首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme p-hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of p-hydroxyphenylpyruvate to homogentisic acid (HGA), the aromatic precursor for the biosynthesis of vitamin E (α-tocopherol) and plastoquinone. In order to determine if increased HPPD activity could positively impact tocopherol yields, transgenic plants were generated that overexpressed the gene encoding Arabidopsis HPPD. Transgenic plants exhibiting high levels of HPPD expression were identified by increased tolerance to a competitive inhibitor of HPPD, the herbicide sulcotrione. HPPD gene expression in these transgenic lines, as determined at the RNA, protein and activity levels, was at least 10-fold higher than that of wild-type plants. Subsequent tocopherol analysis of leaf and seed material revealed that the increased HPPD expression resulted in up to a 37% increase in leaf tocopherol levels and a 28% increase in seed tocopherol levels relative to control plants. These results demonstrate that HPPD activity, and likely HGA levels, are at least one factor limiting the production of tocopherols in photosynthetic and non-photosynthetic plant tissues.  相似文献   

2.
Carotenoids are C40 tetraterpenoids synthesized by nuclear-encoded multienzyme complexes located in the plastids of higher plants. To understand further the components and mechanisms involved in carotenoid synthesis, we screened Arabidopsis for mutations that disrupt this pathway and cause accumulation of biosynthetic intermediates. Here, we report the identification and characterization of two nonallelic albino mutations, pds1 and pds2 (for phytoene desaturation), that are disrupted in phytoene desaturation and as a result accumulate phytoene, the first C40 compound of the pathway. Surprisingly, neither mutation maps to the locus encoding the phytoene desaturase enzyme, indicating that the products of at least three loci are required for phytoene desaturation in higher plants. Because phytoene desaturase catalyzes an oxidation reaction, it has been suggested that components of an electron transport chain may be involved in this reaction. Analysis of pds1 and pds2 shows that both mutants are plastoquinone and tocopherol deficient, in addition to their inability to desaturate phytoene. Separate steps of the plastoquinone/tocopherol biosynthetic pathway are affected by these two mutations. The pds1 mutation affects the enzyme 4-hydroxyphenylpyruvate dioxygenase because it can be rescued by growth on the product but not the substrate of this enzyme, homogentisic acid and 4-hydroxyphenylpyruvate, respectively. The pds2 mutation most likely affects the prenyl/phytyl transferase enzyme of this pathway. Because tocopherol-deficient mutants in the green alga Scenedesmus obliquus can synthesize carotenoids, our findings demonstrate conclusively that plastoquinone is an essential component in carotenoid synthesis. We propose a model for carotenoid synthesis in photosynthetic tissue whereby plastoquinone acts as an intermediate electron carrier between carotenoid desaturases and the photosynthetic electron transport chain.  相似文献   

3.
Tocopherols are lipophilic antioxidants and together with tocotrienols belong to the vitamin-E family. The four forms of tocopherols (??-, ??-, ??- and ??-tocopherols) consist of a polar chromanol ring and lipophilic prenyl chain with differences in the position and number of methyl groups. The biosynthesis of tocopherols takes place mainly in plastids of higher plants from precursors derived from two metabolic pathways: homogentisic acid, an intermediate of degradation of aromatic amino acids, and phytyldiphosphate, which arises from methylerythritol phosphate pathway. The regulation of tocopherol biosynthesis in photosynthetic organisms occurs, at least partially, at the level of key enzymes as such including p-hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27), homogentisate phytyltransferase (HPT, EC 2.5.1.-), tocopherol cyclase (TC, EC 5.4.99.-), and two methyltransferases. Tocopherol biosynthesis changes during plant development and in response toward different stresses induced by high-intensity light, drought, high salinity, heavy metals, and chilling. It is supposed that scavenging of lipid peroxy radicals and quenching of singlet oxygen are the main functions of tocopherols in photosynthetic organisms. The antioxidant action of tocopherols is related to the formation of tocopherol quinone and its following recycling or degradation. However, until now, the mechanisms of tocopherol degradation in plants have not been established in detail. This review focuses on mechanisms of tocopherols biosynthesis and its regulation in photosynthetic organisms. In addition, available information on tocopherol degradation is summarized.  相似文献   

