首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Nabiev  S. R.  Bershitsky  S. Y.  Tsaturyan  A. K.  Koubassova  N. A. 《Biophysics》2021,66(2):304-309
Biophysics - The temperature dependences of the tension and stiffness of actively contracting single fibers of the rabbit slow muscle (m. soleus) were studied using the Joule temperature jump....  相似文献   

2.
Anecdotal reports suggesting that creatine (Cr) supplementation may cause side effects, such as an increased incidence of muscle strains or tears, require scientific examination. In this study, it was hypothesized that the rapid fluid retention and "dry matter growth" evident after Cr supplementation may cause an increase in musculotendinous stiffness. Intuitively, an increase in musculotendinous stiffness would increase the chance of injury during exercise. Twenty men were randomly allocated to a control or an experimental group and were examined for musculotendinous stiffness of the triceps surae and for numerous performance indices before and after Cr ingestion. The Cr group achieved a significant increase in body mass (79.7 +/- 10.8 kg vs. 80.9 +/- 10.7 kg), counter movement jump height (40.2 +/- 4.8 cm vs. 42.7 +/- 5.9 cm), and 20-cm drop jump height (32.3 +/- 3.3 cm vs. 35.1 +/- 4.8 cm) after supplementation. No increase was found for musculotendinous stiffness at any assessment load. There were no significant changes in any variables within the control group. These findings have both performance- and injury-related implications. Primarily, anecdotal evidence suggesting that Cr supplementation causes muscular strain injuries is not supported by this study. In addition, the increase in jump performance is indicative of performance enhancement in activities requiring maximal power output.  相似文献   

3.
The purpose of this study was to compare the effects of an Olympic weightlifting (OL) and traditional weight (TW) training program on muscle coactivation around the knee joint during vertical jump tests. Twenty-six men were assigned randomly to 3 groups: the OL (n = 9), the TW (n = 9), and Control (C) groups (n = 8). The experimental groups trained 3 d · wk(-1) for 8 weeks. Electromyographic (EMG) activity from the rectus femoris and biceps femoris, sagittal kinematics, vertical stiffness, maximum height, and power were collected during the squat jump, countermovement jump (CMJ), and drop jump (DJ), before and after training. Knee muscle coactivation index (CI) was calculated for different phases of each jump by dividing the antagonist EMG activity by the agonist. Analysis of variance showed that the CI recorded during the preactivation and eccentric phases of all the jumps increased in both training groups. The OL group showed a higher stiffness and jump height adaptation than the TW group did (p < 0.05). Further, the OL showed a decrease or maintenance of the CI recorded during the propulsion phase of the CMJ and DJs, which is in contrast to the increase in the CI observed after TW training (p < 0.05). The results indicated that the altered muscle activation patterns about the knee, coupled with changes of leg stiffness, differ between the 2 programs. The OL program improves jump performance via a constant CI, whereas the TW training caused an increased CI, probably to enhance joint stability.  相似文献   

4.
Although the influence of the series elastic element of the muscle–tendon unit on jump performance has been investigated, the corresponding effect of the parallel elastic element remains unclear. This study examined the relationship between the resting calf muscle stiffness and drop jump performance. Twenty-four healthy men participated in this study. The shear moduli of the medial gastrocnemius and the soleus were measured at rest as an index of muscle stiffness using ultrasound shear wave elastography. The participants performed drop jumps from a 15 cm high box. The Spearman rank correlation coefficient was used to examine the relationships between shear moduli of the muscles and drop jump performance. The medial gastrocnemius shear modulus showed a significant correlation with the drop jump index (jump height/contact time) (r = 0.414, P = 0.044) and jump height (r = 0.411, P = 0.046), but not with contact time (P > 0.05). The soleus shear modulus did not correlate with these jump parameters (P > 0.05). These results suggest that the resting medial gastrocnemius stiffness can be considered as one of the factors that influence drop jump performance. Therefore, increase in resting muscle stiffness should enhance explosive athletic performance in training regimens.  相似文献   

