首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial self‐organisation of ecosystems is the process by which large‐scale ordered spatial patterns emerge from disordered initial conditions through local feedbacks between organisms and their environment. Such process is considered important for ecosystem functioning, providing increased productivity, resistance and resilience against environmental change. Although spatial self‐organisation has been found for an increasing number of ecosystems, it has never been shown so far for aquatic river vegetation. Here we explore the existence of spatial self‐organisation of freshwater macrophyte patches in a typical lowland river (Belgium), showing that the underlying mechanisms for pattern formation are scale‐dependent feedbacks between plant growth, water flow and local river bed erosion and sedimentation. The mapping of vegetation patches showed that the frequency distribution of patch sizes is governed by a power‐law function, suggesting that the patches are self‐organised. Scale‐dependent feedbacks, likely to lead to this self‐organised pattern, were demonstrated with a mimic experiment. Both positive and negative feedbacks on plants were confirmed by a transplantation experiment. Placing vegetation patch mimics in the river showed experimentally that on a short range (within and behind the mimics) flow reduction and increased sedimentation occurred, while on a larger range (next to patches) the flow was accelerated and decreased sedimentation took place. By transplanting macrophytes within, next to and further away from existing patches, it was proven that the conditions within the patches favoured the survival and growth of transplants (i.e. short‐range positive feedback), while the conditions just next to patches led to decreased survival and growth (i.e. long‐range negative feedback).  相似文献   

2.
多稳态现象普遍存在于多种生态系统中,它与生态系统的健康和可持续发展密切相关,已成为生态学研究的热点与难点,但是目前有关滨海湿地生态系统多稳态的形成机制还缺乏深入研究.本文以崇明东滩鸟类自然保护区的潮间带生态系统为研究对象,通过以下内容,开展滨海湿地多稳态研究: 1)通过验证多稳态的判定依据“双峰”和“阈值”特征,证实长江口潮间带生态系统存在多稳态,并确定其稳态类型;2)通过监测潮间带生态系统水动力过程、沉积动力过程以及盐沼植物生长和扩散情况,分析盐沼植被与沉积地貌之间的正反馈作用,进而探讨潮间带生态系统多稳态的形成机制.结果表明: 1)潮间带生态系统的归一化植被指数(NDVI)频度分布存在明显的双峰特征,且盐沼植物成活存在生物量阈值效应,均证实潮间带生态系统存在多稳态,“盐沼”和“光滩”是潮间带生态系统的两种相对稳定状态;2)崇明东滩盐沼前沿的沉积地貌表现出泥沙快速淤积的趋势,显著促进了盐沼植物的生长,盐沼植物与泥沙淤积之间的这种正反馈作用是潮间带生态系统形成多稳态的主要原因;3)盐沼植被扩散格局监测结果在景观尺度上也表明,泥沙淤积作用促进了潮间带生态系统“盐沼”和“光滩”多稳态的形成.本研究既丰富了滨海湿地稳态转换的机理研究,也为我国开展海岸带保护、修复和管理提供了科学依据,具有重要的理论和实践意义.  相似文献   

3.
流域径流泥沙对多尺度植被变化响应研究进展   总被引:16,自引:0,他引:16  
张志强  王盛萍  孙阁  谢宝元 《生态学报》2006,26(7):2356-2364
植被变化与流域水文过程构成一个反馈调节系统,是目前生态水文学研究的重点对象.由于植被自身的生长发育以及受自然因素和人为干扰的作用,植被变化具有多尺度性;由于受流域水文环境的异质性和水文通量的变化性的影响,流域水文过程也同样具有多尺度性.因此,只有通过对不同尺度生态水文过程分析,才能揭示流域径流泥沙对植被变化的响应机理.从不同时空尺度回顾了植被生长、植被演替、植被分布格局变化、造林以及森林经营措施等对流域径流泥沙影响的主要研究成果;概括了目前研究采用的3种主要方法,即植被变化对坡面水流动力学影响的实验室模拟、坡面尺度和流域尺度野外对比观测实验以及水文生态模型模拟方法;分析了植被变化与径流泥沙响应研究要考虑的尺度问题,从小区尺度上推至流域尺度或区域尺度时应考虑不同的生物物理控制过程.研究认为,要确切理解植被与径流泥沙在不同时空尺度的相互作用,必须以等级生态系统的观点为基础,有效结合生态水文与景观生态的理论,从地质-生态-水文构成的反馈调节入手,系统地理解植被变化与径流泥沙等水分养分之间的联系及反馈机制,建立尺度转换的基础.同时,作为有效的研究工具,今后水文模型的发展应更加注重耦合植被生理生态过程以及景观生态过程,从流域径流泥沙对多尺度植被变化水文响应的过程与机制入手,为植被恢复与重建、改善流域水资源状况和流域生态环境奠定基础.  相似文献   

