首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
Two threonine-requiring mutants with derepressed expression of the threonine operon were isolated from an Escherichia coli K-12 strain containing two copies of the thr operon. One of them carries a leaky mutation in ilvA (the structural gene for threonine deaminase), which creates an isoleucine limitation and therefore derepression of the thr operon. In the second mutant, the enzymes of the thr operon were not repressed by threonine plus isoleucine; the threonyl-transfer ribonucleic acid(tRNA) synthetase from this mutant shows an apparent Km for threonine 200-fold higher than that of the parental strain. The gene, called thrS, coding for threonyl-tRNA synthetase was located around 30 min on the E. coli map. The regulatory properties of this mutant imply the involvement of charged threonyl-tRNA or threonyl-tRNA synthetase in the regulation of the thr operon.  相似文献   

4.
Summary We have studies in vivo the contribution of amino acids corresponding to codons of the leader sequence other than the so-called regulatory codons (for threonine and isoleucine) in the expression of the threonine operon. In the presence of threonine and isoleucine, addition of each amino acid encoded in the proximal part of the leader sequence resulted in a significant decrease of the expression of the operon, over and above that decrease observed in the sole presence of threonine and isoleucine. These effects were cumulative. No such effect was found with the amino acids encoded by the distal part of the leader sequence. These findings are discussed in the light of the current model of attenuation.  相似文献   

5.
6.
Escherichia coli K-12 hisT mutants were isolated, and their properties were studied. These mutants are derepressed for the histidine operon, map close to the purF locus at about 49.5 min on the E. coli linkage map, and lack pseudouridylate synthetase activity. The defect in this enzyme leads to the absence of pseudouridines in the anticodon loop of several transfer ribonucleic acid species, as evidenced by the altered elution profile on reversed-phase chromatography and resistance to amino acid analogues. Finally, the hisT mutants studied have a reduced growth rate that appears to be linked to hisT, although it is not known whether it is due to the same mutation. The normal generation time can be restored by supplementing the medium with adenine, uracil, and isoleucine.  相似文献   

7.
The prophage curing properties of secondary-site lysogens of coliphage lambda have been studied. The site of integration in the original lysogen (L79) is within the ooerator-promoter region of the thr operon. As a result, expression of the thr enzymes is reduced, and the strain is a leaky threonine auxotroph. Heat pulse curing of strain L79 and a thr+ lysogenic revertant (L79-20) showed that heat pulse curing of both lysogens was int and xis dependent and occurred by correct excisions of the prophage. The heat pulse curing restored strain L79 to prototrophy whereas strain L79-20 synthesized the thr enzymes constitutively and at high levels. This indicates that the reversion mutation in strain L79-20 occurred outside of the prophage and within the operator-promoter region of the thr operon. In contrast, spontaneous curing of both lysogens occurred by both correct and incorrect excisions. Spontaneously cured derivatives of strain L79-20 gave rise to three classes of regulatory mutants affecting operator and promoter functions to the thr operon.  相似文献   

8.
9.
10.
The first enzyme for histidine biosynthesis, encoded in the hisG gene, is involved in regulation of expression of the histidine operon in Salmonella typhimurium. The studies reported here concern the question of how expression of the histidine operon is affected by a mutation in the hisG gene that alters the allosteric site of the first enzyme for histidine biosynthesis, rendering the enzyme completely resistant to inhibition by histidine. The intracellular concentrations of the enzymes encoded in the histidine operon in a strain carrying such a mutation on an episome and missing the chromosomal hisG gene are three- to fourfold higher than in a strain carrying a wild-type hisG gene on the episome. The histidine operon on such a strain fails to derepress in response to histidine limitation and fails to repress in response to excess histidine. Furthermore, utilizing other merodiploid strains, we demonstrate that the wild-type hisG gene is trans dominant to the mutant allele with respect to this regulatory phenomenon. Examination of the regulation of the histidine operon in strains carrying the feedback-resistant mutation in an episome and hisT and hisW mutations in the chromosome showed that the hisG regulatory mutation is epistatic to the hisT and hisW mutations. These data provide additional evidence that the first enzyme for histidine biosynthesis is involved in autogenous regulation of expression of the histidine operon.  相似文献   

