首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteoglycan aggregates from bovine articular cartilage have been visualized by electron microscopy of mixed proteoglycan-cytochrome c monolayers. The proteoglycan aggregates consist of proteoglycan subunits arising laterally at fairly regular intervals (20 to 30 nm) from the opposite sides of an elongated filamentous structure. The filamentous backbone in individual aggregates varies in length from 400 to 4000 nm. The individual proteoglycan subunits in the aggregate vary in length from 100 to 400 nm. However, there is no difference in the average size of the proteoglycan subunits associated with the largest or smallest aggregates. The sizes of the individual aggregates are determined mainly by the lengths of their filamentous backbones. The stoichiometry of binding of subunits to filament, calculated from the data reported here, is close to that for the binding of subunits to hyaluronic acid reported by others.  相似文献   

2.
3.
4.
5.
Troponin and its components or fragments were observed in an electron microscope by the use of the rotary shadowing technique. In freshly prepared troponin with low viscosity, globular particles were mainly observed. The size of the long axis of the particles was 13.2 +/- 1.3 nm and the size perpendicular to the long axis was 9.5 +/- 1.2 nm. The mean axial ratio was 1.4 +/- 0.3. Most of the particles observed in a stored troponin preparation, having a higher viscosity than that of fresh troponin, had a globular head with a thin tail, with the total length of 25.4 +/- 1.4 nm (head-tail type particles). The axial size of the globular portion was 8.3 +/- 1.2 nm and the tail length was 17.1 +/- 1.6 nm. Observation of various particles during the transitional stages indicated that, in the globular particles, the tail region of head-tail type particle was associated along the globular head region. Troponin T was a filamentous particle with 16.9 +/- 1.5 nm length. The 26K fragment of troponin T, which was devoid of the N-terminal 45 residues from troponin T, was a filamentous particle with the length of 14.4 +/- 1.3 nm. Troponin T1, one of two chymotryptic subfragments of troponin T, was a filamentous particle of 11.6 +/- 1.4 nm length. Troponin C.T in the presence of Ca2+ was a particle with a globular head (7 nm in size) and a tail of about 17 nm length. The Fab fragment of anti-troponin T1 formed regular transverse striations along the thin filament of rabbit skeletal muscle with a 38 nm period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Scanning electron microscopy was used to evidence the aggregated structure of a forest soil as well as the presence of fungal hyphae external to soil aggregates. The supernatant of soil suspension in water mainly contained isolated bacteria, while ultrathin sections of aggregates frequently revealed groups of bacteria surrounded by a sheath of mucilage with adhering clay minerals on the outside. These results confirm the existence of two particular biotopes in the soil studied: one is located inside aggregates, and the other, in the inter-aggregate spaces.  相似文献   

8.
9.
Electron microscopic study of alpha-actinin.   总被引:18,自引:0,他引:18  
Electron microscopic studies of the structure of purified α-actinin alone and in complex with F-actin have determined the molecular shape and size of this protein. α-Actinin molecules represent rods of about 300 Å in length and about 20 Å in diameter.  相似文献   

10.
11.
12.
13.
The authors have devised the methods for preparing free hyaluronic acid (HA) and non-aggregating fraction of protein-chondroitin-keratan sulfate (PCKS), as well as those for preparing their Na+, K+, Ca2+ and Mg2+ salts (acid and neutral). Infrared spectroscopy has demonstrated the presence of intermolecular hydrogen bonds, formed by hydroxyl groups, in HA and PCKS macrocomplexes and in PCKS acid salts. HA salts appeared not to form macrocomplexes at the expense of intermolecular hydrogen bonds.  相似文献   

14.
15.
16.
Using the methods of transmission electron microscopy, the structure of the biofilms formed by the bacterium Burkholderia cepacia (clinical isolate and mutants with an increased and decreased ability to produce biofilm) were investigated. The biofilms were obtained on a liquid nutrient medium or on an abiotic surface (polystyrene). It has been demonstrated that the cultures of the studied strains differ in some morphological and functional characteristics. In biofilms, changes in the size and submicroscopic organization of all the components of bacterial cells occur. Staining biofilms with ruthenium red revealed the presence of exopolysaccharides in the intercellular space. The differences in the ultrastructure of bacterial films formed on nutrient medium and abiotic surfaces were demonstrated.  相似文献   

17.
18.
19.
20.
Chemically isolated separate preparations of the non-aggregating protein-chondroitin-keratin sulphate (PCKS) fraction from the hyaline cartilage and hyaluronic acid (HUA) of the vitreous body and of the umbilicus were investigated by electron microscopy. PCKS and HUA in films without cytochrome c were present in the form of granules and differed by structural organization. The proteoglycans of the cytochrome c films were seen as finely-filamentous-cellular network, and were distinctly differentiated by their macromolecular organization. A mixture of both proteoglycans formed complexes as a result of a noncovalent interaction. Uranyl acetate ensured a good contrasting of proteoglycans, especially of PCKS, without cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号