5.
The purpose of the present study was to investigate the effect of stretch-shortening-cycle-induced muscle damage on the time course of mechanical behaviour in the drop jump. Ten healthy male subjects performed submaximal stretch-shortening cycle (SSC) exercise on a special sledge apparatus. Exhaustion occurred on average within 3 min. A drop jump (DJ) test from a 50-cm height was performed before and immediately after the sledge exercise as well as 2 h, 2 days and 4 days later. The fatigue exercise showed relatively high blood lactate concentration [12.5 (SD 2.6) mmol x l(-1)] and an increase of serum creatine kinase (CK) activity delayed by 2 days [540 (SD 407) U x l(-1)]. The initial decline in the jump performance (before - immediately after) was related negatively to the early recovery in performance (immediately after 2 h) (P < 0.05). The early recovery of the knee joint moment at the end of stretch showed a negative correlation to the delayed decrease in DJ performance (2 h 2 days) (P < 0.01). Thus, the DJ performance showed an initial decline followed by an early recovery and a secondary decline. Both the initial decline and early recovery in the knee joint moment at the end of stretch were related to the corresponding initial (after 2 h) (P < 0.05) and secondary increases (2 h - 2 days) (P < 0.01) in CK. It is suggested that the early recovery as well as the initial decline in the knee joint function could depend on the degree of muscle damage. Delayed decrease in initial stiffness (2 h - 2 days) was negatively related to the corresponding changes in the knee joint angle at touch down in DJ (P < 0.001). These interactions would imply that the decrease in the stiffness regulation and the modulation of the prelanding motor control might be attributable to secondary muscle damage during 2 days after the SSC exercise. Therefore, it may be suggested that the changes in the DJ performance after the exhausting SSC exercise accompany the progress of muscle damage observed by the corresponding increase in serum CK concentration and the corresponding deterioration of stiffness regulation and motor control in DJ.  相似文献   

6.
The effects of a temperature jump (T-jump) from 5-7 degrees C to 26-33 degrees C were studied on tension and stiffness of glycerol-extracted fibers from rabbit psoas muscle in rigor and during maximal Ca2+ activation. The T-jump was initiated by passing an alternating current pulse (30 kHz, up to 2.5 kV, duration 0.2 ms) through a fiber suspended in air. In rigor the T-jump induces a drop of both tension and stiffness. During maximal activation, the immediate stiffness dropped by (4.4 +/- 1.6) x 10(-3)/1 degree C (mean + SD) in response to the T-jump, and this was followed by a monoexponential stiffness rise by a factor of 1.59 +/- 0.14 with a rate constant ks = 174 +/- 42 s-1 (mean +/- SD, n = 8). The data show that the fiber stiffness, determined by the cross-bridge elasticity, in both rigor and maximal activation is not rubber-like. In the activated fibers the T-jump induced a biexponential tension rise by a factor of 3.45 +/- 0.76 (mean +/- SD, n = 8) with the rate constants 500-1,000 s-1 for the first exponent and 167 +/- 39 s-1 (mean +/- SD, n = 8) for the second exponent. The data are in accordance with the assumption that the first phase of the tension transient after the T-jump is due to a force-generating step in the attached cross-bridges, whereas the second one is related to detachment and reattachment of cross-bridges.  相似文献   

7.
Although it is suggested that periods of naturally occurring accelerated adaptation may exist for various physical parameters, it would appear that no such evidence exists for stretch-shortening cycle (SSC) development. Two hundred and fifty male youths aged 7-17 years were tested for squat (SJ) and countermovement jump (CMJ) height, reactive strength index (RSI), and leg stiffness, with analyses of variance used to establish any significant between-group differences. Additionally, to ascertain the existence of periods of accelerated adaptation, inferences were made about the magnitudes of change between consecutive chronological age groups in relation to the smallest worthwhile change. The largest mean differences (±90% confidence limits) occurred between age groups 10 and 11 (G10-G11) for squat jump (SJ) height (21.61 ± 12.08-31.94%), CMJ height (20.80 ± 11.1-44.1%), and RSI (26.51 ± 11.07-44.10%); and between G12 and G13 for SJ (15.31 ± 7.47-23.73%) and CMJ (16.09 ± 7.50-25.38%) height. Negative mean differences occurred between G11 and G12 for SJ height (-1.32 ± -9.30 to 7.37%), CMJ jump height (-7.68 ± -15.15 to 0.45%) and RSI (-11.48 ± -22.21 to 0.74%); and between G10 and G11 for leg stiffness (-8.87 ± -18.85 to 2.34%). It would appear almost certain that windows of accelerated adaptation may exist for SJ and CMJ height and RSI in male youths; however, leg stiffness results would suggest that fast-SSC function may follow a different developmental trend.  相似文献   