11.
12.
摘要:【目的】通过分子生物学手段构建重组质粒,将其转入野生型大肠杆菌W3110,分析含苏氨酸操纵子基因的质粒及质粒定点突变解除反馈抑制时,对L-苏氨酸积累的影响。【方法】以W3110染色体DNA为模板,PCR扩增苏氨酸操纵子基因,即启动子THrLp、编码前导肽基因thrL以及thrA、thrB、thrC基因,通过重叠延伸PCR的方法对thrA基因定点突变,解除苏氨酸对它的反馈抑制,构建出重组表达质粒WYE112和WYE134,5 L发酵实验测定L-苏氨酸的产量。【结果】经5 L发酵罐发酵产酸实验,W3110的L-苏氨酸产量为0.036 ± 0.004 g/L,携带含苏氨酸操纵子质粒的W3110菌株L-苏氨酸产量为2.590 ± 0.115 g/L,质粒上thrA解除反馈抑制后,L-苏氨酸的产量增加到9.223 ± 1.279 g/L。【结论】过表达苏氨酸操纵子基因可以使L-苏氨酸积累,进一步解除thrA基因的反馈抑制,可以增强L-苏氨酸积累的效果,为L-苏氨酸工程菌改造的进一步研究奠定了基础。  相似文献   

13.
14.
15.
C Parsot 《The EMBO journal》1986,5(11):3013-3019
The Bacillus subtilis genes encoding threonine synthase (thrC) and homoserine kinase (thrB) have been cloned via complementation of Escherichia coli thr mutants. Determination of their nucleotide sequences indicates that the thrC stop codon overlaps the thrB start codon; this genetic organization suggests that the two genes belong to the same operon, as in E. coli. However, the gene order is thrC-thrB in B. subtilis whereas it is thrB-thrC in the thr operon of E. coli. This inversion of the thrC and thrB genes between E. coli and B. subtilis is indicative of a possible independent construction of the thr operon in these two organisms. In other respects, comparison of the predicted amino acid sequences of the B. subtilis and E. coli threonine synthases with that of Saccharomyces cerevisiae threonine dehydratase and that of E. coli D-serine dehydratase revealed extensive homologies between these pyridoxal phosphate-dependent enzymes. This sequence homology, which correlates with similarities in the catalytic mechanisms of these enzymes, indicates that these proteins, catalyzing different reactions in different metabolic pathways, may have evolved from a common ancestor.  相似文献   

16.
17.
18.
19.
The DNA sequence changes of 31 mutations altering the attenuation control mechanism of the histidine operon are presented. These mutations are discussed in terms of a model for operon regulation that involves a his leader peptide gene whose translation regulates formation of alternative stem-loop structures in the his leader messenger RNA. Three suppressible mutations generate nonsense codons (ochre and UGA) in the his leader peptide gene, demonstrating that translation of this gene is essential for operon expression. Eight mutations presumably reduce the efficiency of translation initiation of the his leader peptide gene, causing reduced levels of operon expression. Five of these mutations directly alter the leader peptide gene initiator codon (AUG). Three mutations alter sequences just in front of the initiator codon and presumably alter the ribosome recognition site. Fourteen mutations reduce the stability of the his leader mRNA stem-loop structures that are alternatives to the attenuator stem. The properties of these mutations provide support for the role of these stem-loop structures in preventing formation of the attenuator stem. Finally, we show that mutations that alter the attenuator stem suppress hisO mutations. This lends support to the proposal that these hisO mutations cause reduced levels of operon expression due to excessive attenuator stem formation. The properties of these 31 mutations provide substantial support for the model of his operon regulation described in this paper.  相似文献   

20.
Previous studies of phenylalanyl-tRNA synthetase expression in Escherichia coli strongly suggested that the pheS, T operon was regulated by a phenylalanine-mediated attenuation mechanism. To investigate the functions of the different segments composing the pheS, T attenuator site, a series of insertion, deletion and point mutations in the pheS, T leader region have been constructed in vitro on a recombinant M13 phage. The effects of these alterations on the regulation of the operon were measured after transferring each mutation onto a lambda phage carrying a pheS, T-lacZ fusion. The behaviours of the various mutants agree with the predictions of the attenuation model. The role of the antiterminator (2-3 pairing) as competitor of the terminator (3-4 pairing) is demonstrated by several mutations affecting the stability of the 2-3 base-pairing. The existence of deletions and point mutations in the 3-4 base-pairing shows that the terminator is essential for both expression level and regulation of the operon. Mutations in the translation initiation site of the leader peptide show that the expression of the leader peptide is essential for attenuation control. However, alteration of the translation initiation rate of the leader peptide derepresses the pheS, T operon, which is the opposite of what is observed with the trp operon. This difference is explained in terms of different translation initiation efficiencies of the leader peptides. Finally, insertion mutations, increasing gradually the distance between the leader peptide stop codon and the first strand of the antiterminator, derepress the pheS, T operon and show that formation of the antiterminator structure is under the control of the translation of the leader peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号