首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical sub-Saharan regions are considered to be the geographical origin of Drosophila melanogaster. Starting from there, the species colonized the rest of the world after the last glaciation about 10 000 years ago. Consistent with this demographic scenario, African populations have been shown to harbour higher levels of microsatellite and sequence variation than cosmopolitan populations. Nevertheless, limited information is available on the genetic structure of African populations. We used X chromosomal microsatellite variation to study the population structure of D. melanogaster populations using 13 sampling sites in North, West and East Africa. These populations were compared to six European and one North American population. Significant population structure was found among African D. melanogaster populations. Using a Bayesian method for inferring population structure we detected two distinct groups of populations among African D. melanogaster. Interestingly, the comparison to cosmopolitan D. melanogaster populations indicated that one of the divergent African groups is closely related to cosmopolitan flies. Low, but significant levels of differentiation were observed for sub-Saharan D. melanogaster populations from West and East Africa.  相似文献   

2.
M T Hamblin  M Veuille 《Genetics》1999,153(1):305-317
Previous studies based on allozyme variation have found little evidence for genetic differentiation in Drosophila simulans. On the basis of DNA sequence variation at two nuclear loci in four African populations of D. simulans, we show that there is significant structure to D. simulans populations within Africa. Variation at one of the loci, vermilion, appears to be neutral and supports an eastern African origin for European and American populations. Samples from the West Indies, Europe, and North America had a nucleotide diversity lower than that of African populations at vermilion and show nonequilibrium haplotype distributions at both vermilion and G6pd, consistent with a hypothesis of recent bottleneck and possibly also admixture in the history of these populations. Directional selection, previously documented at G6pd, appears to have occurred within the coalescence time of the species, obscuring deep population history.  相似文献   

3.
The natural habitat of Drosophila melanogaster Meigen (Diptera: Drosophilidae) is fermenting fruits, which can be rich in ethanol. For unknown reasons, temperate populations of this cosmopolitan species have higher ethanol resistance than tropical populations. To determine whether this difference is accompanied by a parallel difference in preference for ethanol, we compared two European and two tropical African populations in feeding and oviposition preference for ethanol‐supplemented medium. Although females of all populations laid significantly more eggs on medium with ethanol than on control medium, preference of European females for ethanol increased as ethanol concentration increased from 2 to 6%, whereas that of African females decreased. In feeding tests, African females preferred control medium over medium with 4% ethanol, whereas European females showed no preference. Males of all populations strongly preferred control medium. The combination of preference for ethanol in oviposition, and avoidance or neutrality in feeding, gives evidence that adults choose breeding sites with ethanol for the benefit of larvae, rather than for their own benefit. The stronger oviposition preference for ethanol of temperate than tropical females suggests that this benefit may be more important in temperate populations. Two possible benefits of ethanol for which there is some experimental evidence are cryoprotection and protection against natural enemies.  相似文献   

4.
To better understand the population substructure of African Americans living in coastal South Carolina, we used restriction site polymorphisms and an insertion/deletion in mitochondrial DNA (mtDNA) to construct seven-position haplotypes across 1,395 individuals from Sierra Leone, Africa, from U.S. European Americans, and from the New World African-derived populations of Jamaica, Gullah-speaking African Americans of the South Carolina Sea Islands (Gullahs), African Americans living in Charleston, South Carolina, and West Coast African Americans. Analyses showed a high degree of similarity within the New World African-derived populations, where haplotype frequencies and diversities were similar. Phi-statistics indicated that very little genetic differentiation has occurred within New World African-derived populations, but that there has been significant differentiation of these populations from Sierra Leoneans. Genetic distance estimates indicated a close relationship of Gullahs and Jamaicans with Sierra Leoneans, while African Americans living in Charleston and the West Coast were progressively more distantly related to the Sierra Leoneans. We observed low maternal European American admixture in the Jamaican and Gullah samples (m = 0.020 and 0.064, respectively) that increased sharply in a clinal pattern from Charleston African Americans to West Coast African Americans (m = 0.099 and 0.205, respectively). The appreciably reduced maternal European American admixture noted in the Gullah indicates that the Gullah may be uniquely situated to allow genetic epidemiology studies of complex diseases in African Americans with low European American admixture.  相似文献   

