首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular transport is essential for cytoplasm organization, but mechanisms regulating transport are mostly unknown. In Xenopus melanophores, melanosome transport is regulated by cAMP-dependent protein kinase A (PKA). Melanosome aggregation is triggered by melatonin, whereas dispersion is induced by melanocyte-stimulating hormone (MSH). The action of hormones is mediated by cAMP: High cAMP in MSH-treated cells stimulates PKA, whereas low cAMP in melatonin-treated cells inhibits it. PKA activity is typically restricted to specific cell compartments by A-kinase anchoring proteins (AKAPs). Recently, Rab32 has been implicated in protein trafficking to melanosomes and shown to function as an AKAP on mitochondria. Here, we tested the hypothesis that Rab32 is involved in regulation of melanosome transport by PKA. We demonstrated that Rab32 is localized to the surface of melanosomes in a GTP-dependent manner and binds to the regulatory subunit RIIalpha of PKA. Both RIIalpha and Cbeta subunits of PKA are required for transport regulation and are recruited to melanosomes by Rab32. Overexpression of wild-type Rab32, but not mutants unable to bind PKA or melanosomes, inhibits melanosome aggregation by melatonin. Therefore, in melanophores, Rab32 is a melanosome-specific AKAP that is essential for regulation of melanosome transport.  相似文献   

2.
The bi-directional movement of pigment granules in frog melanophores involves the microtubule-based motors cytoplasmic dynein, which is responsible for aggregation, and kinesin II and myosin V, which are required for dispersion of pigment. It was recently shown that dynactin acts as a link between dynein and kinesin II and melanosomes, but it is not fully understood how this is regulated and if more proteins are involved. Here, we suggest that spectrin, which is known to be associated with Golgi vesicles as well as synaptic vesicles in a number of cells, is of importance for melanosome movements in Xenopus laevis melanophores. Large amounts of spectrin were found on melanosomes isolated from both aggregated and dispersed melanophores. Spectrin and two components of the oligomeric dynactin complex, p150(glued) and Arp1/centractin, co-localized with melanosomes during aggregation and dispersion, and the proteins were found to interact as determined by co-immunoprecipitation. Spectrin has been suggested as an important link between cargoes and motor proteins in other cell types, and our new data indicate that spectrin has a role in the specialized melanosome transport processes in frog melanophores, in addition to a more general vesicle transport.  相似文献   

3.
The bi‐directional movement of pigment granules in frog melanophores involves the microtubule‐based motors cytoplasmic dynein, which is responsible for aggregation, and kinesin  II and myosin  V, which are required for dispersion of pigment. It was recently shown that dynactin acts as a link between dynein and kinesin  II and melanosomes, but it is not fully understood how this is regulated and if more proteins are involved. Here, we suggest that spectrin, which is known to be associated with Golgi vesicles as well as synaptic vesicles in a number of cells, is of importance for melanosome movements in Xenopus laevis melanophores. Large amounts of spectrin were found on melanosomes isolated from both aggregated and dispersed melanophores. Spectrin and two components of the oligomeric dynactin complex, p150glued and Arp1/centractin, co‐localized with melanosomes during aggregation and dispersion, and the proteins were found to interact as determined by co‐immunoprecipitation. Spectrin has been suggested as an important link between cargoes and motor proteins in other cell types, and our new data indicate that spectrin has a role in the specialized melanosome transport processes in frog melanophores, in addition to a more general vesicle transport.  相似文献   

