首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
HIV-1 envelope glycoprotein transmembrane subunit gp41 play a critical role in the fusion of viral and target cell membranes. The gp41 C-terminal heptad repeat region interacts with the N-terminal coiled-coil region to form a six-stranded core structure. Peptides derived from gp41 C-terminal heptad repeat region (C-peptides) are potent HIV-1 entry inhibitors by binding to gp41 N-terminal coiled-coil region. Most recently, we have identified two small organic compounds that inhibit HIV-1-mediated membrane fusion by blocking the formation of gp41 core. These two active compounds contain both hydrophobic and acidic groups while the inactive compounds only have hydrophobic groups. Analysis by computer modeling indicate that the acidic groups in the active compounds can form salt bridge with Lys 574 in the N-terminal coiled-coil region of gp41. Asp 632 in a C-peptide can also form a salt bridge with Lys 574. Replacement of Asp 632 with positively charged residues or hydrophobic residues resulted in significant decrease of HIV-1 inhibitory activity. These results suggest that a salt bridge between an N-terminal coiled coil of the gp41 and an antiviral agent targeted to the gp41 core is important for anti-HIV-1 activity.  相似文献   

2.
Protein design of a bacterially expressed HIV-1 gp41 fusion inhibitor   总被引:1,自引:0,他引:1  
Deng Y  Zheng Q  Ketas TJ  Moore JP  Lu M 《Biochemistry》2007,46(14):4360-4369
Peptides derived from the carboxyl-terminal heptad repeat of the gp41 envelope glycoprotein ectodomain (C-peptides) can inhibit HIV-1 membrane fusion by binding to the amino-terminal trimeric coiled coil of the same protein. The fusion inhibitory peptide T-20 contains an additional tryptophan-rich sequence motif whose binding site extends beyond the gp41 coiled-coil region yet provides the key determinant of inhibitory activity in T-20. Here we report the design of a recombinant peptide inhibitor (called C52L) that includes both the C-peptide and tryptophan-rich regions. By calorimetry, C52L binds to a peptide mimic of the amino-terminal coiled coil with a Kd of 80 nM, reflecting the large degree of helicity in C52L as measured by circular dichroism spectroscopy. The C52L peptide potently inhibits in vitro infection of human T cells by diverse primary HIV-1 isolates irrespective of coreceptor preference, with nanomolar IC50 values. Significantly, C52L is fully active against T-20-resistant variants in a single-cycle HIV-1 infectivity assay. Moreover, because it can be expressed in bacteria, the C52L peptide might be more economical to manufacture on a large scale than T-20-like peptides produced by chemical synthesis. Hence the C52L fusion inhibitor may find a practical application, for example as a vaginal or rectal microbicide to prevent HIV-1 infection in the developing world.  相似文献   

3.
Low molecular weight peptidomimetic inhibitors with hydrophobic pocket binding properties and moderate fusion inhibitory activity against HIV-1 gp41-mediated cell fusion were elaborated by increasing the available surface area for interacting with the heptad repeat-1 (HR1) coiled coil on gp41. Two types of modifications were tested: 1) increasing the overall hydrophobicity of the molecules with an extension that could interact in the HR1 groove, and 2) forming symmetrical dimers with two peptidomimetic motifs that could potentially interact simultaneously in two hydrophobic pockets on the HR1 trimer. The latter approach was more successful, yielding 40–60 times improved potency against HIV fusion over the monomers. Biophysical characterization, including equilibrium binding studies by fluorescence and kinetic analysis by Surface Plasmon Resonance, revealed that inhibitor potency was better correlated to off-rates than to binding affinity. Binding and kinetic data could be fit to a model of bidentate interaction of dimers with the HR1 trimer as an explanation for the slow off-rate, albeit with minimal cooperativity due to the highly flexible ligand structures. The strong cooperativity observed in fusion inhibitory activity of the dimers implied accentuated potency due to the transient nature of the targeted intermediate. Optimization of monomer, dimer or higher order structures has the potential to lead to highly potent non-peptide fusion inhibitors by targeting multiple hydrophobic pockets.  相似文献   

4.
The fusion-active conformation of the envelope protein gp41 of HIV-1 consists of an N-terminal trimeric alpha-helical coiled-coil domain and three anti-parallel C-terminal helices that fold down the grooves of the coiled-coil to form a six-helix bundle. Disruption of the six-helix bundle is considered to be a key component of an effective non-peptide fusion inhibitor. In the current study, a fluorescence resonance energy transfer (FRET) experiment for the detection of inhibitor binding to the gp41 N-peptide coiled-coil of HIV-1 was performed, utilizing peptide inhibitors derived from the gp41 C-terminal helical region. The FRET acceptor is a 31-residue N-peptide containing a known deep hydrophobic pocket, stabilized into a trimer by ferrous ion ligation. The FRET donor is a 16-18-residue fluorophore-labeled C-peptide, designed to test the specificity of the N-C interaction. Low microM dissociation constants were observed, correlated to the correct sequence and helical propensity of the C-peptides. Competitive inhibition was demonstrated using the assay, allowing for rank ordering of peptide inhibitors according to their affinity in the 1-20 microM range. The assay was conducted by measuring fluorescence intensity in 384-well plates. The rapid detection of inhibitor binding may permit identification of novel drug classes from a library.  相似文献   

5.
The α-helical coiled coil is a valuable folding motif for protein design and engineering. By means of phage display technology, we selected a capable binding partner for one strand of a coiled coil bearing a charged amino acid in a central hydrophobic core position. This procedure resulted in a novel coiled coil pair featuring an opposed Glu-Lys pair arranged staggered within the hydrophobic core of a coiled coil structure. Structural investigation of the selected coiled coil dimer by CD spectroscopy and MD simulations suggest that a buried salt bridge within the hydrophobic core enables the specific dimerization of two peptides.  相似文献   

