首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminium (Al), mobilized by acidic deposition, has been claimed to be a major threat to forest vitality. Fine root mortality, decreased root growth and reduced nutrient uptake have been observed in controlled laboratory experiments where roots of tree seedlings were exposed to elevated concentrations of Al. Yet, evidence for Al-induced root damage from forest stands is scarcely reported. Nevertheless, Al dissolved in soil water has received a key role in the critical load concept for forests. Here, we present effects of artificially elevated concentrations of Al in the soil solution on fine roots in a middle-aged stand of Norway spruce (Picea abies (L.) Karst.). Although the inorganic Al concentrations about 200 µM and Ca:Al ratio about 0.7 that were established in the soil solution within this experiment have been associated with reduction of root growth and root mortality for spruce seedlings in hydroponic studies, no acute damage on fine roots was observed. Three years of treatment did not cause visual root damage, nor were effects on fine root necromass observed. Fine root necromass made up about 10% of fine root biomass for all treatments. However, significantly lower molar Ca:Al and Mg:Al ratios in living and dead fine roots were found in the plots where Al concentrations were highest and ratios of Ca to Al in the soil solution were lowest. The lack of response on fine root biomass suggests that forest stands tolerate higher Al levels than results from laboratory experiments indicate. We conclude that effect studies in the laboratory have limited value for field conditions. The key role of Al toxicity, expressed as the Ca/Al ratio, in critical load calculations for forests may have to be reconsidered.  相似文献   

2.
Bakker  M.R.  Kerisit  R.  Verbist  K.  Nys  C. 《Plant and Soil》1999,217(1-2):243-255
Soil acidification can be detrimental to root growth and nutrient uptake, and liming may alleviate such acidification. In the following study, seedlings of sessile oak (Quercus petraea Liebl. M.) were grown in rhizotrons and subjected to liming (L) or gypsum (G) treatments and compared with the control (C). In order to study and interpret the impact of these calcium rich treatments on fine root development and tree growth, the following parameters were assessed: fine root biomass, fine root length, seedling development (height, diameter, leaves), seedling biomass, nutrient content of roots and seedlings, bulk soil and soil solution chemistry and rhizosphere soil chemistry. The results show that liming increased bulk soil pH, exchangeable Mg, Ca and the Ca/Al molar ratio, and decreased exchangeable Al, mainly in the A-horizon. Gypsum had a similar but smaller impact on exchangeable Al, Ca, H+ and the Ca/Al molar ratio in the A-horizon, but reacted with depth, so that exchangeable Mn, Mg and Ca were increased in the B-horizon. In the rhizosphere, the general pattern was determined by the treatment effects of the bulk soil. Most elements were more concentrated in the rhizosphere than in bulk soil, except for Ca which was less concentrated after liming or gypsum application. In the B-horizon rhizosphere pH was increased by the treatments (L > G,C) close to the root tips. Furthermore, the length of the zone with a positive root-induced pH increase was greater for the limed roots as compared with both the other treatments. Fine root growth was stimulated by liming (L > G,C) both in terms of biomass and length, whereas specific root length was not obviously affected apart from the indication of some stimulation after liming at the beginning. The live:dead ratio of fine roots was significantly higher in the limed rhizotrons as compared to the control (G not assessed), indicating lower mortality (higher longevity). Shoot growth showed greater lime-induced stimulation (L > G,C) as compared to root growth. As a result the shoot:root ratio was higher in the limed rhizotrons than in the control (L > G,C). Liming induced a higher allocation of P, S, Mg, Ca and K to the leaves, stem and twigs. Gypsum showed similar effects, but was only significant for S. Liming increased the foliar Ca/Al ratio by both increasing foliar Ca and decreasing foliar Al, whereas gypsum did not clearly improve foliar nutrition. This study suggests that a moderate application of lime can be successful in stimulating seedling growth, but that gypsum had no effect on seedling growth. It can be concluded that this lime-induced growth stimulation is directly related to the improved soil fertility status, and the alleviation of Al toxicity and acid stress, resulting in better foliar nutrition. The impact of liming on fine roots, as a consequence, was not limited to a stimulation of the total amount of fine roots, but also improved the root uptake performance. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
We determined the effects of wood ash fertilization, given together with nitrogen (WAN), and nitrogen given together with P, B and Cu (SSF), on soil and foliage nutrients and fine root biomass in a 45-year-old Norway spruce stand in southern Finland. Fine roots were sampled 9 years, and the soil 10 years after ash (3 t/ha) and nitrogen (150 kg/ha) application. Fine root biomass tended to be lower, the necromass higher, and the fine root distribution relatively deeper on the WAN than on the control and SSF plots. The response of fine root biomass to WAN was probably related to changes in soil acidity. pH, base saturation, total and extractable concentrations of Ca, K, Mg and P, and total B, Cd, Mn, Ni and Zn concentrations in the organic layer were significantly higher on the WAN plots than on the SSF and the control plots with no ash and nutrient addition. On the WAN plots, the pH was 1.2 pH-units higher, the exchangeable Ca concentrations fourfold and those of Mg over twofold compared to the control plots. WAN increased the concentrations of K but decreased those of Mn and Ni in the needles compared to the control and SSF treatment. Even though ash and nitrogen fertilisation tended to decrease the fine root biomass, this decrease was not likely to affect tree growth during a 10-year period.  相似文献   

