首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro responsiveness to various stimulators of aldosterone secretion was studied in a perifusion system using slices obtained from three aldosterone-producing adenomas (APAs), three adjacent nontumorous glands and three normal adrenal glands. All three APA tissues responded to angiotensin II, K and ACTH in vitro. Angiotensin II (10 nM), K (12 mM) and ACTH (10 nM) caused more than a 2-fold increase in aldosterone secretion. The sensitivity of APA tissues to angiotensin II was identical to that in normal adrenal cortex. In slices obtained from APA, angiotensin II induced rapid increases in [3H]inositol and [45Ca] efflux, both of which preceded the aldosterone response. These results suggest that APA cells have an almost normal transducing system to stimulators of aldosterone secretion.  相似文献   

2.
Human adrenocortical tissue obtained, on eight occasions, at the time of nephrectomy for renal carcinoma (outside the adrenal pole) was treated by collagenase to dissociate the cells. These were hen submitted to a short, 2-h, incubation with the N-terminal fragment (16 K) of POMC, its derivative, gamma 3-MSH, beta-lipotropin and beta-endorphin, in parallel with ACTH 1-24 (Synacthen Ciba) and angiotensin II (AII, Hypertensin Ciba). Under the influence of ACTH (10(-10) M), and AII (10(-10) M), basal glucocorticoid output, including more than 80% cortisol, was increased by factors of 3 +/- 0.51 (SEM) and 1.35 +/- 0.12 (SEM), respectively. The corresponding aldosterone responses were 1.60 +/- 0.13 for ACTH and 1.38 +/- 0.09 for AII. With the exception of gamma 3-MSH, the POMC peptides under study had no steroidogenic effect. gamma 3-MSH (10(-9) M) and AII (10(-10) M) stimulated aldosterone production to approximately similar levels of, respectively, 1.23 +/- 0.05 and 1.38 +/- 0.09 times the basal production. In contrast to AII however, gamma 3-MSH showed no apparent effect on glucocorticoid output. Steroidogenic response to ACTH was potentiated by gamma 3-MSH at a concentration of 10(-10) M which, when used alone, proved ineffective. This potentiating effect was pronounced for the aldosterone response, whereas the glucocorticoid production was hardly affected. This action ceased to be visible when the cells reached maximal stimulation by ACTH. These findings suggest that gamma 3-MSH--a portion of the 16 K fragment--may have a possible role in aldosterone secretion.  相似文献   

3.
We evaluated changes in cytosolic calcium concentration (Ca++) and steroidogenesis in rat adrenal glomerulosa cells (GC) stimulated with potassium (K+) or angiotensin II (AII). Cytosolic Ca++ concentration was determined using the Ca++-sensitive, fluorescent dye QUIN 2. Raising extracellular K+ increased cytosolic Ca++ from 267 +/- 23 nM at 3.7 mM K+ to a maximum of 377 +/- 40 nM at 8.7 mM K+ (p less than 0.01, N = 23). AII also increased cytosolic Ca++ from 238 +/- 20 nM to a maximum of 427 +/- 42 nM at 10(-7) M (p less than 0.01, N = 16). In parallel studies, K+ and AII stimulated aldosterone secretion from QUIN 2-loaded GC at concentrations similar to those which raised cytosolic Ca++. QUIN 2-loaded cells were as responsive steroidogenically as unloaded cells and showed trypan blue exclusion of 98% suggesting that QUIN 2 did not compromise cellular viability. These results provide direct support for a role of cytosolic Ca++ as a second messenger during stimulation of aldosterone secretion by both K+ and AII.  相似文献   