4.
In fish melanophores, melanosomes can either aggregate around the cell centre or disperse uniformly throughout the cell. This organelle transport involves microtubule- and actin-dependent motors and is regulated by extracellular stimuli that modulate levels of intracellular cyclic adenosine 3-phosphate (cAMP). We analysed melanosome dynamics in Atlantic cod melanophores under different experimental conditions in order to increase the understanding of the regulation and relative contribution of the transport systems involved. By inhibiting dynein function via injection of inhibitory antidynein IgGs, and modulating cAMP levels using forskolin, we present cellular evidence that dynein is inactivated by increased cAMP during dispersion and that the kinesin-related motor is inactivated by low cAMP levels during aggregation. Inhibition of dynein further resulted in hyperdispersed melanosomes, which subsequently reversed movement towards a more normal dispersed state, pointing towards a peripheral feedback regulation in maintaining the evenly dispersed state. This reversal was blocked by noradrenaline. Analysis of actin-mediated melanosome movements shows that actin suppresses aggregation and dispersion, and indicates the possibility of down-regulating actin-dependent melanosome movement by noradrenaline. Data from immuno-electron microscopy indicate that myosinV is associated with fish melanosomes. Taken together, our study presents evidence that points towards a model where both microtubule- and actin-mediated melanosome transport are synchronously regulated during aggregation and dispersion, and this provides a cell physiological explanation behind the exceptionally fast rate of background adaptation in fish.  相似文献   

5.
Xenopus melanophores have pigment organelles or melanosomes which, in response to hormones, disperse in the cytoplasm or aggregate in the perinuclear region. Melanosomes are transported by microtubule motors, kinesin-2 and cytoplasmic dynein, and an actin motor, myosin-V. We explored the regulation of melanosome transport along microtubules in vivo by using a new fast-tracking routine, which determines the melanosome position every 10 ms with 2-nm precision. The velocity distribution of melanosomes transported by cytoplasmic dynein or kinesin-2 under conditions of aggregation and dispersion presented several peaks and could not be fit with a single Gaussian function. We postulated that the melanosome velocity depends linearly on the number of active motors. According to this model, one to three dynein molecules transport each melanosome in the minus-end direction. The transport in the plus-end direction is mainly driven by one to two copies of kinesin-2. The number of dyneins transporting a melanosome increases during aggregation, whereas the number of active kinesin-2 stays the same during aggregation and dispersion. Thus, the number of active dynein molecules regulates the net direction of melanosome transport. The model also shows that multiple motors of the same polarity cooperate during the melanosome transport, whereas motors of opposite polarity do not compete.  相似文献   

6.
In fish melanophores, melanosomes can either aggregate around the cell centre or disperse uniformly throughout the cell. This organelle transport involves microtubule‐ and actin‐dependent motors and is regulated by extracellular stimuli that modulate levels of intracellular cyclic adenosine 3‐phosphate (cAMP). We analysed melanosome dynamics in Atlantic cod melanophores under different experimental conditions in order to increase the understanding of the regulation and relative contribution of the transport systems involved. By inhibiting dynein function via injection of inhibitory antidynein IgGs, and modulating cAMP levels using forskolin, we present cellular evidence that dynein is inactivated by increased cAMP during dispersion and that the kinesin‐related motor is inactivated by low cAMP levels during aggregation. Inhibition of dynein further resulted in hyperdispersed melanosomes, which subsequently reversed movement towards a more normal dispersed state, pointing towards a peripheral feedback regulation in maintaining the evenly dispersed state. This reversal was blocked by noradrenaline. Analysis of actin‐mediated melanosome movements shows that actin suppresses aggregation and dispersion, and indicates the possibility of down‐regulating actin‐dependent melanosome movement by noradrenaline. Data from immuno‐electron microscopy indicate that myosinV is associated with fish melanosomes. Taken together, our study presents evidence that points towards a model where both microtubule‐ and actin‐mediated melanosome transport are synchronously regulated during aggregation and dispersion, and this provides a cell physiological explanation behind the exceptionally fast rate of background adaptation in fish.  相似文献   