5.
Allozyme and mitochondrial gene diversities were estimated in house flies, Musca domestica L. (Diptera: Muscidae), sampled in Iowa, USA; Berkshire, England; and Kudang, The Gambia. Comparison of genomic allele frequencies among the three populations indicated small differences between the English and American samples but very large distances between English or American and the African. The FST statistic was 0.65 +/- 0.09 for allozymes. Pairwise FST was 0.14 between the English and the American samples; FST was 0.65 between the African population and the English and American. Mitochondrial variation in the same flies was assessed by SSCP methods which revealed nine haplotypes, none of which were shared in common. FST was 0.637 for the mitochondrial haplotypes. The research indicates greatly restricted gene flow between Africa and the temperate regions.  相似文献   

6.
A phylogenetic analysis of mitochondrial DNA (mtDNA) restriction sites was used to examine the evolutionary history of populations of yellow warbler (Dendroica petechia) sampled from North America, Central America, South America, and the West Indies. Thirty-seven haplotypes were identified, and only one was found in more than one of these regions. Estimated sequence divergence among haplotypes ranged from 0.14 to 3.17%, and mtDNAs from North American migratory populations clearly were differentiated from those of most tropical sedentary populations. Parsimony analysis of haplotypes suggested multiple colonizations of the West Indies archipelago and of individual Caribbean islands. The inference of multiple colonizations has important implications for studies of avian ecology and evolution in this region.  相似文献   

7.
The African baobab ( Adansonia digitata L.) is an emblematic, culturally important, and physically huge tropical tree species whose natural geographical distribution comprises most of tropical Africa, but also small patches of southern Arabia, and several Atlantic and Indian Ocean islands surrounding the African continent, notably including Madagascar. We analysed the polymerase chain reaction–restriction fragment length polymorphism of five chloroplast DNA fragments obtained from 344 individuals of A. digitata collected from 74 populations covering the entire extant distribution range of the species. Our goal was to reconstruct the phylogeographical history of the species and, if possible, to identify its centre of origin, which has been a subject of controversy for many decades. We identified five haplotypes whose distribution is clearly geographically structured. Using several species of Adansonia and of closely related genera as outgroups, the haplotypes showed a clear phylogeographical pattern of three groups. Two are phylogenetically related to the outgroup taxa, and are distributed in West Africa. The third group is substantially more differentiated genetically from outgroup species, and it corresponds to southern and eastern Africa, Arabia and the Indian Ocean islands, including Madagascar. According to our results, the tetraploid A. digitata , or its diploid progenitor, probably originated in West Africa and migrated subsequently throughout the tropical parts of that continent, and beyond, by natural and human-mediated terrestrial and overseas dispersal.  相似文献   

8.
Drosophila melanogaster is postulated to have colonized North America in the past several 100 years in two waves. Flies from Europe colonized the east coast United States while flies from Africa inhabited the Caribbean, which if true, make the south‐east US and Caribbean Islands a secondary contact zone for African and European D. melanogaster. This scenario has been proposed based on phenotypes and limited genetic data. In our study, we have sequenced individual whole genomes of flies from populations in the south‐east US and Caribbean Islands and examined these populations in conjunction with population sequences from the west coast US, Africa, and Europe. We find that west coast US populations are closely related to the European population, likely reflecting a rapid westward expansion upon first settlements into North America. We also find genomic evidence of African and European admixture in south‐east US and Caribbean populations, with a clinal pattern of decreasing proportions of African ancestry with higher latitude. Our genomic analysis of D. melanogaster populations from the south‐east US and Caribbean Islands provides more evidence for the Caribbean Islands as the source of previously reported novel African alleles found in other east coast US populations. We also find the border between the south‐east US and the Caribbean island to be the admixture hot zone where distinctly African‐like Caribbean flies become genomically more similar to European‐like south‐east US flies. Our findings have important implications for previous studies examining the generation of east coast US clines via selection.  相似文献   

9.
Seventy-eight cattle samples from three Creole Caribbean islands and one Brazilian breed were analyzed for sequence variation in the hypervariable segment of the mitochondrial DNA control region. Seventy-three samples displayed Bos taurus haplotypes, and five samples exhibited haplotypes that were of Bos indicus ancestry. Phylogenetic analysis revealed that all sampled B. taurus sequences fell into two distinct clusters with separate African and European origins. European sequences were encountered in each population; however, the distribution of African haplotypes was uneven, with the highest proportion of African influence found in the Guadeloupe Creole. The reduced levels of African haplotypic variation within the Caribbean and Brazilian are consistent with prior founder effects. Additionally, genetic variation at three microsatellite loci illustrated African influence uniquely in the Guadeloupe Creole. Collectively, the data suggest that this African influence is, at least in part, attributable to the historical importation of African cattle to the Americas. Furthermore, alleles of B. indicus ancestry were detected at appreciable frequencies in all Caribbean Creole populations and may reflect zebu introgressions from either West Africa or the Indian subcontinent.  相似文献   