4.
When the dose-response curve of adrenocorticotropin (ACTH)-induced aldosterone secretion is compared to that of ACTH-induced intracellular cAMP, the ED50 for intracellular cAMP is more than 10 times as high as that for aldosterone production. In contrast, the dose-response curve of forskolin-induced aldosterone secretion correlates well with that for forskolin-induced intracellular cAMP. ACTH, but not forskolin, increases calcium influx into glomerulosa cells without inducing the mobilization of calcium from an intracellular pool. The effect of ACTH on calcium influx is dose-dependent and ED50 is 3.5 X 10(-11) M. In a perifusion system, the effect of 1 nM ACTH on aldosterone secretion is much greater than that of 1 microM forskolin, even though these two stimulators induce identical increases in the intracellular cAMP. Perifusion with combined A23187 (50 nM) and forskolin (1 microM) stimulates aldosterone secretion to a value comparable to that induced by 1 nM ACTH. Likewise, BAY K 8644 (1 nM), which induces a comparable increase in calcium influx, potentiates the effect of 1 microM forskolin. When the intracellular [Ca2+] is fixed at either 100 or 300 nM, forskolin-stimulated intracellular cAMP content is identical, but ACTH-stimulated intracellular cAMP content at 100 nM [Ca2+]i is 60% of that at 300 nM [Ca2+]i. Both the ACTH- and forskolin-induced aldosterone secretion rate is higher at 300 nM than at 100 nM [Ca2+]i. These results indicate that ACTH stimulates calcium influx, that calcium potentiates ACTH-induced but not forskolin-induced cAMP generation, and that Ca2+ and cAMP act as synarchic messengers in ACTH-mediated aldosterone secretion.  相似文献   

5.
Somatostatin (SRIF) is a potent inhibitor of angiotensin II (AII)-stimulated aldosterone production in rat adrenal glomerulosa cells. This inhibition can be prevented by pretreatment of the cells with pertussis toxin, but little else is known about either the specificity or the biochemical bases of SRIF action in this tissue. We therefore conducted detailed studies of the influence of SRIF on steroidogenesis elicited by AII and the other two physiological stimuli of aldosterone production, K+ and adrenocorticotropic hormone (ACTH), in rat adrenal glomerulosa cells. We also determined the effects of SRIF on cytosolic calcium concentration ([Ca2+]i) and cellular cAMP levels. In these studies, SRIF was found to inhibit the aldosterone responses elicited by low concentrations of all three stimuli, which are believed to promote steroid secretion via discrete but interacting cellular signalling mechanisms. In addition, SRIF consistently lowered cellular cAMP levels in the presence of each of the three agents. However, SRIF caused a small and transient increase rather than a decrease in basal ([Ca2+]i), and had no effect on the subsequent elevation of ([Ca2+]i) by AII and K+. These data indicate that activation of a Gi-like protein by SRIF influences steroid responses to all three major regulators of glomerulosa-cell function, and suggest that basal levels of cAMP play a facilitatory or permissive role in the control of aldosterone production by predominantly calcium-mobilizing regulators of mineralocorticoid secretion.  相似文献   

6.
In this study we have investigated various components of the stimulus-secretion coupling process leading to aldosterone secretion from the calf adrenal glomerulosa cells as evoked by angiotensin II (AII) and potassium (K+). The roles of Ca2+, calmodulin and protein kinase C in the sustained phase rather than initiation of aldosterone secretion were of special interest. Our investigations revealed that the reduction of extracellular Ca2+ by EGTA or interruption of Ca2+ influx by nitrendipine at various time points after stimulation with either AII or K+ markedly compromised aldosterone secretion. Calmodulin inhibitors, calmidazolium and W-7 reduced aldosterone secretion profoundly. Agonists of protein kinase C, phorbol ester or diacylglycerol analogues failed to stimulate aldosterone secretion while the protein kinase C inhibitor, H-7, only partially inhibited aldosterone secretion at a concentration which completely inhibited protein kinase C activity. Calmodulin inhibitors produced significantly greater inhibition of aldosterone secretion than inhibitors of protein kinase C.  相似文献   