7.
A continuous observation apparatus was used to study the responses of Phoxinus phoxinus melanophores to illuminated black/white backgrounds and their reversal. The fish. Although confined, showed maximum melanosome dispersion (MI 5) and maximum melanosome aggregation (MI 1) when exposed to illuminated black and white backgrounds respectively. Melanophores affected by spinal nerve section showed full melanosome dispersion and the affected area appeared as a black band. The affected melanophores marginally and gradually aggregated their melanosomes if the fish was exposed to an illuminated white background for about a week. The responses of these melanophores to illuminated black and white backgrounds and their reversal indicates that the dispersal of their melanosomes in response to a black background is much faster than their aggregation in response to a white background. It is concluded that an active mechanism is involved and possible factors controlling it are discussed.  相似文献   

8.
Regulation of intracellular transport plays a role in a number of processes, including mitosis, determination of cell polarity, and neuronal growth. In Xenopus melanophores, transport of melanosomes toward the cell center is triggered by melatonin, whereas their dispersion throughout the cytoplasm is triggered by melanocyte-stimulating hormone (MSH), with both of these processes mediated by cAMP-dependent protein kinase A (PKA) activity [1, 2]. Recently, the ERK (extracellular signal-regulated kinase) pathway has been implicated in regulating organelle transport and signaling downstream of melatonin receptor [3, 4]. Here, we directly demonstrate that melanosome transport is regulated by ERK signaling. Inhibition of ERK signaling by the MEK (MAPK/ERK kinase) inhibitor U0126 blocks bidirectional melanosome transport along microtubules, and stimulation of ERK by constitutively active MEK1/2 stimulates transport. These effects are specific because perturbation of ERK signaling has no effect on the movement of lysosomes, organelles related to melanosomes [5]. Biochemical analysis demonstrates that MEK and ERK are present on melanosomes and transiently activated by melatonin. Furthermore, this activation correlates with an increase in melanosome transport. Finally, direct inhibition of PKA transiently activates ERK, demonstrating that ERK acts downstream of PKA. We propose that signaling of organelle bound ERK is a key pathway that regulates bidirectional, microtubule-based melanosome transport.  相似文献   

9.
A perfusion technique is described for the study of melanosome response in ventral tailfin melanophores of Xenopus laevis tadpoles. The melanosomes remain aggregated (punctate melanophores) in Ringer's. Theophylline (15 mM) and caffeine (30 mM) cause a reversible dispersion (stellate melanophores) of melanosomes which is partly blocked by cytochalasin B (10 μg/ml). When added with theophylline or caffeine to stellate cells, cytochalasin B causes a disrupted distribution of pigment granules, characterized by a melanosome free central region. C-AMP (20 mM) and dibutyryl c-AMP (1 mM) cause a reversible dispersion of melanosomes which is partly inhibited by cytochalasin. When cytochalasin plus a nucleotide are added to stellate cells, some show the disrupted distribution of melanosomes. Colchicine (5 mM) causes irreversible, while griseofulvin (0.2 mM) causes a slight, but reversible dispersion of melanosomes, and cytochalasin has little effect on these reactions. Perfused tailfin melanophores remain capable of responding to reversible reagents for at least 12 hours and are unresponsive to changes in illumination.  相似文献   

10.
Cytoplasmic microtubules (MTs) continuously grow and shorten at their free plus ends, a behavior that allows them to capture membrane organelles destined for MT minus end-directed transport. In Xenopus melanophores, the capture of pigment granules (melanosomes) involves the +TIP CLIP-170, which is enriched at growing MT plus ends. Here we used Xenopus melanophores to test whether signals that stimulate minus end MT transport also enhance CLIP-170-dependent binding of melanosomes to MT tips. We found that these signals significantly (>twofold) increased the number of growing MT plus ends and their density at the cell periphery, thereby enhancing the likelihood of interaction with dispersed melanosomes. Computational simulations showed that local and global increases in the density of CLIP-170-decorated MT plus ends could reduce the half-time of melanosome aggregation by ~50%. We conclude that pigment granule aggregation signals in melanophores stimulate MT minus end-directed transport by the increasing number of growing MT plus ends decorated with CLIP-170 and redistributing these ends to more efficiently capture melanosomes throughout the cytoplasm.  相似文献   