10.
Single nucleotide polymorphisms (SNPs) are about to become one of the most popular genetic markers for genetic model organisms. To test the usefulness of SNPs for estimating genetic diversity, we surveyed three genomic regions in two Drosophila melanogaster populations, one from Africa and one European, collected in Austria. Diversity estimates based on the full SNP set indicated higher levels of variability in the African than in the European flies. When the analysis was based on the European SNP set, European and African flies had similar levels of variability. Interestingly, this bias was not observed for diversity estimates using SNPs derived from the ancestral African population. This result suggests that diversity estimates based on SNPs from ancestral populations could provide a general strategy to avoid biased SNP diversity estimates. Finally, the potential of SNPs for nonmodel organisms is discussed.  相似文献   

11.
The effect of gene flow on Hispanic populations from different geographic regions of the United States was analyzed using six autosomal DNA markers (LDLR, GYPA, HBGG, D7S8, GC, and HLA-DQA). By region of sampling, the Hispanic populations showed different ancestry contributions, from a trihybrid structure with European, Native American, and African contributions (California, Nevada, Florida, New Jersey, and Virginia) to a dihybrid structure with European and American contributions (Southwest population) or European and African contributions (Pennsylvania and Southeast population). These findings allowed us to define two regional groups, the West and the East. In the former, Native American contributions ranged from 35.58% to 57.87%; in the East region the values ranged from 0% to 21.27%. An African influence was similar in both regions, ranging from 0% to 17.11%, with a tendency of increasing in the East region. These data reflect the different origins of the Hispanic populations that led to the present ones. In the West, Hispanics are mostly of Mexican origin, and in the East, they are predominantly of Cuban and Puerto Rican origin.  相似文献   

12.
BACKGROUND/AIMS: The Tobago Afro-Caribbean population is a valuable resource for studying the genetics of diseases that show significant differences in prevalence between populations of African descent and populations of other ancestries. Empirical confirmation of low European and Native American admixture may help in clarifying the ethnic variation in risk for such diseases. We hypothesize that the degree of European and Native American admixture in the Tobago population is low. METHODS: Admixture was estimated in a random sample of 220 men, from a population-based prostate cancer screening survey of 3,082 Tobago males, aged 40 to 79 years. We used a set of six autosomal markers with large allele frequency differences between the major ethnic populations involved in the admixture process, Europeans, Native Americans and West Africans. RESULTS: The ancestral proportions of Tobago population are estimated as 94.0+/-1.2% African, 4.6+/-3.4% European and 1.4+/-3.6% Native American. CONCLUSIONS: We conclude that Tobago Afro-Caribbean men are predominantly of West African ancestry, with minimal European and Native American admixture. The Tobago population, thus, may carry a higher burden of high-risk alleles of African origin for certain diseases than the more admixed African-American population. Conversely, this population may benefit from a higher prevalence of protective alleles of African origin.  相似文献   

13.
The Atlantic slave trade promoted by West European empires (15th-19th centuries) forcibly moved at least 11 million people from Africa, including about one-third from west-central Africa, to European and American destinations. The mitochondrial DNA (mtDNA) genome has retained an imprint of this process, but previous analyses lacked west-central African data. Here, we make use of an African database of 4,860 mtDNAs, which include 948 mtDNA sequences from west-central Africa and a further 154 from the southwest, and compare these for the first time with a publicly available database of 1,148 African Americans from the United States that contains 1,053 mtDNAs of sub-Saharan ancestry. We show that >55% of the U.S. lineages have a West African ancestry, with <41% coming from west-central or southwestern Africa. These results are remarkably similar to the most up-to-date analyses of the historical record.  相似文献   