8.
Joulean temperature jump from 4-7 degrees to 20-25 degrees completed in 0.2 ms was applied to suspended in the air chemically skinned Ca-activated (pCa = 5.5-6) skeletal muscle fibres of the frog 2 ms after stepwise length changes (duration 0.3 ms, amplitudes --6. +3 nm per half sarcomere). The temperature jump induced a biphasic rise of tension, as was described earlier. Neither the time constant of the 2nd slow phase, nor maximum tension after the temperature jump were dependent on the length step amplitude. The amplitude and time constant of the 1st phase (1.2-0.28 ms) decreased after the fibre release. It shows that the 1st phase of the tension rise induced by the temperature jump is due to conformation in cross-bridges attached to thin filaments.  相似文献   

9.
The purpose of this study was to concurrently determine the effect that plyometric and isometric training has on tendon stiffness (K) and muscle output characteristics to compare any subsequent changes. Thirteen men trained the lower limbs either plyometrically or isometrically 2-3 times a week for a 6-week period. Medial gastrocnemius tendon stiffness was measured in vivo using ultrasonography during ramped isometric contractions before and after training. Mechanical output variables were measured using a force plate during concentric and isometric efforts. Significant (p < 0.05) training-induced increases in tendon K were seen for the plyometric (29.4%; 49.0 +/- 10.8 to 63.4 +/- 9.2 N x mm(-1)) and isometric groups (61.6%; 43.9 +/- 2.5 to 71.0 +/- 7.4 N x mm(-1)). Statistically similar increases in rate of force development and jump height were also seen for both training groups, with increases of 18.9 and 58.6% for the plyometric group and 16.7 and 64.3% for the isometric group, respectively. Jump height was found to be significantly correlated with tendon stiffness, such that stiffness could explain 21% of the variance in jump height. Plyometric training has been shown to place large stresses on the body, which can lead to a potential for injury, whereas explosive isometric training has been shown here to provide similar benefits to that of plyometric training with respect to the measured variables, but with reduced impact forces, and would therefore provide a useful adjunct for athletic training programs within a 6-week time frame.  相似文献   

10.
The purposes of this study are: a) to examine the possibility of influencing the leg stiffness through instructions given to the subjects and b) to determine the effect of the leg stiffness on the mechanical power and take-off velocity during the drop jumps. A total of 15 athletes performed a series of drop jumps from heights of 20, 40 and 60 cm. The instructions given to the subjects were a) "jump as high as you can" and b) "jump high a little faster than your previous jump". The jumps were performed at each height until the athlete could not achieve a shorter ground contact time. The ground reaction forces were measured using a "Kistler" force plate (1000 Hz). The athletes body positions were recorded using a high speed (250 Hz) video camera. EMG was used to measure muscle activity in five leg muscles. The data was divided into 5 groups where group 1 was made up of the longest ground contact times of each athlete and group 5 the shortest. The leg and ankle stiffness values were higher when the contact times were shorter. This means that by influencing contact time through verbal instructions it is possible to control leg stiffness. Maximum center of mass take-off velocity the can be achieved with different levels of leg stiffness. The mechanical power acting on the human body during the positive phase of the drop jumps had the highest values in group 3. This means that there is an optimum stiffness value for the lower extremities to maximize mechanical power.  相似文献   

11.
Impact forces and shock deceleration during jumping and running have been associated with various knee injury etiologies. This study investigates the influence of jump height and knee contact angle on peak ground reaction force and segment axial accelerations. Ground reaction force, segment axial acceleration, and knee angles were measured for 6 male subjects during vertical jumping. A simple spring-mass model is used to predict the landing stiffness at impact as a function of (1) jump height, (2) peak impact force, (3) peak tibial axial acceleration, (4) peak thigh axial acceleration, and (5) peak trunk axial acceleration. Using a nonlinear least square fit, a strong (r = 0.86) and significant (p < or = 0.05) correlation was found between knee contact angle and stiffness calculated using the peak impact force and jump height. The same model also showed that the correlation was strong (r = 0.81) and significant (p < or = 0.05) between knee contact angle and stiffness calculated from the peak trunk axial accelerations. The correlation was weaker for the peak thigh (r = 0.71) and tibial (r = 0.45) axial accelerations. Using the peak force but neglecting jump height in the model, produces significantly worse correlation (r = 0.58). It was concluded that knee contact angle significantly influences both peak ground reaction forces and segment accelerations. However, owing to the nonlinear relationship, peak forces and segment accelerations change more rapidly at smaller knee flexion angles (i.e., close to full extension) than at greater knee flexion angles.  相似文献   