11.
Previously, we have shown that melanosomes of Xenopus laevis melanophores are transported along both microtubules and actin filaments in a coordinated manner, and that myosin V is bound to purified melanosomes (Rogers, S., and V.I. Gelfand. 1998. Curr. Biol. 8:161-164). In the present study, we have demonstrated that myosin V is the actin-based motor responsible for melanosome transport. To examine whether myosin V was regulated in a cell cycle-dependent manner, purified melanosomes were treated with interphase- or metaphase-arrested Xenopus egg extracts and assayed for in vitro motility along Nitella actin filaments. Motility of organelles treated with mitotic extract was found to decrease dramatically, as compared with untreated or interphase extract-treated melanosomes. This mitotic inhibition of motility correlated with the dissociation of myosin V from melanosomes, but the activity of soluble motor remained unaffected. Furthermore, we find that myosin V heavy chain is highly phosphorylated in metaphase extracts versus interphase extracts. We conclude that organelle transport by myosin V is controlled by a cell cycle-regulated association of this motor to organelles, and that this binding is likely regulated by phosphorylation of myosin V during mitosis.  相似文献   

12.
Slac2-c/MyRIP, an in vitro Rab27A- and myosin Va/VIIa-binding protein, has recently been proposed to regulate retinal melanosome transport in retinal pigment epithelium cells by directly linking melanosome-bound Rab27A and myosin VIIa; however, the exact function of Slac2-c in melanosome transport has never been clarified. In this study, we used melanosome transport in skin melanocytes as a model for retinal melanosome transport and analyzed the in vivo function of Slac2-c in melanosome transport by the ectopic expression of Slac2-c, together with myosin VIIa, in Slac2-a-depleted melanocytes. In vitro binding experiments revealed that myosin VIIa had a greater affinity for Slac2-c, compared with the binding affinity of myosin Va, and that the myosin VIIa-binding domain of Slac2-c is different from the previously characterized myosin Va-binding domain that is conserved between Slac2-a/melanophilin and Slac2-c. Consistent with this result, cyan fluorescent protein-tagged Slac2-c expressed in melanocytes was localized on melanosomes via the specific interaction with Rab27A and recruited co-expressed yellow fluorescent protein-tagged myosin VIIa to the melanosomes without interfering with the normal peripheral melanosome distribution, whereas when myosin VIIa alone was expressed in melanocytes, it was not localized on the melanosomes. Moreover, Slac2-c ectopically expressed in melanocytes did not rescue the perinuclear aggregation phenotype induced by the knockdown of endogenous Slac2-a with a specific small interfering RNA, whereas the expression of the Slac2-c x myosin VIIa complex supported the normal melanosome distribution in Slac2-a-depleted melanocytes, indicating that Slac2-c functions as a myosin VIIa receptor rather than a myosin Va receptor in melanosome transport. Based on these findings, we propose that Slac2-c acts as a functional myosin VIIa receptor and that the Rab27A.Slac2-c x myosin VIIa tripartite protein complex regulates the transport of retinal melanosomes in pigment epithelium cells.  相似文献   

13.
In melanophores of a cyprinid fish, Zacco temmincki, receptor mechanisms of melanosome dispersion induced by catecholamines were examined. While possessing a melanosome-aggregating action in higher concentrations, isoproterenol and epinephrine in lower concentrations acted to disperse melanosomes. Norepinephrine, epinine and dopamine altered their action from melanosome aggregation to melanosome dispersion after alpha adrenergic blockade. The catecholamine-induced melanosome dispersion was inhibited by beta adrenergic blocking agents. Mediation of dispersion is regulated through beta adrenergic receptors. The beta adrenergic responses were unaffected by mersalyl, a sulfhydryl inhibitor. A prospective substance acting in dispersing melanosomes appears to be adrenaline, but not noradrenaline.  相似文献   