4.
Vitamin E tocotrienol synthesis in monocots requires homogentisate geranylgeranyl transferase (HGGT), which catalyzes the condensation of homogentisate and the unsaturated C20 isoprenoid geranylgeranyl diphosphate (GGDP). By contrast, vitamin E tocopherol synthesis is mediated by homogentisate phytyltransferase (HPT), which condenses homogentisate and the saturated C20 isoprenoid phytyl diphosphate (PDP). An HGGT‐independent pathway for tocotrienol synthesis has also been shown to occur by de‐regulation of homogentisate synthesis. In this paper, the basis for this pathway and its impact on vitamin E production when combined with HGGT are explored. An Arabidopsis line was initially developed that accumulates tocotrienols and homogentisate by co‐expression of Arabidopsis hydroxyphenylpyruvate dioxygenase (HPPD) and Escherichia coli bi‐functional chorismate mutase/prephenate dehydrogenase (TyrA). When crossed into the vte2–1 HPT null mutant, tocotrienol production was lost, indicating that HPT catalyzes tocotrienol synthesis in HPPD/TyrA‐expressing plants by atypical use of GGDP as a substrate. Consistent with this, recombinant Arabidopsis HPT preferentially catalyzed in vitro production of the tocotrienol precursor geranylgeranyl benzoquinol only when presented with high molar ratios of GGDP:PDP. In addition, tocotrienol levels were highest in early growth stages in HPPD/TyrA lines, but decreased strongly relative to tocopherols during later growth stages when PDP is known to accumulate. Collectively, these results indicate that HPPD/TyrA‐induced tocotrienol production requires HPT and occurs upon enrichment of GGDP relative to PDP in prenyl diphosphate pools. Finally, combined expression of HPPD/TyrA and HGGT in Arabidopsis leaves and seeds resulted in large additive increases in vitamin E production, indicating that homogentisate concentrations limit HGGT‐catalyzed tocotrienol synthesis.  相似文献   

5.
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a Fe(II)-dependent, non-heme oxygenase that converts 4-hydroxyphenylpyruvate to homogentisate. Essential cofactors, such as plastoquinone and tocopherol, are produced by HPPD-dependent anabolic pathways in plants. To isolate a novel hppd using culture-independent method, a cosmid metagenomic library was constructed from soil in Korea. Screening of Escherichia coli metagenomic libraries led to the identification of a positive clone, YS103B, producing dark brown pigment in Luria-Bertani medium supplemented with l-tyrosine. In vitro transposon mutagenesis of YS103B showed that the 1.3 kb insert was sufficient to produce the hemolytic brown pigment. Sequence analysis of YS103B disclosed one open reading frame encoding a 41.4 kDa protein with the well-conserved prokaryotic oxygenase motif of the HPPD family of enzymes. The HPPD-specific β-triketone herbicide, sulcotrione, inhibited YS103B pigmentation. The recombinant protein expressed in E. coli generated homogentisic acid. Thus, we present the successful heterologous expression of a previously uncharacterized hppd gene from an uncultured soil bacterium.  相似文献   

6.
Phosphoribosyl-ATP pyrophosphohydrolase (PRA-PH) and phosphoribosyl-AMP cyclohydrolase (PRA-CH) are encoded by HIS4 in yeast and by hisIE in bacteria and catalyze the second and the third step, respectively, in the histidine biosynthetic pathway. By complementing a hisI mutation of Escherichia coli with an Arabidopsis cDNA library, we isolated an Arabidopsis cDNA (At-IE) that possesses these two enzyme activities. The At-IE cDNA encodes a bifunctional protein of 281 amino acids with a calculated molecular mass of 31,666 D. Genomic DNA-blot analysis with the At-IE cDNA as a probe revealed a single-copy gene in Arabidopsis, and RNA-blot analysis showed that the At-IE gene was expressed ubiquitously throughout development. Sequence comparison suggested that the At-IE protein has an N-terminal extension of about 50 amino acids with the properties of a chloroplast transit peptide. We demonstrated through heterologous expression studies in E. coli that the functional domains for the PRA-CH (hisI) and PRA-PH (hisE) resided in the N-terminal and the C-terminal halves, respectively, of the At-IE protein.  相似文献   