12.
The purpose of this investigation was to observe the influence of increasing amounts of preactivity and eccentric muscle activity imposed by three different jump types on concentric vertical jumping performance. Sixteen athletes involved in jumping-related sports at Appalachian State University, which is a Division IA school, performed a static jump (SJ), counter-movement jump (CMJ), and drop jump (DJ). Force, power, velocity, and jump height were measured during each jump type. In addition, muscle activity was measured from two agonist muscles (vastus lateralis, vastus medialis) and one antagonist muscle (biceps femoris). Preactivity and eccentric phase muscle activity of the agonist muscles (average integrated electromyography) was significantly (p < or = 0.05) higher during the DJ (preactivity, 0.2 +/- 0.11 mV; eccentric phase, 1.00 +/- 0.36 mV) in comparison with the CMJ (preactivity, 0.11 +/- 0.10 mV; eccentric phase, 0.45 +/- 0.17 mV). Peak concentric force was highest during the DJ and was significantly different among all three jump types (SJ, CMJ, DJ). Maximal jump height was significantly higher during the DJ (0.41 +/- 0.05 m) and CMJ (0.40 +/- 0.06 m) compared with the SJ (0.37 +/- 0.07 m). However, no significant difference in jump height existed between the CMJ and DJ. A positive energy balance, as assessed by force-displacement curves during the eccentric and concentric phases, was observed during the CMJ, and a negative energy balance was observed during the DJ. The data from this investigation indicate that a significant increase in concentric vertical jump performance is associated with increased levels of preactivity and eccentric phase muscle activity (SJ to CMJ). However, higher eccentric loading (CMJ to DJ) leads to a negative energy balance during the eccentric phase, which may relate to a non-significant increase in vertical jump height, even with coincidental increases in peak concentric force. Practitioners may want to focus on improving eccentric phase muscle activity through the use of plyometrics to improve overall jumping performance in athletes.  相似文献   

13.
The maximal height attained in a vertical jump is heavily influenced by the execution of a large countermovement prior to the upward motion. When a jump must be executed without a countermovement, as in a squat jump, the maximal jump height is reduced. During such conditions, the human body may use other strategies in order to increase performance. The purpose of this research was to investigate the effects of two strategies employed during the initiation of the squat jump: the premovement silent period (PSP), and the small amplitude countermovement (SACM). Fifteen elite male volleyball players (20.6 +/- 1.6 years) and 13 untrained males (20.2 +/- 1.7 years) performed 10 maximal effort squat jumps from identical starting positions. The electromyographic activity of the vastus lateralis and biceps femoris was measured in conjunction with the vertical ground reaction force and vertical displacement. It was found that the presence of a PSP or a SACM of 1-3 cm did not increase maximal squat jump height significantly (p > 0.05), in neither the highly trained athletes nor the untrained individuals. These results suggest that these strategies do not play a major role in the determination of jump height. Researchers have assumed that a squat jump is purely concentric, and that there are no facilitating mechanisms present that may influence the performance of the jump. This study provides evidence to support this assumption.  相似文献   

14.
We have developed a novel apparatus, an ergometer, to simultaneously measure the horizontal and vertical components of the work done during takeoff by the fruitfly, Drosophila. We confirm the anatomical prediction that all the work comes from the middle (mesothoracic) legs. With all six legs on the ergometer platform, displacement is directed roughly 45 degrees forwards or backwards. Both directions are equally likely. This provides for a random, rapid horizontal component to the escape behaviour for flies. When the thoracic stiffness is reduced (due to a mutation in which the indirect flight muscles (IFM) do not form myofibrils), jump output is increased. We conclude that the jump muscle, the tergal depressor of trochanter (TDT), which lacks direct muscle antagonists, performs work during the jump against thoracic stiffness. Both cuticle and IFM contribute to the thoracic stiffness as the TDT still produces repeated contractions in the absence of the IFM. Degeneration of the TDT due to mutants in three sarcomeric proteins results in reduction of the jump output. In one of these, the myosin heavy chain mutant, Mhc5, we show that degeneration occurs with age. The anatomical characteristics of Drosophila mean that we are recording, for the first time in the intact fly, the output of a single muscle that has high homology to vertebrate skeletal muscle. Developing an ergometer for Drosophila offers novel opportunities to assess the functional consequences of mutations in muscle proteins, synaptic physiology, neuromuscular development and aging.  相似文献   