14.
Making sense of melanosome dynamics in mouse melanocytes   总被引:4,自引:0,他引:4  
Molecular motors drive most if not all organelle movements in Eukaryotic cells. These proteins are thought to bind to the organelle surface and, through the action of their mechanochemical domains, to translocate the organelle along a cytoskeletal track. In the case of the myosin family of molecular motors, the cytoskeletal track is filamentous actin. Microtubules serve as the cytoskeletal track for the kinesins and dyneins. While a considerable amount is known about the motors and tracks responsible for the bi-directional movement of pigment granules in fish and frog melanophores, relatively little is known about how melanosomes in mammalian melanocytes are transported out the cells dendritic arbor, accumulated at the ends of these dendrites, and transferred to keratinocytes. In this short review, we focus on the use of video microscopy to address these questions in mouse melanocytes, and we describe how an analysis of melanosome dynamics within wild type and dilute melanocytes shaped our thinking regarding the role of an unconventional myosin in melanosome transport and distribution.  相似文献   

15.
We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of protein kinase A (PKA) results in spontaneous pigment aggregation. α-Melanocyte-stimulating hormone (MSH), a stimulus which increases intracellular cAMP, cannot disperse pigment in these cells. However, melanosomes in these cells can be partially dispersed by PMA, an activator of protein kinase C (PKC). When a recombinant inhibitor of PKC is expressed in melanophores, PMA-induced pigment dispersion is inhibited, but not dispersion induced by MSH. We conclude that PKA and PKC activate two different pathways for melanosome dispersion. When melanophores express the small t antigen of SV-40 virus, a specific inhibitor of protein phosphatase 2A (PP2A), aggregation is completely prevented. Conversely, overexpression of PP2A inhibits pigment dispersion by MSH. Inhibitors of protein phosphatase 1 and protein phosphatase 2B (PP2B) do not affect pigment movement. Therefore, melanosome aggregation is mediated by PP2A.  相似文献   

16.
Melanosomes observed in dermal melanophores of adult leaf frogs contain a unique wine red pigment identified as pterorhodin, a pteridine dimer never before found in any vertebrate. This type of melanosome, almost twice as large as the typical eumelanin melanosome, contains a small electron dense core of eumelanin surrounded by a concentric fibrous mass of pterorhodin. Dermal melanophores of larval leaf frogs contain small eumelanin melanosomes that transform at metamorphosis through the gradual accumulation of pterorhodin on the eumelanin surface to form the compound melanosomes of adults. This process may be mediated by thyroxine. No explanation for the unique presence of pterorhodin in leaf frogs has yet surfaced. A variety of tree frog species from Australia and Papua New Guinea also possess pterorhodin and the large melanosome suggesting that tree frogs from the New World and those from Australia are closely related and may have been separated during continental drift. Several of the unsolved problems posed by the emergence of pterorhodin in a unique melanosome are discussed.  相似文献   

17.
Melanosomes observed in dermal melanophores of adult leaf frogs contain a unique wine red pigment identified as pterorhodin, a pteridine dimer never before found in any vertebrate. This type of melanosome, almost twice as large as the typical eumelanin melanosome, contains a small electron dense core of eumelanin surrounded by a concentric fibrous mass of pterorhodin. Dermal melanophores of larval leaf frogs contain small eumelanin melanosomes that transform at metamorphosis through the gradual accumulation of pterorhodin on the eumelanin surface to form the compound melanosomes of adults. This process may be mediated by thyroxine. No explanation for the unique presence of pterorhodin in leaf frogs has yet surfaced. A variety of tree frog species from Australia and Papua New Guinea also possess pterorhodin and the large melanosome suggesting that tree frogs from the New World and those from Australia are closely related and may have been separated during continental drift. Several of the unsolved problems posed by the emergence of pterorhodin in a unique melanosome are discussed.  相似文献   