7.
The role of cyclic AMP in the stimulation of corticotropin (ACTH) release by corticotropin-releasing factor (CRF), angiotensin II (AII), vasopressin (VP), and norepinephrine (NE) was examined in cultured rat anterior pituitary cells. Synthetic CRF rapidly stimulated cyclic AMP production, from 4- to 6-fold in 3 min to a maximum of 10- to 15-fold at 30 min. Stimulation of ACTH release by increasing concentrations of CRF was accompanied by a parallel increase in cyclic AMP formation, with ED50 values of 0.5 and 1.3 nM CRF for ACTH and cyclic AMP, respectively. A good correlation between cyclic AMP formation and ACTH release was also found when pituitary cells were incubated with the synthetic CRF(15-41) fragment, which displayed full agonist activity on both cyclic AMP and ACTH release with about 0.1% of the potency of the intact peptide. In contrast, the CRF(21-41) and CRF(36-41) fragments were completely inactive. The other regulators were less effective stimuli of ACTH release and caused either no change in cyclic AMP (AII and VP) or a 50% decrease in cyclic AMP (NE). Addition of the phosphodiesterase inhibitor, methylisobutylxanthine, increased the sensitivity of the ACTH response to CRF but did not change the responses to AII, VP, and NE. In pituitary membranes, adenylate cyclase activity was stimulated by CRF in a dose-dependent manner with ED50 of 0.28 nM, indicating that the CRF-induced elevation of cyclic AMP production in intact pituitary cells is due to increased cyclic AMP biosynthesis. The intermediate role of cyclic AMP in the stimulation of ACTH release by CRF was further indicated by the dose-related increase in cyclic AMP-dependent protein kinase activity in pituitary cells stimulated by CRF with ED50 of 1.1 nM. These data demonstrate that the action of CRF on ACTH release is mediated by the adenylate cyclase-protein kinase pathway and that the sequence requirement for bioactivity includes the COOH-terminal 27 amino acid residues of the molecule. The other recognized regulators of ACTH release are less effective stimuli than CRF and do not exert their actions on the corticotroph through cyclic AMP-dependent mechanisms.  相似文献   

8.
Three problems were studied on the human and rabbit eye: to what extent the mineralocorticoids contribute to the control of Na+ and K+ transport in the lens epithelium, how do the glucocorticoids influence the concentration of glucose in the aqueous humour and what is the effect of the pituitary-adrenal axis on the hemato-ocular barrier. Specific receptor-like proteins binding aldosterone were found in the lens epithelium. Na+ and K+ concentrations in the aqueous were influenced by both aldosterone and spironolactone administration. The aldosterone concentration in human cataracts was found to be higher in cases of cataracts complicated by arterial hypertension. In spite of some indication of anticataractogenous action of mineralocorticoids, aldosterone did not prevent the formation of cortisol-induced cataract in chick embryos. Glucose concentration in the aqueous was increased by glucocorticoid administration as well as by stimulation of their secretion by ACTH. Further, the contribution of the pituitary-adrenal axis to the breakdown of the hemato-ocular barrier was investigated by measuring the changes of the total protein content in the aqueous. ACTH1-24 caused a partial breakdown of the barrier, as well as ACTH4-10 or alpha-MSH. As the latter two peptides lack the stimulative effect on the corticoid secretion and glucocorticoids themselves fail to increase the protein content in the aqueous, the breakdown of the hemato-ocular barrier seems to be essential for ACTH-linked peptide fragments and is not mediated by corticoids.  相似文献   

9.
We have used the patch-clamp technique to study the effect of angiotensin II (AII) on the activity of the apical 70 pS K+ channel and used Na(+)-sensitive fluorescent dye (SBFI) to investigate the effect of AII on intracellular Na+ concentration (Na+i) in the thick ascending limb (TAL) of the rat kidney. Addition of 50 pM AII reversibly reduced NPo, a product of channel open probability (Po) and channel number (N), to 40% of the control value and reduced the Na+i by 26%. The AII (50 pM)-induced decrease in channel activity defined by NPo was partially reversed by addition of 5 microM 17-octadecynoic acid (17-ODYA), an agent which blocks the cytochrome P450 monooxygenase. The notion that P450 metabolites of arachidonic acid (AA) may mediate the inhibitory effect of AII was further suggested by experiments in which addition of 10 nM of 20-hydroxyeicosatetraenoic acid (20-HETE) blocked the channel activity in cell-attached patches in the presence of 17-ODYA. We have used gas chromatography mass spectrometry (GC/MS) to measure the production of 20-HETE, a major AA metabolite of the P450-dependent pathway in the TAL of the rat. Addition of 50 pM AII increased the production of 20-HETE to 260% of the control value, indicating that 20- HETE may be involved in mediating the effect of AII (50 pM). In contrast to the inhibitory effect of 50 pM AII, addition of 50-100 nM AII increased the channel activity to 270% of the control value and elevated the Na+i by 45%. The effect of AII on the activity of the 70 pS K+ channel was also observed in the presence of 5 microM 17-ODYA and 5 microM calphostin C, an inhibitor of protein kinase C. However, addition of 100 microM NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase, abolished completely the AII (50- 100 nM)-induced increase in channel activity and addition of an exogenous nitric oxide (NO) donor, S-nitroso-N-acetyl-penicillamine (SNAP), increased channel activity in the presence of L-NAME. These data suggest that the stimulatory effect of AII is mediated by NO. We conclude that AII has dual effects on the activity of the apical 70 pS K+ channel. The inhibitory effect of AII is mediated by P450-dependent metabolites whereas the stimulatory effect may be mediated via NO.  相似文献   