4.
Using a fully coupled climate–terrestrial ecosystem model, we demonstrate explicitly that an initial perturbation on vegetation induces not only a direct positive vegetation feedback, but also a significant indirect vegetation–soil moisture feedback. The indirect feedback is generated through either fractional cover change or soil moisture depletion. Both indirect feedback mechanisms are triggered by a vegetation perturbation, but involve subsequent effects of soil moisture and evaporation, indirectly. An increase in vegetation tends to reduce bare‐ground evaporation through either the area reduction in bare ground or the depletion of soil moisture; the reduced evaporation may then counter the initial plant transpiration, favoring a negative net vegetation feedback. Furthermore, grasses are more effective in inducing the indirect vegetation–soil feedbacks, because of their limited plant evapotranspiration and shallower roots that tend to change surface soil moisture, and, in turn, evaporation, effectively. In comparison, trees favor a direct positive vegetation feedback due to their strong plant transpiration on subsurface soil moisture as well as a lower albedo.  相似文献   

5.
  • 1 A zero‐dimensional model of local atmosphere–vegetation interaction is presented. The model includes essentials of water related two‐way feedbacks, such as the influence of vegetation on evapotranspiration, and the impact of temperature and drought on biomass growth and mortality. The simple model serves as a framework for the preliminary investigation of vegetation related feedbacks under climate change scenarios.
    • 2 Model simulations for a mid‐latitude forest area for an increasing external forcing indicate a transient growth of biomass up to a critical forcing, where drought stress begins to dominate the response. Beyond, biomass decreases, reinforced by the reduced evapotranspiration of a diminished vegetation, leading to an additional temperature increase (biomass–evapotranspiration feedback).
      • 3 The implementation of an additional feedback loop based on the hypothesis that drought stress implies not only a reduction in above‐ground biomass, but also a net reduction in roots and therefore a reduction of the amount of water accessible to the plants for transpiration, leads to the occurrence of a second stable state in the atmosphere–vegetation system. In the bistable regime, a moderate perturbation can trigger an abrupt change of state.
        • 4 The present conceptual investigations underline the importance of a dynamic vegetation subsystem in transient climate change, and stress in particular the possible role of feedbacks related to root dynamics.
  相似文献   

6.
Accurate measurement of intertidal sediment erodibility is essential for the development of meaningful and accurate models of sediment dynamics. Despite considerable advances in technology and methodology, the measurement of cohesive intertidal sediment erosion remains problematic. Sediment erodibility varies according to both physical and biological properties and processes. These cannot be considered in isolation, as they can interact to create both positive and negative feedbacks, resulting in seemingly idiosyncratic responses in the system. If working models of estuarine sediment dynamics are to be made, it is essential that the influence of these processes on both the measurements and the system itself be considered. Recent developments in measurement technology enable rapid measurement of sediment stability allowing temporal and spatial variability to be measured on a time scale of minutes. This paper reports temporal variability in cohesive intertidal sediment erosion threshold related to immersion and emersion, and the concomitant responses in selected sediment properties (carbohydrates, water content and chlorophyll). Erosion threshold tended to increase over emersion and decrease over immersion, although the patterns of change varied depending upon local conditions, and in one case there was no temporal trend. Temporal changes resulted in a range of measured erosion threshold, dependant upon the erosion device used. Modifications to existing methodology, in order to account for this variation, are proposed and implications for modelling erosion processes are considered.  相似文献   