7.
In the present study, we isolated novel tocochromanols from green leaves of Kalanchoe daigremontiana and primary leaves of etiolated seedlings of Phaseolus coccineus that were identified as β-, γ-, and δ-tocomonoenols with unsaturation at the terminal isoprene unit of the side chain. The content of γ-tocomonoenol in leaves of etiolated bean increased gradually with the age of seedlings, reaching 50% of the γ-tocopherol level in 40-day-old plants. The content of this compound in leaves was increased by short illumination of etiolated plants and by addition of homogentisic acid, a biosynthetic precursor of tocopherols. These data indicated that γ-tocomonoenol is synthesized de novo from homogentisic acid and tetrahydro-geranylgeraniol diphosphate, a phytol precursor. Based on these results, a biosynthetic pathway of tocomonoenols is proposed.  相似文献   

8.
Tocochromanols (tocopherols and tocotrienols) are micronutrients with antioxidant properties synthesized by photosynthetic bacteria and plants that play important roles in animal and human nutrition. There is considerable interest in identifying the genes involved in tocochromanol biosynthesis to allow transgenic modification of both tocochromanol levels and tocochromanol composition in agricultural crops. The first committed reaction in tocopherol biosynthesis is the condensation of homogentisic acid (HGA) with phytyldiphosphate or geranylgeranyldiphosphate, catalyzed by the homogentisate phytyltransferase (VTE2) or by the homogentisate geranylgeranyl transferase (HGGT). In this study, we describe the identification of conserved amino acid sequences within VTE2 and HGGT and the application of these conserved sequences for a motif analysis resulting in the discovery of a VTE2-paralog in the Arabidopsis genome. We designated this new gene VTE2-2 and renamed the old VTE2 to VTE2-1. Seed-specific expression of VTE2-2 in Arabidopsis resulted in increased seed-tocopherol levels, similar to the transgenic expression of VTE2-1. Bioinformatics analysis revealed that VTE2-2 is conserved in both monocotyledonous and dicotyledonous plants and is distinct from VTE2-1 and HGGT.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Tyamagondlu V. Venkatesh, and Balasulojini Karunanandaa have equally contributed.  相似文献   

9.
p-Hydroxyphenylpyruvate dioxygenase (HPPD) is a key enzyme in tyrosine catabolism and is the molecular target site of β-triketone pharmacophores used to treat hypertyrosinemia in humans. In plants, HPPD is involved in the biosynthesis of prenyl quinones and tocopherols, and is the target site of β-triketone herbicides. The β-triketone-rich essential oil of manuka (Leptospermum scoparium), and its components leptospermone, grandiflorone and flavesone were tested for their activity in whole-plant bioassays and for their potency against HPPD. The achlorophyllous phenotype of developing plants exposed to manuka oil or its purified β-triketone components was similar to that of plants exposed to the synthetic HPPD inhibitor sulcotrione. The triketone-rich fraction and leptospermone were approximatively 10 times more active than that of the crude manuka oil, with I50 values of 1.45, 0.96 and 11.5 μg mL−1, respectively. The effect of these samples on carotenoid levels was similar. Unlike their synthetic counterpart, steady-state O2 consumption experiments revealed that the natural triketones were competitive reversible inhibitors of HPPD. Dose-response curves against the enzyme activity of HPPD provided apparent I50 values 15.0, 4.02, 3.14, 0.22 μg mL−1 for manuka oil, triketone-rich fraction, leptospermone and grandiflorone, respectively. Flavesone was not active. Structure-activity relationships indicate that the size and lipophilicity of the side-chain affected the potency of the compounds. Computational analysis of the catalytic domain of HPPD indicates that a lipophilic domain proximate from the Fe2+ favors the binding of ligands with lipophilic moieties.  相似文献   