15.
Contractile force is transmitted to the skeleton through tendons and aponeuroses, and, although it is appreciated that the mechanocharacteristics of these tissues play an important role for movement performance with respect to energy storage, the association between tendon mechanical properties and the contractile muscle output during high-force movement tasks remains elusive. The purpose of the study was to investigate the relation between the mechanical properties of the connective tissue and muscle performance in maximal isometric and dynamic muscle actions. Sixteen trained men participated in the study. The mechanical properties of the vastus lateralis tendon-aponeurosis complex were assessed by ultrasonography. Maximal isometric knee extensor force and rate of torque development (RTD) were determined. Dynamic performance was assessed by maximal squat jumps and countermovement jumps on a force plate. From the vertical ground reaction force, maximal jump height, jump power, and force-/velocity-related determinants of jump performance were obtained. RTD was positively related to the stiffness of the tendinous structures (r = 0.55, P < 0.05), indicating that tendon mechanical properties may account for up to 30% of the variance in RTD. A correlation was observed between stiffness and maximal jump height in squat jumps and countermovement jumps (r = 0.64, P < 0.05 and r = 0.55, P < 0.05). Power, force, and velocity parameters obtained during the jumps were significantly correlated to tendon stiffness. These data indicate that muscle output in high-force isometric and dynamic muscle actions is positively related to the stiffness of the tendinous structures, possibly by means of a more effective force transmission from the contractile elements to the bone.  相似文献   

16.
Kamatari YO  Nakamura HK  Kuwata K 《FEBS letters》2007,581(23):4463-4467
A continuous-wave probed laser-induced temperature jump system was constructed and applied to monitor the changes in tryptophan fluorescence of the beta-lactoglobulin during its folding; the kinetic phases were traced from 300 ns to 10 ms after a temperature jump. Notably, an early phase with typical squeezed-exponential characteristics, [exp[-(kt)(beta)], beta>1.0], was observed around several tens of microseconds after the temperature jump, which is actually the earliest phase ever observed for beta-lactoglobulin. This process can be explained by conformational shift occurring within the unfolded ensemble (U-->U'), which is followed by the non-native intermediate (I) formation of this protein.  相似文献   

17.
Dynamics of the long jump   总被引:1,自引:0,他引:1  
A mechanical model is proposed which quantitatively describes the dynamics of the centre of gravity (c.g.) during the take-off phase of the long jump. The model entails a minimal but necessary number of components: a linear leg spring with the ability of lengthening to describe the active peak of the force time curve and a distal mass coupled with nonlinear visco-elastic elements to describe the passive peak. The influence of the positions and velocities of the supported body and the jumper's leg as well as of systemic parameters such as leg stiffness and mass distribution on the jumping distance were investigated. Techniques for optimum operation are identified: (1) There is a minimum stiffness for optimum performance. Further increase of the stiffness does not lead to longer jumps. (2) For any given stiffness there is always an optimum angle of attack. (3) The same distance can be achieved by different techniques. (4) The losses due to deceleration of the supporting leg do not result in reduced jumping distance as this deceleration results in a higher vertical momentum. (5) Thus, increasing the touch-down velocity of the jumper's supporting leg increases jumping distance.  相似文献   