7.
At macroscale, land–atmosphere exchange of energy and water in semiarid zones such as the Sahel constitutes a strong positive feedback between vegetation density and precipitation. At microscale, however, additional positive feedbacks between hydrology and vegetation such as increase of infiltration due to increase of vegetation, have been reported and have a large impact on vegetation distribution and spatial pattern formation. If both macroscale and microscale positive feedbacks are present in the same region, it is reasonable to assume that these feedback mechanisms are connected. In this study, we develop and analyse a soil‐vegetation‐atmosphere model coupling large‐scale evapotranspiration–precipitation feedback with a model of microscale vegetation–hydrology feedback to study the integration of these nonlinearities at disparate scales. From our results, two important conclusions can be drawn: (1) it is important to account for spatially explicit vegetation dynamics at the microscale in climate models (the strength of the precipitation feedback increased up to 35% by accounting for these microscale dynamics); (2) studies on resilience of ecosystems to climate change should always be cast within a framework of possible large‐scale atmospheric feedback mechanism (substantial changes in vegetation resilience resulted from incorporating macroscale precipitation feedback). Analysis of full‐coupled modelling shows that both type of feedbacks markedly influence each other and that they should both be accounted for in climate change models.  相似文献   

8.
Paleoecological studies indicate that peatland ecosystems may exhibit bistability. This would mean that these systems are resilient to gradual changes in climate, until environmental thresholds are passed. Then, ecosystem stability is lost and rapid shifts in surface and vegetation structure at landscape scale occur. Another remarkable feature is the commonly observed self-organized spatial vegetation patterning, such as string-flark and maze patterns. Bistability and spatial self-organization may be mechanistically linked, the crucial mechanism being scale-dependent (locally positive and longer-range negative) feedback between vegetation and the peatland environment. Focusing on bogs, a previous model study shows that nutrient accumulation by vascular plants can induce such scale-dependent feedback driving pattern formation. However, stability of bog microforms such as hummocks and hollows has been attributed to different local interactions between Sphagnum, vascular plants, and the bog environment. Here we analyze both local and longer-range interactions in bogs to investigate the possible contribution of these different interactions to vegetation patterning and stability. This is done by a literature review, and subsequently these findings are incorporated in the original model. When Sphagnum and encompassing local interactions are included in this model, the boundaries between vegetation types become sharper and also the parameter region of bistability drastically increases. These results imply that vegetation patterning and stability of bogs could be synergistically governed by local and longer-range interactions. Studying the relative effect of these interactions is therefore suggested to be an important component of future predictions on the response of peatland ecosystems to climatic changes.  相似文献   

9.
Intrinsic and external noise in an auto-regulatory genetic network   总被引:4,自引:0,他引:4  
A single gene auto-regulatory network is analysed. The main goal is to investigate the effects of the negative and positive feedbacks on the intrinsic and external noises. The central finding of this paper is that: for the intrinsic noise, both the negative and positive feedback regulations increase the fluctuation strength of mRNA levels (where the fluctuation strength is measured by the Fano factor for both the fluctuations of mRNAs and proteins), and the negative feedback decreases, but the positive feedback increases, the fluctuation strength of proteins; for the external noise, the negative feedback not only increase the fluctuation strength of mRNA levels but also the fluctuation strength of proteins, and though the effect of the positive feedback on the fluctuation strength of mRNA levels depends on the size of positive feedback parameter k, the positive feedback must decrease the fluctuation strength of proteins.  相似文献   

10.
The potential for feedbacks between terrestrial vegetation, climate, and the atmospheric CO2 partial pressure have been addressed by modelling. Previous research has established that under global warming and CO2 enrichment, the stomatal conductance of vegetation tends to decrease, causing a warming effect on top of the driving change in greenhouse warming. At the global scale, this positive feedback is ultimately changed to a negative feedback through changes in vegetation structure. In spatial terms this structural feedback has a variable geographical pattern in terms of magnitude and sign. At high latitudes, increases in vegetation leaf area index (LAI) and vegetation height cause a positive feedback, and warming through reductions in the winter snow-cover albedo. At lower latitudes when vegetation becomes more sparse with warming, the higher albedo of the underlying soil leads to cooling. However, the largest area effects are of negative feedbacks caused by increased evaporative cooling with increasing LAI. These effects do not include feedbacks on the atmospheric CO2 concentration, through changes in the carbon cycle of the vegetation. Modelling experiments, with biogeochemical, physiological and structural feedbacks on atmospheric CO2, but with no changes in precipitation, ocean activity or sea ice formation, have shown that a consequence of the CO2 fertilization effect on vegetation will be a reduction of atmospheric CO2 concentration, in the order of 12% by the year 2100 and a reduced global warming by 0.7°C, in a total greenhouse warming of 3.9°C.  相似文献   