10.
To access the genetic and biochemical potential of soil microorganisms by culture-independent methods, a 24,546-member library in Escherichia coli with DNA extracted directly from soil had previously been constructed (M. R. Rondon, P. R. August, A. D. Bettermann, S. F. Brady, T. H. Grossman, M. R. Liles, K. A. Loiacono, B. A. Lynch, I. A. MacNeil, M. S. Osburne, J. Clardy, J. Handelsman, and R. M. Goodman, Appl. Environ. Microbiol. 66:2541-2547, 2000). Three clones, P57G4, P89C8, and P214D2, produced colonies with a dark brown melanin-like color. We fractionated the culture supernatant of P57G4 to identify the pigmented compound or compounds. Methanol extracts of the acid precipitate from the culture supernatant contained a red and an orange pigment. Structural analysis revealed that these were triaryl cations, designated turbomycin A and turbomycin B, respectively; both exhibited broad-spectrum antibiotic activity against gram-negative and gram-positive organisms. Mutagenesis, subcloning, and sequence analysis of the 25-kb insert in P57G4 demonstrated that a single open reading frame was necessary and sufficient to confer production of the brown, orange, and red pigments on E. coli; the predicted product of this sequence shares extensive sequence similarity with members of the 4-hydroxyphenylpyruvate dioxygenase (4HPPD) family of enzymes. Another member of the same family of genes, lly, which is required for production of the hemolytic pigment in Legionella pneumophila, also conferred production of turbomycin A and B on E. coli. We further demonstrated that turbomycin A and turbomycin B are produced from the interaction of indole, normally secreted by E. coli, with homogentisic acid synthesized by the 4HPPD gene products. The results demonstrate successful heterologous expression of DNA extracted directly from soil as a means to access previously uncharacterized small organic compounds, serving as an example of a chimeric pathway for the generation of novel chemical structures.  相似文献   

11.
The Schizosaccharomyces pombe temperature-sensitive mutant snm1 maintains reduced steady-state quantities of the spliceosomal small nuclear RNAs (snRNAs) and the RNA subunit of the tRNA processing enzyme RNase P. We report here the isolation of the pac1 + gene as a multi-copy suppressor of snm1. The pac1 + gene was previously identified as a suppressor of the ran1 mutant and by its ability to cause sterility when overexpressed. The pac1 + gene encodes a double-strand-specific ribonuclease that is similar to RNase III, an RNA processing and turnover enzyme in Escherichia coli. To investigate the essential structural features of the Pac1 RNase, we altered the pac1 + gene by deletion and point mutation and tested the mutant constructs for their ability to complement the snm1 and ran1 mutants and to cause sterility. These experiments identified four essential amino acids in the Pac1 sequence: glycine 178, glutamic acid 251, and valines 346 and 347. These amino acids are conserved in all RNase III-like proteins. The glycine and glutamic acid residues were previously identified as essential for E. coli RNase III activity. The valines are conserved in an element found in a family of double-stranded RNA binding proteins. Our results support the hypothesis that the Pac1 RNase is an RNase III homolog and suggest a role for the Pac1 RNase in snRNA metabolism.  相似文献   

12.
Yaeno T  Iba K 《Plant physiology》2008,148(2):1032-1041
Salicylic acid (SA) is a primary factor responsible for exerting diverse immune responses in plants and is synthesized in response to attack by a wide range of pathogens. The Arabidopsis (Arabidopsis thaliana) sid2 mutant is defective in a SA biosynthetic pathway involving ISOCHORISMATE SYNTHASE1 (ICS1) and consequently contains reduced levels of SA. However, the sid2 mutant as well as ICS-suppressed tobacco (Nicotiana benthamiana) still accumulate a small but significant level of SA. These observations along with previous studies suggest that SA might also be synthesized by another pathway involving benzoic acid (BA). Here we isolated a benzoic acid hypersensitive1-Dominant (bah1-D) mutant that excessively accumulated SA after application of BA from activation-tagged lines. This mutant also accumulated higher levels of SA after inoculation with Pseudomonas syringae pv tomato DC3000. Analysis of the bah1-D sid2 double mutant suggested that the bah1-D mutation caused both ICS1-dependent and -independent accumulation. In addition, the bah1-D mutant showed SA-dependent localized cell death in response to P. syringae pv tomato DC3000. The T-DNA insertional mutation that caused the bah1-D phenotypes resulted in the suppression of expression of the NLA gene, which encodes a RING-type ubiquitin E3 ligase. These results suggest that BAH1/NLA plays crucial roles in the ubiquitination-mediated regulation of immune responses, including BA- and pathogen-induced SA accumulation, and control of cell death.  相似文献   