4.
Considerable knowledge exists about the effect of aluminium (Al) on root vitality, but whether elevated levels of Al affect soil microorganisms is largely unknown. We thus compared soils from Al-treated and control plots of a field experiment with respect to microbial and chemical parameters, as well as root growth and vitality. The field experiment was established in a 50-year-old Norway spruce (Picea abies L.) stand where no Al or low concentrations of Al had been added every 7–10 days during the growth season for 7 years. Analysis of soil solutions collected using zero tension lysimeters and porous suction cups showed that Al treatment lead to increased concentrations of Al, Ca and Mg and lower pH and [Ca + Mg + K/Al] molar ratio. Corresponding soil analyses showed that soil pH remained unaffected (pH 3.8), that exchangeable Al increased, while exchangeable Ca and Mg decreased due to the Al treatment. Root in-growth into cores placed in the upper 20 cm of the soil during three growth seasons was not affected by Al additions, neither was nutrient concentration or mortality of these roots. The biomass of some taxonomic groups of soil microorganisms, analyzed using specific membrane components (phospholipid fatty acids; PLFAs), was clearly affected by the imposed Al treatment, both in the organic soil horizon and in the underlying mineral soil. Microbial community structure in both horizons was also clearly modified by the Al treatment. Shifts in PLFA trans/cis ratios indicative of short term physiological stress were not observed. Yet, aluminium stress was indicated both by changes in community structure and in ratios of single PLFAs for treated/untreated plots. Thus, soil microorganisms were more sensitive indicators of subtle chemical changes in soil than chemical composition and vitality of roots.  相似文献   

5.
Increasing evidence suggests that forest soils in central and northern Europe as well as in North America have been significantly acidified by acid deposition during the last decades. The present investigation was undertaken to examine the effect of soil acidity on rooting patterns of 40-year-old Norway spruce trees by comparing fine and coarse roots among four stands which differed in soil acidity and Mg (and Ca) nutrition. The coarse root systems of four to five 40-year-old Norway spruce trees per stand were manually excavated. The sum of cross sectional area (CSA) at 60 cm soil depth and below of all vertical coarse roots, as a measure of vertical rooting intensity, was strongly reduced with increasing subsoil acidity of the stands. This pattern was confirmed when 5 additional acidic sites were included in the analysis. Fine root biomass in the mineral soil estimated by repeated soil coring was strongly reduced in the heavily acidified stands, but increased in the humic layer. Using ingrowth cores and a screen technique, we showed that the higher root biomass in the humic layer of the more acidic stands was a result of higher root production. Thus, reduced fine root biomass and coarse root CSA in deeper soil layers coincided with increased root growth in the humic layer. Root mineral analysis showed Ca/Al ratios decreased with decreasing base saturation in the deeper mineral soil (20–40 cm). In the top mineral soil, only minor differences were observed among stands. In general, low Ca/Al ratios coincided with low fine root biomass. Calcium/aluminum ratios determined in cortical cell walls using X-ray microanalysis showed a similar pattern as Ca/Al ratios based on analysis of whole fine roots, although the amplitude of changes among the stands was much greater. Aluminum concentrations and Ca/Al ratios in cortical cell walls were at levels found to inhibit root growth of spruce seedlings in laboratory experiments. The data support the idea that Al (or Ca/Al ratios) and acid deposition-induced Mg (and possibly Ca) deficiency are important factors influencing root growth and distribution in acidic forest soils. Changes in carbon partitioning within the root system may contribute to a reduction in deep root growth.  相似文献   

