, have not received sufficient attention in the literature. Understanding how increasing carbon input will influence plant developmental processes, and resultant form, will help bridge the gap between physiological response and ecosystem level phenomena. Growth in elevated CO2 alters plant structure through its effects on both primary and secondary meristems of shoots and roots. Although not well established, a review of the literature suggests that cell division, cell expansion, and cell patterning may be affected, driven mainly by increased substrate (sucrose) availability and perhaps also by differential expression of genes involved in cell cycling (e.g. cyclins) or cell expansion (e.g. xyloglucan endotransglycosylase). Few studies, however, have attempted to elucidate the mechanistic basis for increased growth at the cellular level. Regardless of specific mechanisms involved, plant leaf size and anatomy are often altered by growth in elevated CO2, but the magnitude of these changes, which often decreases as leaves mature, hinges upon plant genetic plasticity, nutrient availability, temperature, and phenology. Increased leaf growth results more often from increased cell expansion rather than increased division. Leaves of crop species exhibit greater increases in leaf thickness than do leaves of wild species. Increased mesophyll and vascular tissue cross-sectional areas, important determinates of photosynthetic rates and assimilate transport capacity, are often reported. Few studies, however, have quantified characteristics more reflective of leaf function such as spatial relationships among chlorenchyma cells (size, orientation, and surface area), intercellular spaces, and conductive tissue. Greater leaf size and/or more leaves per plant are often noted; plants grown in elevated CO2 exhibited increased leaf area per plant in 66% of studies, compared to 28% of observations reporting no change, and 6% reported a decrease in whole plant leaf area. This resulted in an average net increase in leaf area per plant of 24%. Crop species showed the greatest average increase in whole plant leaf area (+ 37%) compared to tree species (+ 14%) and wild, nonwoody species (+ 15%). Conversely, tree species and wild, nontrees showed the greatest reduction in specific leaf area (– 14% and – 20%) compared to crop plants (– 6%). Alterations in developmental processes at the shoot apex and within the vascular cambium contributed to increased plant height, altered branching characteristics, and increased stem diameters. The ratio of internode length to node number often increased, but the length and sometimes the number of branches per node was greater, suggesting reduced apical dominance. Data concerning effects of elevated CO2 on stem/branch anatomy, vital for understanding potential shifts in functional relationships of leaves with stems, roots with stems, and leaves with roots, are too few to make generalizations. Growth in elevated CO2 typically leads to increased root length, diameter, and altered branching patterns. Altered branching characteristics in both shoots and roots may impact competitive relationships above and below the ground. Understanding how increased carbon assimilation affects growth processes (cell division, cell expansion, and cell patterning) will facilitate a better understanding of how plant form will change as atmospheric CO2 increases. Knowing how basic growth processes respond to increased carbon inputs may also provide a mechanistic basis for the differential phenotypic plasticity exhibited by different plant species/functional types to elevated CO2.  相似文献   

18.
We have developed a simple procedure for the preparation of plant genomic DNA using FTA paper. Plant leaves were crushed against FTA paper, and the genomic DNA was purified using simple, nonorganic reagents. The 18S rRNA gene and the gene encoding the ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit (rbcL) from the chloroplast genome were detected by PCR amplification of DNA on FTA paper. DNA amplification was successful using extracts from 16 dicot and monocot plants. Studies of specific plant extracts revealed that extracts of leaf samples could be collected and stored at room temperature on FTA paper without a decrease in the DNA amplification success rate for more than a month. Both the 18S RNA gene and the rbcL gene were detected in the genomic DNA isolated from various soybean cultivars stored in this manner. Furthermore, by modestly increasing the number of cycles of DNA amplification, we were able to detect the uidA gene in transgenic tobacco and rice leaves as well as a single copy gene linked to the resistance gene of cyst nematode race 3 using genomic DNA isolated on FTA paper. These results demonstrate that genomic DNA isolated using FTA paper can be used for the detection of plant genes, from a wide range of plants with either high or low gene copy number and of either nuclear or cytoplasmic origin.  相似文献   

19.
Though many physical models have been proposed to simulate the spectra of plant leaves, there are few reports on the material simulation of plant leaves. In order to prepare a material that could simulate the reflectance spectra of plant leaves, the spectral reflectance characteristics of plant leaves and their forming mechanism were analyzed. The study indicated that the reflectance spectra of plant leaves exhibits four common characteristics, which were determined by the spongy inner structure and biochemical contents (chlorophyll, water) of plant leaves. In our procedure, the chlorophyll was concealed into the high-oxygen-barrier polyvinyl alcohol (PVA) film to improve its photostability, and the water was sealed into the bag of high-vapor-barrier polyvinylidene chloride (PVDC) to prevent its vaporization loss. Subsequently, taking the structures of plant leaves and petals as simulating models and considering the limits of PVA film and PVDC bag, a novel bionic composite material constituted with three layers was designed and prepared. The spectral tests and endurance experiment show that the bionic composite material exhibits almost the same reflectance spectrum with those of green leaves, and its spectrum changes little after sunlight treatment for three months, which proves a good sunlight endurance of this bionic composite material.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号