18.
Human skin hyperpigmentation disorders occur when the synthesis and/or distribution of melanin increases. The distribution of melanin in the skin is achieved by melanosome transport and transfer. The transport of melanosomes, the organelles where melanin is made, in a melanocyte precedes the transfer of the melanosomes to a keratinocyte. Therefore, hyperpigmentation can be regulated by decreasing melanosome transport. In this study, we found that an extract of Saururus chinensis Baill (ESCB) and one of its components, manassantin B, inhibited melanosome transport in Melan‐a melanocytes and normal human melanocytes (NHMs). Manassantin B disturbed melanosome transport by disrupting the interaction between melanophilin and myosin Va. Manassantin B is neither a direct nor an indirect inhibitor of tyrosinase. The total melanin content was not reduced when melanosome transport was inhibited in a Melan‐a melanocyte monoculture by manassantin B. Manassantin B decreased melanin content only when Melan‐a melanocytes were co‐cultured with SP‐1 keratinocytes or stimulated by α‐MSH. Therefore, we propose that specific inhibitors of melanosome transport, such as manassantin B, are potential candidate or lead compounds for the development of agents to treat undesirable hyperpigmentation of the skin.  相似文献   

19.
Unlike wild-type mouse melanocytes, where melanosomes are concentrated in dendrites and dendritic tips, melanosomes in dilute (myosin Va) melanocytes are concentrated in the cell center. Here we sought to define the role that myosin Va plays in melanosome transport and distribution. Actin filaments that comprise a cortical shell running the length of the dendrite were found to exhibit a random orientation, suggesting that myosin Va could drive the outward spreading of melanosomes by catalyzing random walks. In contrast to this mechanism, time lapse video microscopy revealed that melanosomes undergo rapid (∼1.5 μm/s) microtubule-dependent movements to the periphery and back again. This bidirectional traffic occurs in both wild-type and dilute melanocytes, but it is more obvious in dilute melanocytes because the only melanosomes in their periphery are those undergoing this movement. While providing an efficient means to transport melanosomes to the periphery, this component does not by itself result in their net accumulation there. These observations, together with previous studies showing extensive colocalization of myosin Va and melanosomes in the actin-rich periphery, suggest a mechanism in which a myosin Va–dependent interaction of melanosomes with F-actin in the periphery prevents these organelles from returning on microtubules to the cell center, causing their distal accumulation. This “capture” model is supported by the demonstration that (a) expression of the myosin Va tail domain within wild-type cells creates a dilute-like phenotype via a process involving initial colocalization of tail domains with melanosomes in the periphery, followed by an ∼120-min, microtubule-based redistribution of melanosomes to the cell center; (b) microtubule-dependent melanosome movement appears to be damped by myosin Va; (c) intermittent, microtubule-independent, ∼0.14 μm/s melanosome movements are seen only in wild-type melanocytes; and (d) these movements do not drive obvious spreading of melanosomes over 90 min. We conclude that long-range, bidirectional, microtubule-dependent melanosome movements, coupled with actomyosin Va–dependent capture of melanosomes in the periphery, is the predominant mechanism responsible for the centrifugal transport and peripheral accumulation of melanosomes in mouse melanocytes. This mechanism represents an alternative to straightforward transport models when interpreting other myosin V mutant phenotypes.  相似文献   

20.
Melanophores in the skin of the freshwater teleost Zacco temmincki are light sensitive: Melanin granules, melanosomes, in the melanophores aggregate in darkness and disperse in light. Cultured melanophores of Zacco temmincki exhibited light sensitivity in the same manner as the melanophores in isolated scales. The dark-induced aggregation response became conspicuous after 2 days in culture. The appearance of the light response was later than that of the response to norepinephrine or melatonin, which induced rapid melanosome aggregation at one day in culture. The light sensitivity of the melanophores in isolated scales differed between individuals. A high correlation was observed between the degree of dark-induced aggregation in scale melanophores and that in cultured ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号