6.
The decline of sugar maple (Acer saccharum Marsh.) in forest of north-eastern North America is an important environmental issue. In this study, relationships between, soil, wood and foliar chemistry were assessed for 17 stands distributed within a large area of the Quebec sugar maple forest and that were growing on soils with a strong gradient of acidity and base saturation. There were many significant relationships between variables describing the acid-base status of the top-B soil (Ca and Mg concentrations, exchangeable acidity and base saturation) and Ca and Mn concentrations and Ca/Mn and Mg/Mn in tree tissues. Manganese was the element that showed the strongest inverse non-linear relationships with top-B soil base saturation with variance explanation of 71 and 65%, for wood and foliage, respectively. The 17 sites were divided in two groups according to their level of decline. The declining stands had significantly higher wood Mn and Mg concentrations and lower Ca/Mn ratios and significantly higher foliar Mn and lower Ca and Al concentrations. It was impossible to determine if these differences were a cause or a symptom of sugar maple health. However, the increase in Mn concentrations in tree tissues with increasing soil acidity, as well as the higher Mn concentrations in declining as compared to healthy stands suggest that Mn, as well as low Ca availability, could be an important contributing factor in the sugar maple decline.  相似文献   

7.
The relationship between root Al concentrations and Al fractions in the soil solution was examined in a mature Abies amabilis ecosystem in the Cascade Range of Washington State. The naturally acidic soils in these ecosystems lead to high concentrations of aqueous Al in soil solutions and contribute to the biocycling of Al by the A. amabilis/T. mertensiana stand. Root concentrations of Al were very closely related to aqueous Al3+ activities, but poorly correlated with total aqueous Al concentrations. The solution Al/Ca molar ratios followed a seasonal cycle with low values during the fall and high values during the spring. Ratios remained <1 throughout the year in the Oa horizon while they varied between 2 and 14 in the E and Bhs horizons. The vertical distribution of roots and the mortality of fine roots may be linked to the soil solution Al/Ca ratio. Root cation exchange capacity ranged between 180 and 225 mol g-1 and the exchangeable Al fraction represented from 12–17% of the total Al content in the root. Evidence for solid-phase co-precipitates of Al with PO4 and oxalate was indicated from selective dissolution of the root tissue. Sufficient quantities of PO4 and oxalate exist in the roots to tie up 20–40% of the Al present in the roots of the Oa and E horizons, but only 9% of that present in the Bhs horizon. Species differences in the distribution of Al between the above-ground and below-ground components may be dictated by these retention processes in the fine roots.  相似文献   

8.
A field experiment to test various management practices of sustainable forestry was conducted in a Swiss spruce forest for two growing seasons. Treatments were a control (C), yearly application of 4000 kg ha–1 wood ash (A), daily irrigation with a steady state fertilisation as `optimal nutrition` (F) and irrigation with a water control (W). Samples were taken on a 5 × 5 m grid once a year with a soil corer to determine fine root biomass ( 2 mm) and soil pH of the topsoil. A subset of the fine root samples was further analysed for its nutrient composition by CN and ICP-AES analyses. The dynamics of root growth were observed with the aid of ingrowth-cores after 1, 1.5, and 2 years of treatment and the growth pattern was analysed in terms of biomass, tips, forks, length and root diameter of the samples. The A, F and also the W treatment resulted in a significant increase of soil pH in the topsoil. The fine root density increased over the two growing seasons, irrespective of the treatment. The root growth was only slightly different between the treatments with a initially faster growth under the A treatment. The W treatment reduced the number of root tips and forks, and the root length, while the A treatment increased the number of root tips, forks and the root length, but reduced the diameter. The differences between the three harvesting times (March 1999, October 1999, March 2000) of the ingrowth-cores stressed seasonal differences in root growth and the development of quasi `steady state' root dynamics. The root turnover was not changed by the treatments. The elements in the fine roots were strongly affected by the treatments A and F and sometimes by W. Fine root N increased with the F treatment, while C concentrations decreased under the A, F and W treatments. The Ca and Mg concentrations were strongly enhanced by A but also by the F treatment. The K and P concentrations in the fine roots were improved by all three applications. Due to the pH increase Al, Fe and Mn concentrations in the fine roots were decreased by the A and F treatments. S and Zn concentrations showed inconsistent changes over the growing seasons. The results of this study were comparable with those of other studies in Europe and confirm the abilities of the fine roots as indicators of forest nutrition, to some extent more sensitive than the commonly used foliar analysis.  相似文献   