10.
Synthetic corticotropin-releasing factor (CRF) is a potent adrenocorticotropin (ACTH) secretagogue in the mouse pituitary tumor cell strain AtT20/D16v (D16). In the absence of added calcium in the incubation medium a dose of 5 nM CRF stimulates ACTH secretion 2-fold over control values while at medium calcium concentrations greater than 1 mM the same dose of CRF elicits a 3-fold stimulation. In the presence of EGTA or of the calcium antagonists verapamil, cobalt, or lanthanum the CRF effect is abolished. Depolarizing concentrations of extracellular K+ lead to a rapid increase in cell-associated calcium, a response which is inhibited by the dihydropyridine calcium antagonist nimodipine. Although treatment with CRF does not alter the concentration of cell-associated calcium in D16 cells, ACTH secretion stimulated by both CRF and elevated medium K+ are inhibited by nimodipine in a dose-related manner. The results indicate that D16 cells possess both voltage-sensitive and CRF-activated calcium channels.  相似文献   

11.
ANF did not prevent the formation of [3H] inositol trisphosphate in response to AII but inhibited aldosterone secretion in calf adrenal glomerulosa cells. 8-bromo cGMP did not affect either inositol phosphate formation or aldosterone secretion. Changes in cytosolic Ca++ concentration induced by AII, as measured by Quin 2 fluorescence, were also unaffected by ANF. No difference in adrenal cell protein phosphorylation with AII or AII + ANF was observed. The results suggest that ANF may inhibit aldosterone secretion through a non-guanyl cyclase linked receptor system not involving the formation of phosphoinositide-derived second messengers. Interference with protein kinase C activity cannot be ruled out.  相似文献   

12.
Angiotensin II (AII) and K+ raise the cytosolic free Ca2+ concentration [( Ca2+]i) and stimulate aldosterone production in isolated bovine adrenal glomerulosa cells. The mechanisms leading to an elevation of [Ca2+]i were analysed with the fluorescent Ca2+ probe quin 2. (1) Whereas [Ca2+]i rose transiently and returned to basal values within 5 min in response to AII, the effect of K+ was sustained for at least 15 min. (2) AII released Ca2+ from intracellular stores, whereas the [Ca2+]i response to K+ depended solely on extracellular [Ca2+]. (3) When added after K+ stimulation, AII provoked a dramatic decrease in [Ca2+]i to below the resting value. The role of [Ca2+]i in stimulating steroidogenesis was determined by manipulating the concentration of this cation. (4) In a cell superfusion system, the aldosterone response to AII is biphasic. Suppressing the transient [Ca2+]i elevation triggered by AII resulted in the disappearance of the initial secretory peak, but the final production rate was similar to that of control cells. (5) Normal basal [Ca2+]i levels were, however, necessary to maintain continuous AII-induced steroidogenesis. (6) When added after AII, the antagonist analogue [Sar1,Ala8]AII suppressed steroidogenesis without affecting [Ca2+]i levels. (7) In contrast, continuously elevated [Ca2+]i values were required for the initiation and the maintenance of K+-stimulated aldosterone production. These results demonstrate important differences in the mechanisms through which AII and K+ activate the Ca2+ messenger system. Moreover, functional correlations have shown that K+, but not AII, depends solely on a sustained [Ca2+]i response for its steroidogenic effect. However, the AII-induced effect is also a Ca2+-requiring process: the initial [Ca2+]i transient accelerates the onset of steroidogenesis, which is subsequently extremely sensitive to [Ca2+]i decreases below normal basal levels.  相似文献   