13.
A gene encoding a protein with extensive homology to the largest subunit of the multicatalytic proteinase complex (proteasome) has been identified in Arabidopsis thaliana. This gene, referred to as AtPSM30, is entirely encompassed within a previously characterized radiation-induced deletion, which may thus provide the first example of a proteasome null mutation in a higher eukaryote. However, the growth rate and fertility of Arabidopsis plants do not appear to be significantly affected by this mutation, even though disruption experiments in yeast have shown that most proteasome subunits are essential. Analysis of mRNA levels in developing seedlings and mature plants indicates that expression of AtPSM30 is differentially regulated during development and is slightly induced in response to stress, as has been observed for proteasome genes in yeast, Drosophila, and mammals. Southern blot analysis indicates that the Arabidopsis genome contains numerous sequences closely related to AtPSM30, consistent with recent reports of at least two other proteasome genes in Arabidopsis. A comparison of the deduced amino acid sequences for all proteasome genes reported to date suggests that multiple proteasome subunits evolved in eukaryotes prior to the divergence of plants and animals.  相似文献   

14.
Yarrowia lipolytica produces brown extracellular pigments that correlate with tyrosine catabolism. During tyrosine depletion, the yeast accumulated homogentisic acid, p-hydroxyphenylethanol, and p-hydroxyphenylacetic acid in the medium. Homogentisic acid accumulated under all aeration conditions tested, but its concentration decreased as aeration decreased. With moderate aeration, equimolar concentrations of alcohol and p-hydroxyphenylacetic acid (1:1) were detected, but with lower aeration the alcohol concentration was twice that of the acid (2:1). p-Hydroxyphenylethanol and p-hydroxyphenylacetic acid may result from the spontaneous disproportionation of the corresponding aldehyde, p-hydroxyphenylacetaldehyde. The catabolic pathway of tyrosine in Y. lipolytica involves the formation of p-hydroxyphenylacetaldehyde, which is oxidized to p-hydroxyphenylacetic acid and then further oxidized to homogentisic acid. Brown pigments are produced when homogentisic acid accumulates in the medium. This acid can spontaneously oxidize and polymerize, leading to the formation of pyomelanins. Mn2+ accelerated and intensified the oxidative polymerization of homogentisic acid, and lactic acid enhanced the stimulating role of Mn2+. Alkaline conditions also accelerated pigment formation. The proposed tyrosine catabolism pathway appears to be unique for yeast, and this is the first report of a yeast producing pigments involving homogentisic acid.  相似文献   

15.
Activation of cell division in the root apical meristem after germination is essential for postembryonic root development. Arabidopsis plants homozygous for a mutation in the ROOT MERISTEMLESS1 (RML1) gene are unable to establish an active postembryonic meristem in the root apex. This mutation abolishes cell division in the root but not in the shoot. We report the molecular cloning of the RML1 gene, which encodes the first enzyme of glutathione (GSH) biosynthesis, γ-glutamylcysteine synthetase, and which is allelic to CADMIUM SENSITIVE2. The phenotype of the rml1 mutant, which was also evident in the roots of wild-type Arabidopsis and tobacco treated with an inhibitor of GSH biosynthesis, could be relieved by applying GSH to rml1 seedlings. By using a synchronized tobacco cell suspension culture, we showed that the G1-to-S phase transition requires an adequate level of GSH. These observations suggest the existence of a GSH-dependent developmental pathway essential for initiation and maintenance of cell division during postembryonic root development.  相似文献   

16.
In Arabidopsis, activation of defense responses by flagellin is triggered by the specific recognition of the most conserved domain of flagellin, represented by the peptide flg22, in a process involving the FLS2 gene, which encodes a leucine-rich repeat serine/threonine protein kinase. We show here that the two fls2 mutant alleles, fls2-24 and fls2-17, which were shown previously to confer insensitivity to flg22, also cause impaired flagellin binding. These features are rescued when a functional FLS2 gene is expressed as a transgene in each of the fls2 mutant plants, indicating that FLS2 is necessary for flagellin binding. The point mutation of the fls2-17 allele lies in the kinase domain. A kinase carrying this missense mutation lacked autophosphorylation activity when expressed in Escherichia coli. This indicates that kinase activity is required for binding and probably affects the stability of the flagellin receptor complex. We further show that overexpression of the kinase-associated protein phosphatase (KAPP) in Arabidopsis results in plants that are insensitive to flagellin treatment, and we show reduced flg22 binding in these plants. Furthermore, using the yeast two-hybrid system, we show physical interaction of KAPP with the kinase domain of FLS2. These results suggest that KAPP functions as a negative regulator of the FLS2 signal transduction pathway and that the phosphorylation of FLS2 is necessary for proper binding and signaling of the flagellin receptor complex.  相似文献   