14.
Before the arrival of the Spaniards in Nicaragua, diverse Native American groups inhabited the territory. In colonial times, Native Nicaraguan populations interacted with Europeans and slaves from Africa. To ascertain the extent of this genetic admixture and provide genetic evidence about the origin of the Nicaraguan ancestors, we analyzed the mitochondrial control region (HVSI and HVSII), 17 Y chromosome STRs, and 15 autosomal STRs in 165 Mestizo individuals from Nicaragua. To carry out interpopulation comparisons, HVSI sequences from 29 American populations were compiled from the literature. The results reveal a close relationship between Oto‐manguean, Uto‐Aztecan, Mayan groups from Mexico, and a Chibchan group to Nicaraguan lineages. The Native American contribution to present‐day Nicaraguan Mestizos accounts for most of the maternal lineages, whereas the majority of Nicaraguan Y chromosome haplogroups can be traced back to a West Eurasian origin. Pairwise Fst distances based on Y‐STRs between Nicaragua and European, African and Native American populations show that Nicaragua is much closer to Europeans than the other populations. Additionally, admixture proportions based on autosomal STRs indicate a predominantly Spanish contribution. Our study reveals that the Nicaraguan Mestizo population harbors a high proportion of European male and Native American female substrate. Finally, the amount of African ancestry is also interesting, probably because of the contribution of Spanish conquerors with NorthAfrican genetic traces or that of West African slaves. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Recently admixed populations offer unique opportunities for studying human history and for elucidating the genetic basis of complex traits that differ in prevalence between human populations. Historical records, classical protein markers, and preliminary genetic data indicate that the Cape Verde islands in West Africa are highly admixed and primarily descended from European males and African females. However, little is known about the variation in admixture levels, admixture dynamics and genetic diversity across the islands, or about the potential of Cape Verde for admixture mapping studies. We have performed a detailed analysis of phenotypic and genetic variation in Cape Verde based on objective skin color measurements, socio-economic status (SES) evaluations and data for 50 autosomal, 34 X-chromosome, and 21 non-recombinant Y-chromosome (NRY) markers in 845 individuals from six islands of the archipelago. We find extensive genetic admixture between European and African ancestral populations (mean West African ancestry = 0.57, sd = 0.08), with individual African ancestry proportions varying considerably among the islands. African ancestry proportions calculated with X and Y-chromosome markers confirm that the pattern of admixture has been sex-biased. The high-resolution NRY-STRs reveal additional patterns of variation among the islands that are most consistent with differentiation after admixture. The differences in the autosomal admixture proportions are clearly evident in the skin color distribution across the islands (Pearson r = 0.54, P-value<2e–16). Despite this strong correlation, there are significant interactions between SES and skin color that are independent of the relationship between skin color and genetic ancestry. The observed distributions of admixture, genetic variation and skin color and the relationship of skin color with SES relate to historical and social events taking place during the settlement history of Cape Verde, and have implications for the design of association studies using this population.  相似文献   

16.
The major pest of maize in Mediterranean Europe, the stem borer Sesamia nonagrioides (Lefèbvre) (Lepidoptera: Noctuidae), has a fragmented distribution, north and south of the Sahara. The present study aimed: (1) to clarify the uncertain taxonomic status of the Palearctic and sub‐Saharan populations which were first considered as different species and later on as subspecies (Sesamia nonagrioides nonagrioides and Sesamia nonagrioides botanephaga) and (2) to investigate the origin of the Palearctic population which extends from Spain to Iran, outside what is considered typical for this mainly tropical genus. We reconstructed the evolutionary history of both populations using one nuclear and two mitochondrial genes. The sub‐Saharan taxon was fragmented in two isolated populations (West and East) whose mitochondrial genes were distant by 2.3%. The Palearctic population was included in the East African clade and its genes were close or identical to those of a population from Central Ethiopia, where the species was discovered for the first time. Similarly, in Africa, the alleles of the nuclear gene were distributed mainly in two West and East clades, whereas some Palearctic alleles belonged to the West clade. The Palearctic population originated therefore from East and West Africa and is the progeny of the cross between these two African populations. The main species concepts were in agreement, leading to the conclusion that the three populations are still conspecific. In the surveyed regions, the species therefore does not include two subspecies but three isolated populations. The Palearctic population suffered from severe bottlenecks that resulted in the fixation of one East African mitochondrial genome and the large reduction in its genetic diversity compared to the African populations. The data suggest that natural colonization of the Palearctic region was more plausible than human introduction. The allelic distribution of the Palearctic population was similar to that of species that survived the last glaciation. It is concluded that the African populations expanded during the last interglacial, crossed the Sahara and mixed in North Africa where fixation of the East mitochondrial genome occurred. The species then colonized Europe westward through only one eastern entrance. The coalescent‐based estimate of the time to the ancestor of the Palearctic population was 108 000 years, which is consistent with this scenario. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 904–922.  相似文献   