13.
The effects of naloxone on basal and ACTH, Angiotensin II (AII) and [K+] o stimulated aldosterone secretion from superfused rat adrenocortical tissue were investigated. A high dose (10(-6) M) of naloxone inhibited while a smaller dose (10(-10) M) potentiated and doses of 10(-8) or 10(-12) M naloxone were without an effect on ACTH stimulated aldosterone secretion. A potentiation of AII stimulated aldosterone secretion was observed beginning 2 hrs after 10(-6) or 10(-10) M naloxone was administered while no effect was observed with 10(-4) M naloxone. No effects of 10(-6), 10(-8), 10(-12) M naloxone were detected on aldosterone secretion stimulated by transiently elevating extracellular potassium. Naloxone from 10(-4) to 10(-12) M did not appear to significantly influence basal steroidogenic activity under these conditions. These findings demonstrate that the "opioid antagonist" naloxone has prominent actions on adrenocortical tissue. Both the specificity and lack of specificity of the action of this agent to influence the activity of the 3 secretagogues suggest that naloxone and possibly a naturally occurring endogenous ligand interacts with one or more membrane receptor distinct from the ACTH receptor. A naturally occurring ligand for this receptor could play a prominent role in the physiological regulation of adrenal steroid secretion.  相似文献   

14.
G S Whitley  P J Hyatt  J F Tait 《Steroids》1987,49(4-5):271-286
Angiotensin II (2.5 to 250nM) induced, within 60 sec, a significant increase in [3H]inositol-labeled inositol phosphate, inositol bisphosphate, and inositol trisphosphate in rat zona glomerulosa cells. Neither ACTH (3nM) nor K+ (8.4mM) had any effect, although aldosterone and corticosterone were significantly stimulated by all three agonists (after 30 min incubation). A similar significant dose-dependent increase in the inositol phosphates was observed with angiotensin II in zona fasciculata/reticularis cells after 30 min, but without any effect on corticosterone. In contrast ACTH significantly increased corticosterone with only a small although highly significant increase in inositol trisphosphate and inositol bisphosphate at 0.03nM ACTH. However at the higher dose (3.0nM) only inositol bisphosphate was significantly increased. These results indicate the presence on both zona glomerulosa and zona fasciculata/reticularis cells of AII receptors, which were linked to the formation of the secondary messenger, but only in the zona glomerulosa cells are associated with steroidogenesis.  相似文献   

15.
We investigated whether the pressor effects of systemically administered angiotensin II (AII) influence ACTH secretion. Adrenalectomized barbiturate-anesthetized mongrel dogs with constant low resting cortisol concentrations due to slow constant cortisol infusion received either bolus injections (2.5 micrograms kg-1) or 15-min i.v. infusions of a low dose (12.5 ng kg-1min-1) of AII during which blood samples were taken for ACTH and cortisol determinations. In sequential continuous experiments in each dog, blood pressure was allowed to increase in response to AII administration or was controlled by means of concurrent i.v. injections or infusions of the hypotensive drug papaverine, or by blood withdrawal from the vena cava. When the arterial pressure rise induced by AII was substantially attenuated or prevented by papaverine administration or blood withdrawal, mean ACTH secretion rates increased 400-800% and mean ACTH concentrations increased by 280-500%. On the other hand, AII administration alone caused large increases in mean arterial blood pressure but did not increase ACTH secretion significantly above control levels. These data suggest that when endogenous AII levels are elevated without a concurrent increase in blood pressure, as occurs during hypovolemia or sodium depletion, AII may have a significant influence on ACTH secretion.  相似文献   

16.
The influence of extracellular calcium concentration on the steroidogenic response to ACTH and to the angiotensin II analogue [Sar1-Val5]AII has been studied in the frog, using a perfusion system technique. The release of corticosterone and aldosterone in the effluent medium was measured by specific radioimmunoassays. In calcium-free medium the stimulatory effect of ACTH (10(-9) M) was completely abolished whereas the response to dbcAMP (5 mM) was unchanged indicating that the role of calcium takes place before the formation of cAMP. Conversely, in the absence of calcium, angiotensin II (10(-7) M) was still able to stimulate corticosterone and aldosterone production. Addition of Co2+ (4 mM), a calcium antagonist, to the perfusion medium, inhibited partially the response of adrenal tissue to ACTH, dbcAMP and angiotensin. The voltage-dependent calcium channel blocker verapamil (10(-6) induced a dose-related inhibition of the corticotropic effect of ACTH. At the higher dose (10(-4) M), verapamil totally inhibited the stimulation of corticosterone and aldosterone production induced by ACTH. By contrast, at the same dose it did not alter the stimulatory effect of forskolin (2.4 X 10(-7)M) on corticosterone output, but significantly diminished forskolin-induced aldosterone response. Similarly, angiotensin-stimulated corticosterone production was slightly inhibited by 10(-4) M verapamil, whereas aldosterone response to angiotensin was totally abolished, indicating that verapamil may act intracellularly to block the conversion of corticosterone to aldosterone. Taken together, these results indicate that, in amphibians extracellular calcium is essential for the action of ACTH, either for the binding of the hormone to its receptor and/or for the transduction of the information from hormone-receptor complex to the adenylate cyclase moiety and that the mechanism of action of angiotensin does not involve calcium uptake by adrenocortical cells.  相似文献   