9.
A manipulated increase in acid deposition (15 kg S ha−1), carried out for three months in a mature Scots pine (Pinus sylvestris) stand on a podzol, acidified the soil and raised dissolved Al at concentrations above the critical level of 5 mg l−1 previously determined in a controlled experiment with Scots pine seedlings. The induced soil acidification reduced tree fine root density and biomass significantly in the top 15 cm of soil in the field. The results suggested that the reduction in fine root growth was a response not simply to high Al in solution but to the depletion of exchangeable Ca and Mg in the organic layer, K deficiency, the increase in NH4:NO3 ratio in solution and the high proton input to the soil by the acid manipulation. The results from this study could not justify the hypothesis of Al-induced root damage under field conditions, at least not in the short term. However, the study suggests that a short exposure to soil acidity may affect the fine root growth of mature Scots pine.  相似文献   

10.
Luwe  Michael W. F. 《Plant and Soil》1995,168(1):195-202
In a beech (Fagus sylvatica L.) stand in north-west Germany vegetation of two transects (25m:1m and 20m:1m) was mapped and contents of macronutrients (Ca, Mg and K), micronutrients (Fe, Mn, Zn and Cu), and potentially phytotoxic metals (Pb, Cd, Ni and Al) were measured in different soil compartments and in roots, rhizomes, stems and leaves of two forest floor plant species (Mercurialis perennis L. and Polygonatum multiflorum L.). NH4Cl extractable cation contents, pH and other soil variables were also determined.The highest macronutrient contents could be found in the leaves of M. perennis and P. multiflorum. Heavy metals and Al accumulated in the roots. Correlation analysis suggests a considerable translocation of Zn and Cd between below- and above-ground organs of both investigated forest floor plants. No significant correlation was found between the contents of the other elements in the below- and above-ground parts.Available data indicate a considerable uptake by the plants not only of nutrients, but also of heavy metals from the upper mineral soil. Amounts of heavy metals and Al solubilized in the presence of NH4Cl increased with decreasing pH, whereas levels of soluble Ca and Mg were maximal at high pH-values of the extracts. It can be concluded that element uptake in the investigated plants is indirectly controlled by the pH of the upper mineral soil.  相似文献   

11.
It is generally believed that high soil solution Al3+ in acidic soils with low base saturation (BS), negatively influences the properties of fine roots. Fine roots from European beech (Fagus sylvatica L.) trees growing in highly acidic soils with very low BS and potentially high Al3+ concentration in the soil solution were analysed and the dependency of fine root properties on soil BS was measured. The fine roots were sampled down to 1 m depth at seven forest sites located on the Swiss Plateau. These sites varied in their BS from 1.4 to 11.4% in the mineral layers. We evaluated relationships between the BS of these mineral layers and fine root properties, such as ratio between bio- and necromass (live/dead ratio), specific root length (SRL), root tip abundance (RTA), root branching abundance (RBA), O2-consumption, and the Ca/Al molar ratio in the fine root tissue. The fine root properties were compared not only with the BS of the soil, but also with the Ca/Al molar ratio in the fine root tissues. Significant relations of fine root properties occurred when the soils of the seven sites were grouped into two BS groups (<5 and 5–10%). The live/dead ratio, the RTA, the RBA, the O2-consumption, and Ca/Al molar ratio were lower in the group of BS <5% than in the group 5–10%. Decreases in the morphological properties and in the O2-consumption were related to decrease in the Ca/Al molar ratio of the fine root tissues. There is evidence that the fine root properties are negatively influenced, nevertheless, fine root systems of mature European beech in their natural ecological environment seem to be able to compensate adverse effects of low BS. Responsible Editor: Philippe Hinsinger.  相似文献   