11.
干旱半干旱区斑块状植被格局形成模拟研究进展   总被引:2,自引:2,他引:0  
刘庆生 《生态学报》2020,40(24):8861-8871
斑块状植被格局是世界上干旱半干旱区常见的景观类型,它们的形成、组成结构和演替过程研究,对于揭示区域生态系统变化的关键过程具有重要意义。鉴于基于地面调查和遥感技术的方法难以全面刻画斑块状植被格局的形成过程及机制,借助于模型模拟成为解决这一问题的有效方法。自20世纪90年代初至今,斑块状植被格局形成的连续和离散模拟研究不断涌现,然而,连续模拟侧重于植被格局形成的一般机理,缺乏与现实格局的对比和验证,离散模拟单元选择与规则制定等仍需不断研究。在简要回顾斑块状格局形成的反馈机制基础上,重点综述了斑块状植被格局形成的连续和离散模拟的最新研究进展,并指出了现有研究的不足。干旱半干旱区小尺度上植物和水的反馈作用决定了大尺度的斑块状植被格局,充分揭示植被-土壤水分相互作用机理是模型模拟研究的关键,放牧强度和降水格局等外部环境对干旱半干旱区斑块状植被格局特征具有重要影响。在未来研究中,应加强模型模拟结果与实际观测的植被格局比较和验证,重视局域环境条件、生态系统功能在模型中的表达,构建综合连续和离散模型各自优点的混合模型,注重斑块状植被格局形成过程中的标准子模型及模型开发和集成平台的研发,同时强调面向格局模拟和构建空间显式的斑块状植被格局形成模型。  相似文献   

12.
Multiple states in river and lake ecosystems   总被引:6,自引:0,他引:6  
Nonlinear models of ecosystem dynamics that incorporate positive feedbacks and multiple, internally reinforced states have considerable explanatory power. However, linear models may be adequate, particularly if ecosystem behaviour is primarily controlled by external processes. In lake ecosystems, internal (mainly biotic) processes are thought to have major impacts on system behaviour, whereas in rivers, external (mainly physical) factors have traditionally been emphasized. We consider the hypothesis that models that exhibit multiple states are useful for understanding the behaviour of lake ecosystems, but not as useful for understanding stream ecosystems. Some of the best-known examples of multiple states come from lake ecosystems. We review some of these examples, and we also describe examples of multiple states in rivers. We conclude that the hypothesis is an oversimplification; the importance of physical forcing in rivers does not eliminate the possibility of internal feedbacks that create multiple states, although in rivers these feedbacks are likely to include physical as well as biotic processes. Nonlinear behaviour in aquatic ecosystems may be more common than current theory indicates.  相似文献   

13.
Consideration of nitrogen fixation adds a positive nonlinear feedback to plankton ecosystem models. We investigate the consequences of this feedback for secondary phytoplankton blooms and the response of phytoplankton dynamics to physical forcing. The dynamics of phytoplankton, Trichodesmium (the nitrogen fixer), and nutrients is modeled with a system of three differential equations. The model includes two types of nonlinear interactions: the competition of phytoplankton and Trichodesmium for light, and the positive feedback resulting from Trichodesmium recycling. A typical simulation of the model in time, with forcing by a varying mixed-layer depth, reveals a clear successional sequence including a secondary or ‘echo’ bloom of the phytoplankton. We explain this sequence of events through the stability analysis of three different steady states of the model. Our analysis shows the existence of a critical biological parameter, the ratio of normalized growth rates, determining the occurrence of ‘echo’ blooms and the specific sequence of events following a physical perturbation. The interplay of positive and negative feedbacks appears essential to the timing and the type of events following such a perturbation.  相似文献   