17.
This study was undertaken to define the roles of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) in the regulation of adrenocorticotropin (ACTH) release and biosynthesis in cultured ovine anterior pituitary cells and to define the intracellular mechanisms responsible for their action. At 4 h, CRF and AVP increased both ACTH release and total ACTH content, with AVP clearly the more potent agonist (maximal ACTH release: AVP, 22.8-fold; CRF, 7.6-fold; maximal increment in total ACTH content: AVP, 1.9-fold; CRF, 1.1-fold; EC50 for ACTH release: AVP, 2.3 +/- 0.5 nM; CRF, 9.2 +/- 5.0 nM). The increase in total ACTH content was interpreted to reflect an augmentation of ACTH biosynthesis since it was abolished by 10 microM cycloheximide. Exposure of the anterior pituitary cells to increasing concentrations of forskolin or 8-bromo-cAMP elicited increases in ACTH release and total ACTH content that were similar to those caused by CRF. A 30-min incubation with phorbol 12-myristate 13-acetate (PMA) caused a dose-related translocation of protein kinase C from the cytosol to the cell membrane; after 4 h, the increases in ACTH release and total ACTH content in response to increasing concentrations of PMA were similar to those caused by AVP. Chronic (24 h) exposure to 150 nM PMA caused an almost total depletion of both cytosolic and membrane-bound protein kinase C activities. When protein kinase C-depleted cells were subsequently exposed to AVP, the increases in ACTH release and total ACTH content were markedly attenuated, but the responses to CRF were preserved. Finally, the combination of CRF and AVP, CRF and PMA, or AVP and 8-bromo-cAMP increased ACTH release and total ACTH content in a synergistic manner. We conclude that: 1) in ovine anterior pituitary cells, AVP is the predominant regulator of ACTH secretion and biosynthesis; 2) the action of AVP is predominantly mediated by activation of protein kinase C, whereas the action of CRF is likely to be mediated by activation of the cAMP-dependent protein kinase (protein kinase A); and 3) the ability of CRF and AVP to increase total ACTH content and secretion in a synergistic manner provides a demonstration in normal pituitary cells that protein kinases C and A may interact in a unidirectional manner to regulate ACTH biosynthesis in addition to ACTH release. This interaction may take place within, or between, individual corticotropes.  相似文献   

18.
The characteristics of angiotensin II-, K+-, and adrenocorticotropin (ACTH)-induced calcium influx were studied in isolated adrenal glomerulosa cells. Basal calcium influx rate is 0.64 +/- 0.09 nmol/min/mg of protein. Addition of angiotensin II (1 nM) causes a rapid 230% increase in calcium influx rate. This angiotensin II-induced calcium influx is sustained and is rapidly reversed by angiotensin II antagonist, [Sar1,Ala8]angiotensin II. Addition of either K+ or ACTH (1 nM) causes a 340 or 160% increase, respectively, in the rate of calcium influx. The effect of either angiotensin II, K+, or ACTH on calcium influx is dependent on extracellular calcium. The apparent Km for calcium is 0.46, 0.35, and 0.32 mM, respectively. When the extracellular concentration of K+ is 2 mM, neither angiotensin II nor ACTH stimulates calcium influx. Conversely, when extracellular K+ is increased to 6 mM, both angiotensin II and ACTH cause a greater stimulation of calcium influx than at 4 mM K+. When extracellular K+ is increased to 10 mM, calcium influx is 360% of the basal influx seen at 4 mM K+, and neither angiotensin II nor ACTH further stimulates the influx rate. Nitrendipine (1 microM) blocks both angiotensin II- and K+-induced calcium influx completely. In contrast, 10 microM nitrendipine does not completely block ACTH-induced calcium influx. The calcium channel agonist, BAY K 8644, also stimulates calcium influx; 10 nM BAY K 8644 leads to a rate of calcium influx which is 185% of basal. This BAY K 8644-induced increase in calcium influx and that caused by either angiotensin II or ACTH are additive. In contrast, BAY K 8644 has more than an additive effect on the calcium influx when paired with 6 mM K+. These results suggest that angiotensin II, K+, and ACTH stimulate calcium influx via a common calcium channel but act by different mechanisms to alter its function.  相似文献   