12.
Majdi  Hooshang  Persson  Hans 《Plant and Soil》1995,(1):151-160
The effect of ammonium sulphate application on the bulk and rhizosphere soil chemistry, elemental concentration of living fine roots (<2 mm in diameter), amounts of living and dead fine roots, root length density and specific root length density were investigated in a 28 year old Norway spruce stand in SW Sweden. The treatments started in 1988. Core samples of the LFH layer and mineral soil layers were sampled in control (C) and ammonium sulphate (NS) treatment plots in 1988, 1989 and 1990. Soil pH and NO3-S and SO4-S, Al, Ca, Mg, Mn and K concentrations were measured for both the bulk soil and rhizosphere soil.The pH-values of the bulk and rhizosphere soil decreased in 1989 and 1990 in NS plots compared to control plots, while the SO4-S concentration increased. The Ca, Mg and K concentration increased in the NS treatment in almost all layers in the bulk and the rhizosphere soil. Ammonium ions may have replaced these elements in the soil organic matter. The NS treatment reduced Mg concentration in fine roots in all layers in 1990. The Al concentrations in the rhizosphere and bulk soil were higher in NS plots in all layers, except at 0–10 cm depth, both in 1989 and 1990. The Al content of living fine roots was higher in NS plots than C plots but the differences were not significant. The NS addition did not affect the P and K contents of fine roots in any soil layer, but the S concentrations of fine roots were significantly higher in NS plots in 1989 and 1990. The fine root necromass was higher in NS than in C in 1990, in the LFH layer, indicating a gradual decrease in the vitality of the fine roots. It was suggested that the NS treatment resulted in displacement of Mg and K from exchange sites in the LFH layer leading to leaching of these cations to the mineral soil. Further application of ammonium sulphate may damage the fine roots and consequently adversely affect the water and nutrient uptake of root systems.  相似文献   

13.
Summary The effects of soil acidification (pH values from 6.5 to 3.8), and subsequent leaching, on levels of extractable nutrients in a soil were studied in a laboratory experiment. Below pH 5.5, acidification resulted in large increases in the amounts of exchangeable Al in the soil. Simultaneously, exchangeable cations were displayed from exchange sites and Ca, Mg, K and Na in soil solution increased markedly. With increasing soil acidification, increasing amounts of cations were leached; the magnitude of leaching loss was in the same order as the cations were present in the soil: Ca2+>Mg2+>K+>Na+. Soil acidification appeared to inhibit nitrification since in the unleached soils, levels of NO 3 clearly declined below pH 5.5 and at the same time levels of NH 4 + increased greatly. Significant amounts of NH 4 + and larger amounts of NO 3 , were removed from the soil during leaching. Concentrations of NaHCO3-extractable phosphate remained unchanged between pH 4.3 and 6.0 but were raised at higher and lower pH values. No leaching losses of phosphate were detected. For the unleached soils, levels of EDTA-extractable Mn and Zn increased as the soil was acidified whilst levels of extractable Fe were first decreased and then increased greatly and those for Cu were decreased slightly between pH 6.5 and 6.0 and then unaffected by further acidification. Significant leaching losses of Mn and Zn were observed at pH values below 5.5 but losses of Fe were very small and those of Cu were not detectable.  相似文献   

14.
High levels of aluminium in the soil solution of forest soils cause stress to forest trees. Within the soil profile, pH and aluminium concentration in the soil solution vary considerably with soil depth. pH strongly influences the speciation of A1 in solution, and is a factor when considering toxicity of A1 to roots. Norway spruce ( Picea abies [L.] Karst.) seedlings were grown for 7 weeks in nutrient solutions at pH 3.2, 4.0 or 5.0 containing 0, 100 or 400 µ M A1. At the end of this period, seedling growth, the cation exchange capacity of the roots and the amount of exchangeable Ca and Mg in roots were determined. A1 concentrations in whole roots, root segments, and in needles were measured. Using X‐ray microanalysis, the concentrations of Al, Ca, Mg and P were determined in cortical cell walls. We wanted to test the hypotheses that (1) the amount of Al bound to cation exchange sites can be used as a marker for Al toxicity and (2) the Mg concentration of needles is controlled by the amount of Mg bound to cation exchange sites. Low pH reduced the inhibition of Al on root growth and shoot length. Both low pH and Al lowered the concentration of Ca and Mg in needles. Al concentrations in the roots decreased as the pH decreased. In the roots, Al displaced Mg and Ca from binding sites at the root cortical cell walls. A comparison of the effects of Al at the different pH values on root growth and Mg concentration in the needles, suggests that, at pH 5.0, an Al fraction in the apoplast inhibits root growth, but does not affect Mg uptake. This fraction of Al is not available for transport to the shoots. In contrast, Mg uptake is strongly affected by Al at pH 3.2, although only very low levels of Al were detected in the roots. Thus, Al accumulation in the apoplast is a positive marker for Al effects on root growth, but not Mg uptake. The Mg concentration of needles is not controlled by the amount of Mg bound to cation exchange sites.  相似文献   