17.
The West Indies represent an amalgamation of African, European and in some cases, East Asian sources, but the contributions from each ethnic group remain relatively unexplored from a genetic perspective. In the present study, we report, for the first time, allelic frequency data across the complete set of 15 autosomal STR loci for general collections from Haiti and Jamaica, which were subsequently used to examine the genetic diversity present in each island population. Our results indicate that although both Haiti and Jamaica display genetic affinities with the continental African collections, a stronger African signal is detected in Haiti than in Jamaica. Although only minimal contributions from non‐African sources were observed in Haiti, Jamaica displays genetic input from both European and East Asian sources, an admixture profile similar to other New World collections of African descent analyzed in this report. The divergent genetic signatures present in these populations allude to the different migratory events of Africans, Europeans, and East Asians into the New World. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Admixture mapping (AM) is a promising method for the identification of genetic risk factors for complex traits and diseases showing prevalence differences among populations. Efficient application of this method requires the use of a genomewide panel of ancestry-informative markers (AIMs) to infer the population of origin of chromosomal regions in admixed individuals. Genomewide AM panels with markers showing high frequency differences between West African and European populations are already available for disease-gene discovery in African Americans. However, no such a map is yet available for Hispanic/Latino populations, which are the result of two-way admixture between Native American and European populations or of three-way admixture of Native American, European, and West African populations. Here, we report a genomewide AM panel with 2,120 AIMs showing high frequency differences between Native American and European populations. The average intermarker genetic distance is ~1.7 cM. The panel was identified by genotyping, with the Affymetrix GeneChip Human Mapping 500K array, a population sample with European ancestry, a Mesoamerican sample comprising Maya and Nahua from Mexico, and a South American sample comprising Aymara/Quechua from Bolivia and Quechua from Peru. The main criteria for marker selection were both high information content for Native American/European ancestry (measured as the standardized variance of the allele frequencies, also known as "f value") and small frequency differences between the Mesoamerican and South American samples. This genomewide AM panel will make it possible to apply AM approaches in many admixed populations throughout the Americas.  相似文献   

19.
Hispanic and African American populations exhibit an increased risk of obesity compared with populations of European origin, a feature that may be related to inherited risk alleles from Native American and West African parental populations. However, a relationship between West African ancestry and obesity-related traits, such as body mass index (BMI), fat mass (FM), and fat-free mass (FFM), and with bone mineral density (BMD) in African American women has only recently been reported. In order to evaluate further the influence of ancestry on body composition phenotypes, we studied a Hispanic population with substantial European, West African, and Native American admixture. We ascertained a sample of Puerto Rican women living in New York (n=64), for whom we measured BMI and body composition variables, such as FM, FFM, percent body fat, and BMD. Additionally, skin pigmentation was measured as the melanin index by reflectance spectroscopy. We genotyped 35 autosomal ancestry informative markers and estimated population and individual ancestral proportions in terms of European, West African, and Native American contributions to this population. The ancestry proportions corresponding to the three parental populations are: 53.3±2.8% European, 29.1±2.3% West African, and 17.6±2.4% Native American. We detected significant genetic structure in this population with a number of different tests. A highly significant correlation was found between skin pigmentation and individual ancestry (R2=0.597, P<0.001) that was not attributable to differences in socioeconomic status. A significant association was also found between BMD and European admixture (R2=0.065, P=0.042), but no such correlation was evident with BMI or the remaining body composition measurements. We discuss the implications of our findings for the potential use of this Hispanic population for admixture mapping.  相似文献   

20.
The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, we investigate the population genetic history of this region by characterizing patterns of genome-wide variation among 330 individuals from three of the Greater Antilles (Cuba, Puerto Rico, Hispaniola), two mainland (Honduras, Colombia), and three Native South American (Yukpa, Bari, and Warao) populations. We combine these data with a unique database of genomic variation in over 3,000 individuals from diverse European, African, and Native American populations. We use local ancestry inference and tract length distributions to test different demographic scenarios for the pre- and post-colonial history of the region. We develop a novel ancestry-specific PCA (ASPCA) method to reconstruct the sub-continental origin of Native American, European, and African haplotypes from admixed genomes. We find that the most likely source of the indigenous ancestry in Caribbean islanders is a Native South American component shared among inland Amazonian tribes, Central America, and the Yucatan peninsula, suggesting extensive gene flow across the Caribbean in pre-Columbian times. We find evidence of two pulses of African migration. The first pulse—which today is reflected by shorter, older ancestry tracts—consists of a genetic component more similar to coastal West African regions involved in early stages of the trans-Atlantic slave trade. The second pulse—reflected by longer, younger tracts—is more similar to present-day West-Central African populations, supporting historical records of later transatlantic deportation. Surprisingly, we also identify a Latino-specific European component that has significantly diverged from its parental Iberian source populations, presumably as a result of small European founder population size. We demonstrate that the ancestral components in admixed genomes can be traced back to distinct sub-continental source populations with far greater resolution than previously thought, even when limited pre-Columbian Caribbean haplotypes have survived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号