14.
Since the introduction of the term ecosystem engineering by Jones et al. many studies have focused on positive, facilitative interactions caused by ecosystem engineering. Much less emphasis has been placed on the role of ecosystem engineering in causing negative interactions between species. Here, we report on negative interactions between two well known ecosystem engineers occurring at the interface of salt marsh and intertidal flat (i.e. common cordgrass Spartina anglica and lugworms Arenicola marina ), via modification of their joint habitat. A field survey indicated that, although both species share a common habitat, they rarely co-occur on small spatial scales (<1 m). Experiments in the field and in mesocosms reveal that establishment of small Spartina plants is inhibited in Arenicola -dominated patches because of low sediment stability induced by the lugworms. In turn, Arenicola establishment in Spartina -dominated patches is limited by high silt content, compactness and dense rooting of the sediment caused by Spartina presence. Our results show that negative interactions by modification of the environment can result in rapid mutual exclusion, particularly if adverse effects of habitat modification are strong and if both species exhibit positive feedbacks. This illustrates the potential for negative interactions via the environment to affect community composition.  相似文献   

15.
Changes in climate could have far-reaching consequences for ecosystems sensitive to changes in temperature and precipitation, such as boreal permafrost peatlands and grassland/woodland boundaries. The long-term data from our studies in these ecosystems suggest that transient responses of permafrost and vegetation to climate change may be difficult to predict due to lags and positive feedbacks related to vegetation and disturbance. Boreal permafrost peatlands comprise an ecosystem with strong local controls on microclimate that influence the formation and thaw of permafrost. These local controls may preserve permafrost during the transient stages of climate warming, producing lagged responses. The prairie–forest border region of the northern Great Plains has experienced frequent change and has complex dynamics involving transitions in the grassland composition of prairie and in the degree of woodiness in bordering forests. Fire frequency interacts with fuel loading and tree recruitment in ways that affect the timing and direction of change. Lags and thresholds could lead to sudden large responses to future climate change that are not readily apparent from current vegetation. The creation of adequate models to characterize transient ecosystem changes will require an understanding of the linkages among processes operating at the scale of 10s of meters and over long time periods. Received 14 December 1999; accepted 7 July 2000.  相似文献   

16.
崇明东滩盐沼植被扩散格局及其形成机制   总被引:8,自引:0,他引:8  
曹浩冰  葛振鸣  祝振昌  张利权 《生态学报》2014,34(14):3944-3952
长江河口盐沼植被的形成和演化是生物与其生长环境相互作用的结果。以崇明东滩盐沼植被典型扩散前沿为研究对象,2011至2012年期间调查了盐沼植被扩散前沿实生苗扩散、定居以及形成的扩散格局,同时测定了盐沼植被扩散前沿的潮滩冲淤动态和水文动力条件。研究结果表明,崇明东滩盐沼植被在扩散前沿形成了互花米草-光滩(Spartina alterniflora-Mudflat,SM)和互花米草-海三棱藨草-光滩(Spartina alterniflora-Scirpus mariqueter-Mudflat,SSM)两种典型的扩散格局。冲淤动态和水文动力条件是影响盐沼植被扩散格局的重要因子,尤其是在4—6月盐沼植物实生苗传播和定居的关键阶段。在此基础上,分析了东滩盐沼植被扩散前沿的生物-物理相互作用以及盐沼植被扩散格局的形成机制。研究结果不仅有助于理解长江河口地区盐沼植被扩散的生物物理过程,并对全球气候变化和海平面上升条件下滨海生态系统动态预测与湿地保护与管理具有重要的意义。  相似文献   

17.
Oyster cultch was added to the lower intertidal fringe of three created Spartina alterniflora marshes to examine its value in protecting the marsh from erosion. Twelve 5-m-wide plots were established at each site, with six randomly selected plots unaltered (non-cultched) and cultch added to the remaining (cultched) plots. Within each cultched plot, cultch was placed along the low tide fringe of the marsh during July 1992, in a band 1.5 m wide by 0.25 m deep. Marsh-edge vegetation stability and sediment erosion were measured for each plot from September 1992 to April 1994. Significant differences (p < 0.05) in marsh-edge vegetation change were detected at the only south-facing site after a major southwester storm. Significantly different rates of sediment erosion and accretion also were observed at this same site. Areas upland of the marsh edge in the cultched areas showed an average accretion of 6.3 cm, while noncultched treatment areas showed an average loss of 3.2 cm. A second site, with a northern orientation, also experienced differential sediment accretion and erosion between treatment type, caused instead by boat wakes that were magnified by the abutment of a dredge effluent pipe across the entire front fringe of the site. During this period we observed significant differences in sediment accumulation, with the areas upland of the marsh edge in the cultched treatment having an average accretion of 2.9 cm and the noncultched an average loss of 1.3 cm.  相似文献   