19.
Bovine adrenal zona fasciculata (AZF) cells express a noninactivating K+ current (IAC) that is inhibited by adrenocorticotropic hormone (ACTH) at picomolar concentrations. Inhibition of IAC may be a critical step in depolarization-dependent Ca2+ entry leading to cortisol secretion. In whole-cell patch clamp recordings from AZF cells, we have characterized properties of IAC and the signalling pathway by which ACTH inhibits this current. IAC was identified as a voltage-gated, outwardly rectifying, K(+)-selective current whose inhibition by ACTH required activation of a pertussis toxin-insensitive GTP binding protein. IAC was selectively inhibited by the cAMP analogue 8-(4- chlorophenylthio)-adenosine 3':5'-cyclic monophosphate (8-pcpt-cAMP) with an IC50 of 160 microM. The adenylate cyclase activator forskolin (2.5 microM) also reduced IAC by 92 +/- 4.7%. Inhibition of IAC by ACTH, 8-pcpt-cAMP and forskolin was not prevented by the cAMP-dependent protein kinase inhibitors H-89 (5 microM), cAMP-dependent protein kinase inhibitor peptide (PKI[5-24]) (2 microM), (Rp)-cAMPS (500 microM), or by the nonspecific protein kinase inhibitor staurosporine (100 nM) applied externally or intracellularly through the patch pipette. At the same concentrations, these kinase inhibitors abolished 8-pcpt-cAMP-stimulated A-kinase activity in AZF cell extracts. In intact AZF cells, 8-pcpt-cAMP activated A-kinase with an EC50 of 77 nM, a concentration 2,000-fold lower than that inhibiting IAC half maximally. The active catalytic subunit of A-kinase applied intracellularly through the recording pipette failed to alter functional expression of IAC. The inhibition of IAC by ACTH and 8-pcpt- cAMP was eliminated by substituting the nonhydrolyzable ATP analogue AMP-PNP for ATP in the pipette solution. Penfluridol, an antagonist of T-type Ca2+ channels inhibited 8-pcpt-cAMP-induced cortisol secretion with an IC50 of 0.33 microM, a concentration that effectively blocks Ca2+ channel in these cells. These results demonstrate that IAC is a K(+)-selective current whose gating is controlled by an unusual combination of metabolic factors and membrane voltage. IAC may be the first example of an ionic current that is inhibited by cAMP through an A-kinase-independent mechanism. The A-kinase-independent inhibition of IAC by ACTH and cAMP through a mechanism requiring ATP hydrolysis appears to be a unique form of channel modulation. These findings suggest a model for cortisol secretion wherein cAMP combines with two separate effectors to activate parallel steroidogenic signalling pathways. These include the traditional A-kinase-dependent signalling cascade and a novel pathway wherein cAMP binding to IAC K+ channels leads to membrane depolarization and Ca2+ entry. The simultaneous activation of A-kinase- and Ca(2+)-dependent pathways produces the full steroidogenic response.  相似文献   

20.
Direct effects of heparin (0.1-10 IU/ml) on basal and stimulated aldosterone production have been studied using intact rat adrenal glomerulosa cells. Heparin at any dose did not affect basal aldosterone production when added to the incubation medium. Heparin at a 0.01 IU/ml dose had no effect on aldosterone production maximally stimulated by angiotensin II (AII, 4.8 X 10(-8) M), ACTH (4.3 X 10(-9) M) or potassium (8.0 mM). However, heparin at 0.1 and 0.3 IU/ml doses selectively blocked aldosterone production maximally stimulated by AII but not by ACTH or potassium, while the compound at 1 and 10 IU/ml doses inhibited aldosterone production maximally stimulated by these three stimuli. In addition, the inhibitory effect of 0.3 IU/ml heparin occurred as early as 30 min after incubation with heparin. These data suggest that heparin at 0.1 and 0.3 IU/ml doses acts directly on adrenal zona glomerulosa to selectively block the stimulatory action of AII, while the compound at 1 and 10 IU/ml doses inhibits all the stimulatory actions of AII, ACTH and potassium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号