17.
The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1) (E.C.: 4.4.1.5) and 2 (E.C.3.1.2.6), has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s) in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions.  相似文献   

18.
Glucosinolates, synthesized by the glucosinolate biosynthesis pathway, are the secondary metabolites used as a defence mechanism in the Brassicaceae plants, including Arabidopsis thaliana. The first committed step in the pathway, catalysed by methylthioalkylmalate (MAM) synthase (EC: 2.3.3.17), is to produce different variants of glucosinolates. Phylogenetic analyses suggest that possibly MAM synthases have been evolved from isopropylmalate synthase (IPMS) by the substitutions of five amino acid residues (L143I, H167L, S216G, N250G and P252G) in the active site of IPMS due to point mutations. Considering the importance of MAM synthase in Brassicaceae plants, Petersen et al. (2019) made an effort to characterise the MAM synthase (15 MAM1 variants) in vitro by single substitution or double substitutions. In their study, the authors have expressed the variants in Escherichia coli and analysed the amino acids in the cultures of E. coli in vivo. Since modifying the MAM synthases by transgenic approaches could increase the resistance of Brassicaceae plants for enhancing the defence effect of glucosinolates and their degraded products; hence, MAM synthases should be characterized in detail in vivo in A. thaliana along with the structural analysis of the enzyme for meaningful impact and for its imminent use in vivo.  相似文献   

19.
We isolated a 38 kDa ssDNA-binding protein from the unicellular cyanobacterium Synechococcus sp. strain PCC 6301 and determined its N-terminal amino acid sequence. A genomic clone encoding the 38 kDa protein was isolated by using a degenerate oligonucleotide probe based on the amino acid sequence. The nucleotide sequence and predicted amino acid sequence revealed that the 38 kDa protein is 306 amino acids long and homologous to the nuclear-encoded 370 amino acid chloroplast ribosomal protein CS1 of spinach (48% identity), therefore identifying it as ribosomal protein (r-protein) S1. Cyanobacterial and chloroplast S1 proteins differ in size from Escherichia coli r-protein S1 (557 amino acids). This provides an additional evidence that cyanobacteria are closely related to chloroplasts. The Synechococcus gene rps1 encoding S1 is located 1.1 kb downstream from psbB, which encodes the photosystem 11 P680 chlorophyll a apoprotein. An open reading frame encoding a potential protein of 168 amino acids is present between psbB and rps1 and its deduced amino acid sequence is similar to that of E. coli hypothetical 17.2 kDa protein. Northern blot analysis showed that rps1 is transcribed as a monocistronic mRNA.  相似文献   

20.
The gene from Xanthomonas campestris pv. phaseoli for glutamate 1-semialdehyde (GSA) aminomutase, which is involved in the C5 pathway for synthesis of -aminolevulinic acid (ALA), was cloned onto a multicopy plasmid, pUC18, by the complementation of an ALA-deficient mutant (hemL) of Escherichia coli. Subcloning of deletion fragments from the initial 3.5-kb chromosomal fragment allowed the isolation of a 1.7-kb fragment which could complement the hemL mutation. Nucleotide sequence analysis of the 1.7-kb DNA fragment revealed an open reading frame (ORF) that is located downstream from a potential promoter sequence and a ribosome-binding site. The ORF encodes a polypeptide of 429 amino acid residues, and the deduced molecular mass of this polypeptide is 45,043 Da. The amino acid sequence shows a high degree of homology to the HemL proteins from other organisms, and a putative binding site for pyridoxal 5-phosphate is conserved. Correspondence to: Y. Murooka  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号