15.
Vertical distribution of root density (length per unit soil volume) and abundance (length per unit ground surface area) to a depth of 1.5 m or to the depth of the water table and their relationships with soil properties and tree basal area were examined in 36 soil profiles of pine-oak and oak-pine forests of the New Jersey Pinelands. Soil morphology were almost uniform within the forest type and characterized by the presence of high coarse fragment contents in the C horizon in oak-pine uplands; by the spodic B horizon and water table in the C horizon in pine-oak lowlands; by the sandy soil throughout the profile in pine-oak uplands; and by the firm argillic B horizon in pine-oak plains. Root density decreased from ranges of 44423–133369 m m-3 in the 0–5 cm depth in all the forest types to 1900–5593 m m-3 in the 100–150 cm depth in all the forest types except in pine-oak lowlands. Total profile root density and abundance was in the order: oak-pine uplands>pine-oak lowlands>pine-oak uplands>pine-oak plains. Root density correlated positively with organic C, total N, water soluble P, exchangeable Ca, Mg, K, Al, Fe, and cation exchange capacity, and negatively with bulk density, coarse fraction content, and pH, whereas root abundance correlated positively with organic C, total N, water soluble P, exchangeable Ca, Mg, K, and Fe, and negatively with bulk density. No correlation existed between root density and abundance with tree basal area. Higher root density in the E horizon of oak-pine uplands as compared to the other forest types was associated with high nutrient content; higher root density in the C horizon of pine-oak lowlands was associated with a shallow water table beneath the horizon; and lower root densities in the B and C horizons of pine-oak plains were associated with the presence of a firm clay layer in the B horizon.  相似文献   

16.
秦艽药材及其生长土壤中无机元素含量特征及相关性分析   总被引:1,自引:0,他引:1  
该研究采用原子吸收分光光度法和火焰光度法,测定云南20个种植地的秦艽及其生长土壤中无机元素的含量,探讨药材中无机元素分布特征,并对药材中无机元素含量与土壤中无机元素含量的相关性进行了分析。结果表明:云南秦艽药材无机元素的含量呈现K>Ca>Mg>Fe>Mn>Zn>Cu有规律的分布态势;通过相关性分析、主成分分析和逐步回归分析发现秦艽的特征元素为K、Cu、Ca和Zn;药材中钾含量与土壤中锌,钙与土壤中锰和铜,锰与土壤中钙和镁,铜与土壤中钾和锌元素含量间均分别显著负相关;而药材中镁含量与土壤中钙和镁,铁、铜与土壤中铁元素含量间均呈显著正相关。对秦艽各无机元素含量影响最大的因子是秦艽生长土壤有效钙,有效铁和有效锌其次,最后为有效锰。该研究结果为秦艽道地性成因及适宜栽培区域的选择提供了参考,为秦艽资源合理利用和GAP研究以及从无机元素的角度品评药材品质提供了理论依据。  相似文献   

17.
The effects of application of nitrogen as calcium nitrate, urea or ammonium sulphate at two rates through the trickle irrigation system on pH and nutrient status of the wetted volume of soil below the emitters and on growth and nutrition of courgette (zucchini) plants (Cucurbita pepo L.) was investigated. Soil acidification, caused by nitrification, occurred to a large extent in the volume of soil immediately below the emitters in the urea and ammonium sulphate treatments. Acidification was greater at the high rate of N addition and more pronounced with ammonium sulphate than urea. A significant amount of applied urea appeared to move through the soil as urea and consequently, at the same rate of N addition, levels of ammonium were lower directly below the emitter and those of nitrate were higher further away from the emitters for the urea than ammonium sulphate treatments. Soil acidification below the emitters resulted in significant decreases in levels of exchangeable Ca, Mg and K and increases in levels of exchangeable Al, EDTA-extractable Fe, Mn, Zn and Cu and bicarbonate-extractable P. Vegetative growth and harvestable yields of courgettes were increased by both irrigation and nitrogen applications. Vegetative growth was generally greater at the low rate of N addition than at the high one and generally followed the order calcium nitrate > urea > ammonium sulphate. However, fruit yields followed the order urea > ammonium sulphate > calcium nitrate and were larger at the high rate of N for urea and ammonium sulphate treatments and unaffected by rate for the calcium nitrate treatments. It is suggested that with fertigation, the form of applied N can have significant physiological effects of plant growth and yields because N may be applied into the root zone on numerous occasions during the growing season.  相似文献   