18.
Harmful algal blooms (HABs) have occurred with increasing frequency in recent years with eutrophication and other anthropogenic alterations of coastal ecosystems. Many of these blooms severely alter or degrade ecosystem function, and are referred to here as ecosystem disruptive algal blooms (EDABs). These blooms are often caused by toxic or unpalatable species that decrease grazing rates by planktonic and benthic herbivores, and thereby disrupt the transfer of nutrients and energy to higher trophic levels, and decrease nutrient recycling. Many factors, such as nutrient availability and herbivore grazing have been proposed to separately influence EDAB dynamics, but interactions among these factors have rarely been considered. Here we discuss positive feedback interactions among nutrient availability, herbivore grazing, and nutrient regeneration, which have the potential to substantially influence the dynamics of EDAB events. The positive feedbacks result from a reduction of grazing rates on EDAB species caused by toxicity or unpalatability of these algae, which promotes the proliferation of the EDAB species. The decreased rates also lower grazer‐mediated recycling of nutrients and thereby decrease nutrient availability. Since many EDAB species are well‐adapted to nutrient‐stressed environments and many exhibit increased toxin production and toxicity under nutrient limitation, positive feedbacks are established which can greatly increase the rate of bloom development and the adverse effects on the ecosystem. An understanding of how these feedbacks interact with other regulating factors, such as benthic/pelagic nutrient coupling, physical forcing, and life cycles of EDAB species provides a substantial future challenge.  相似文献   

19.
At a broad (regional to global) spatial scale, tropical vegetation is controlled by climate; at the local scale, it is believed to be determined by interactions between disturbance, vegetation and local conditions (soil and topography) through feedback processes. It has recently been suggested that strong fire–vegetation feedback processes may not be needed to explain tree‐cover patterns in tropical ecosystems and that climate–fire determinism is an alternative possibility. This conclusion was based on the fact that it is possible to reproduce observed patterns in tropical regions (e.g. a trimodal frequency distribution of tree cover) using a simple model that does not explicitly incorporate fire–vegetation feedback processes. We argue that these two mechanisms (feedbacks versus fire–climate control) operate at different spatial and temporal scales; it is not possible to evaluate the role of a process acting at fine scales (e.g. fire–vegetation feedbacks) using a model designed to reproduce regional‐scale pattern (scale mismatch). While the distributions of forest and savannas are partially determined by climate, many studies are providing evidence that the most parsimonious explanation for their environmental overlaps is the existence of feedback processes. Climate is unlikely to be an alternative to feedback processes; rather, climate and fire–vegetation feedbacks are complementary processes at different spatial and temporal scales.  相似文献   

20.
马华  钟炳林  岳辉  曹世雄 《生态学报》2015,35(18):6148-6156
自然修复主要通过封山育林、禁止农作、禁牧禁伐措施,减少人类对环境的扰动,利用自然生态环境的自我演替能力,恢复生态环境,实现生态平衡。自然修复作为一种成本低、无污染的生态修复手段很早就受到人们重视,但关于自然修复适用范围的研究较少。为了正确认识自然修复的适用性,选择了我国南方红壤地区长期遭受严重土壤侵蚀危害的福建省长汀县为研究对象,通过对长期自然修复样地的监测资料分析,发现在坡度条件为20%—30%下,当植被覆盖度低于20%的退化阈值时,严重的土壤侵蚀引发的土壤肥力损失将导致生态系统自我退化,自然修复不仅无法改善当地的生态系统,反而会引起生态系统的进一步恶化。由此可见,自然修复并不适合所有的生态系统,当生态系统退化到一定程度时,退化生态系统必须通过人工干预来修复。因此,必须探索适合当地的生态修复模式,在生态系统退化突破阈值时,红壤丘陵区应通过恢复土壤肥力、促进自然植被覆盖度增加、综合提高生态系统健康水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号