18.
An observed relationship between soccer match duration and injury has led to research examining the changes in lower extremity mechanics and performance with fatiguing exercise. Because many fatigue protocols are designed to result in substantial muscular deficits, they may not reflect the fatigue associated with sport-specific demands that have been associated with the increasing incidence of injury as the match progresses. Thus, the aim of this study was to systematically analyze the progressive changes in lower extremity mechanics and performance during an individualized exercise protocol designed to simulate a 90-minute soccer match. Previous match analysis data were used to systematically develop a simulated soccer match exercise protocol that was individualized to the participant's fitness level. Twenty-four National Collegiate Athletic Association Division I soccer players (12 men, 12 women) participated in 2 testing sessions. In the first session, the participants completed the Yo-Yo Intermittent Recovery Test Level 1 to assess their fitness level and determine the 5 submaximal running intensities for their soccer match simulation. In the second test session, progressive changes in the rating of perceived exertion (RPE), lower extremity performance (vertical jump height, sprint speed, and cutting speed), and movement mechanics (jumping vertical stiffness and terminal landing impedance) were measured during the soccer match simulation. The average match simulation running distance was 10,165 ± 1,001 m, consistent with soccer match analysis research. Time-related increases in RPE, and decrements in sprinting, and cutting speed were observed, suggesting that fatigue increased as the simulation progressed. However, there were no time-related decreases in vertical jump height, changes in lower extremity vertical stiffness in jumping, or vertical impedance during landing. Secondary analyses indicated that the coordinative changes responsible for the maintenance of stiffness and impedance differed between the dominant and nondominant limbs. Despite an increase in RPE to near exhaustive levels, and decrements in sprint and cutting performance, the participants were able to maintain jump performance and movement mechanics. Interestingly, the coordinative changes that allowed for the maintenance of vertical stiffness and impedance varied between limbs. Thus, suggesting that unilateral training for performance and injury prevention in soccer-specific populations should be considered.  相似文献   

19.
Although athletes with unilateral below-the-knee amputations (BKAs) generally use their affected leg, including their prosthesis, as their take-off leg for the long jump, little is known about the spring-like leg behavior and stiffness regulation of the affected leg. The purpose of this study was to investigate vertical stiffness during one-legged hopping in an elite-level long jump athlete with a unilateral BKA. We used the spring-mass model to calculate vertical stiffness, which equals the ratio of maximum vertical ground reaction force to maximum center of mass displacement, while the athlete with a BKA hopped on one leg at a range of frequencies. Then, we compared the vertical stiffness of this athlete to seven non-amputee elite-level long-jumpers. We found that from 1.8 to 3.4 Hz, the vertical stiffness of the unaffected leg for an athlete with a BKA increases with faster hopping frequencies, but the vertical stiffness of the affected leg remains nearly constant across frequencies. The athlete with a BKA attained the desired hopping frequencies at 2.2 and 2.6 Hz, but was unable to match the lowest (1.8 Hz) and two highest frequencies (3.0 and 3.4 Hz) using his affected leg. We also found that at 2.5 Hz, unaffected leg vertical stiffness was 15% greater than affected leg vertical stiffness, and the vertical stiffness of non-amputee long-jumpers was 32% greater than the affected leg vertical stiffness of an athlete with a BKA. The results of the present study suggest that the vertical stiffness regulation strategy of an athlete with a unilateral BKA is not the same in the unaffected versus affected legs, and compared to non-amputees.  相似文献   

20.
The ability to jump high is considered important in a number of sports. It is commonly accepted that the use of the arms and a counter movement increase jump height. In some sport situations (e.g., volley ball block, basketball rebound), athletes may not be able to utilize a counter movement or arm swing. The purpose of this study is to examine gender differences in the contribution of the arm swing and counter movement to vertical jump height. Fifty college students, 25 men (age = 21.4 +/- 1.7 years, height = 182.2 +/- 8 cm, weight = 83.7 +/- 12.4 kg) and 25 women (age = 20.7 +/- 1.6 years, height = 166.7 +/- 6.3 cm, weight = 61.5 +/- 7.0 kg), performed 4 jumping movements: squat jumps with hands on hips (SNA), counter movement jump with hands on hips (CMNA), squat jump with arm swing (SA), and counter movement with arm swing (CMA). Significant differences were found between men's and women's performance, as well as between each type of jump within each gender. A mixed-model analysis of variance detected gender differences with respect to changes in the jumping movement. For both sexes the jumps in order from worst to best were SNA, CMNA, SA, and CMA. Peak power values for men were 4,057, 4,020, 4,644, and 4,747 W, respectively, for the 4 jumps. The female power values were 2,543, 2,445, 2,842, and 2,788 W, respectively, for the 4 jumps. Arms increased jump height more than a counter movement for both genders, with jump heights for men at 29.6, 31, 36, and 38 cm, respectively, and those of women 21, 22, 26, and 27 cm, respectively. Use of the arms was found to increase the jump height of the men significantly more than that of women. Changes in jumping movements affect men and women differently. The greater increase in jump height for the men when using the arm swing could be because of greater upper body strength of men compared with women. This could have applications to training and upper body strength and also to modeling of jumping movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号