18.
A greenhouse experiment was performed to evaluate the effect of Norway spruce (Picea abies (L.) Karst.) seedlings on net nutrient availability in five different growing media containing F- or H-layer and mineral soil originating from a haplic podzol in northern Sweden. The initial total amounts of eight nutrient elements (N, K, P, Ca, Mg, Mn, Fe, Zn) and exchangeable amounts of the same elements were analyzed in pots with or without spruce seedlings. In the planted pots seedling nutrient uptake was also estimated. After 26 weeks, higher net nutrient availability with seedlings was found in 25 out of the 40 (62%) growing media and nutrient element combinations. A positive seedling effect on net nutrient availability might be explained by rhizodeposition stimulating the soil microorganism activity and accelerating the weathering of minerals or by seedling roots promoting the nutrient providing processes through changes in soil chemical and physical properties. Nitrogen availability was primarily affected by what part of the forest floor the growing medium contained although the positive response to seedling presence was apparent. The positive net availability response of P, Ca, Mg, Mn, Fe and Zn to seedling presence was on the other hand relatively strong. In the case of P, K, and Zn the growing medium composition (if the F- and H-layer was pure or mixed with mineral soil) was also an important factor for the estimated net availability. Pure F-and H-layer provided greater P- and K-availability while the availability of Zn increased when mineral soil was added. The influence of growing plants ought to be considered when soil samples are used for assessing the nutrient availability.  相似文献   

19.
Elemental concentrations of above- and belowground tissues were determined in anAbies amabilis stand in the Cascade Mountains, Washington, USA. These data were used to calculate the pools and circulation of trace elements and micronutrients on a stand level. For all elements except Al, a greater proportion (from 62 to 87%) was distributed in above- rather than belowground tissues. This contrasted sharply with the biocirculation of elements where 97% of the Al and Fe, 88% of the Cu and 67–84% of the Ca, P, and Mg of total detrital cycling was from the belowground components. Aboveground tissues, however, contributed 69% of the Zn, 65% of the K and 68% of the Mn found in annual detritus production. The proportion of total element pool circulated annually was the highest for Al (82%) and Fe (32%) followed by 13% and less for the remaining elements. Copper, Fe and Al were accumulated in root tissues, while Mn and Zn accumulated in foliage.We hypothesize that roots are an effective mechanism for avoiding Al toxicity in these subalpine ecosystems. The large root biomasses of these stands allow for high Al levels to be taken up and immobilized in roots; this is observed in the significantly higher Al accumulations in below- than aboveground tissues. The high root turnover in these stands is hypothesized to be a result of root senescence occurring in response to high Al accumulation. Furthermore, Al inputs into detritus production occur by soil horizon so that roots with high Al concentrations located in the Bhs horizon turnover and are retained within that horizon. These roots also decompose very slowly (99% decay = 456 years) due to the high Al and low Ca, Mn and Mg present in these tissues and therefore have very little impact on short-term elemental cycling.  相似文献   

20.
研究川西亚热带次生常绿阔叶林优势树种扁刺栲1~5级细根形态和化学特征,及其对氮添加的响应.结果表明: 随根序等级的增加,扁刺栲根直径、根组织密度、K含量增加,而比根长、比表面积及N、P、Mg含量降低.氮添加显著增加了扁刺栲细根N含量,降低了Mg含量和C/N,使细根Ca含量呈下降趋势,对根序C、P、K、Na、Al、Mn、Fe含量无显著影响.氮添加未显著影响扁刺栲细根直径、比根长、比表面积和根组织密度.在所有处理中,细根P含量均与各形态特征呈显著线性回归关系.氮添加处理下,细根Mg含量与形态特征之间的线性关系由不显著变为显著,而细根N含量与形态特征之间的线性关系由显著变为不显著.氮添加会影响根系营养元素含量,并增强植物对P和Mg的需求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号