6.
How nitric oxide (NO) activates its primary receptor, α1/β1 soluble guanylyl cyclase (sGC or GC‐1), remains unknown. Likewise, how stimulatory compounds enhance sGC activity is poorly understood, hampering development of new treatments for cardiovascular disease. NO binding to ferrous heme near the N‐terminus in sGC activates cyclase activity near the C‐terminus, yielding cGMP production and physiological response. CO binding can also stimulate sGC, but only weakly in the absence of stimulatory small‐molecule compounds, which together lead to full activation. How ligand binding enhances catalysis, however, has yet to be discovered. Here, using a truncated version of sGC from Manduca sexta, we demonstrate that the central coiled‐coil domain, the most highly conserved region of the ~150,000 Da protein, not only provides stability to the heterodimer but is also conformationally active in signal transduction. Sequence conservation in the coiled coil includes the expected heptad‐repeating pattern for coiled‐coil motifs, but also invariant positions that disfavor coiled‐coil stability. Full‐length coiled coil dampens CO affinity for heme, while shortening of the coiled coil leads to enhanced CO binding. Introducing double mutation αE447L/βE377L, predicted to replace two destabilizing glutamates with leucines, lowers CO binding affinity while increasing overall protein stability. Likewise, introduction of a disulfide bond into the coiled coil results in reduced CO affinity. Taken together, we demonstrate that the heme domain is greatly influenced by coiled‐coil conformation, suggesting communication between heme and catalytic domains is through the coiled coil. Highly conserved structural imperfections in the coiled coil provide needed flexibility for signal transduction.  相似文献   

7.
8.
The gp41 envelope protein of human immunodeficiency virus type 1 (HIV-1) contains an alpha-helical core structure responsible for mediating membrane fusion during viral entry. Recent studies suggest that a conserved hydrophobic cavity in the coiled coil of this core plays a distinctive structural role in maintaining the fusogenic conformation of the gp41 molecule. Here we investigated the importance of this cavity in determining the structure and biological activity of the gp41 core by using the N34(L6)C28 model. The high-resolution crystal structures of N34(L6)C28 of two HIV-1 gp41 fusion-defective mutants reveal that each mutant sequence is accommodated in the six-helix bundle structure by forming the cavity with different sets of atoms. Remarkably, the mutant N34(L6)C28 cores are highly effective inhibitors of HIV-1 infection, with 5- to 16-fold greater activity than the wild-type molecule. The enhanced inhibitory activity by fusion-defective mutations correlates with local structural perturbations close to the cavity that destabilize the six-helix bundle. Taken together, these results indicate that the conserved hydrophobic coiled-coil cavity in the gp41 core is critical for HIV-1 entry and its inhibition and provides a potential antiviral drug target.  相似文献   

9.
The HIV envelope (Env) glycoprotein mediates membrane fusion through sequential interactions with CD4 and coreceptors, followed by the refolding of the transmembrane gp41 subunit into the stable 6-helix bundle (6HB) conformation. Synthetic peptides derived from the gp41 C-terminal heptad repeat domain (C-peptides) potently inhibit fusion by binding to the gp41 pre-bundle intermediates and blocking their conversion into the 6HB. Our recent work revealed that HIV-1 enters cells by fusing with endosomes, but not with the plasma membrane. These studies also showed that, for the large part, gp41 pre-bundles progress toward 6HBs in endosomal compartments and are thus protected from external fusion inhibitors. Here, we examined the consequences of endocytic entry on the gp41 pre-bundle exposure and on the virus'' sensitivity to C-peptides. The rates of CD4 and coreceptor binding, as well as the rate of productive receptor-mediated endocytosis, were measured by adding specific inhibitors of these steps at varied times of virus-cell incubation. Following the CD4 binding, CCR5-tropic viruses recruited a requisite number of coreceptors much faster than CXCR4-tropic viruses. The rate of subsequent uptake of ternary Env-CD4-coreceptor complexes did not correlate with the kinetics of coreceptor engagement. These measurements combined with kinetic analyses enabled the determination of the lifetime of pre-bundle intermediates on the cell surface. Overall, these lifetimes correlated with the inhibitory potency of C-peptides. On the other hand, the basal sensitivity to peptides varied considerably among diverse HIV-1 isolates and ranked similarly with their susceptibility to inactivation by soluble CD4. We conclude that both the longevity of gp41 intermediates and the extent of irreversible conformational changes in Env upon CD4 binding determine the antiviral potency of C-peptides.  相似文献   

10.
The microtubule-binding domain (MTBD) of dynein is separated from the AAA (ATPase with any other activity) core of the motor by an approximately 15-nm stalk that is predicted to consist of an antiparallel coiled coil. However, the structure of this coiled coil and the mechanism it uses to mediate communication between the MTBD and ATP-binding core are unknown. Here, we sought to identify the optimal alignment between the hydrophobic heptad repeats in the two strands of the stalk coiled coil. To do this, we fused the MTBD of mouse cytoplasmic dynein, together with 12-36 residues of its stalk, onto a stable coiled-coil base provided by Thermus thermophilus seryl-tRNA synthetase and tested these chimeric constructs for microtubule binding in vitro. The results identified one alignment that yielded a protein displaying high affinity for microtubules (2.2 microM). The effects of mutations applied to the MTBD of this construct paralleled those previously reported (Koonce, M. P., and Tikhonenko, I. (2000) Mol. Biol. Cell 11, 523-529) for an intact dynein motor unit in the absence of ATP, suggesting that it resembles the tight binding state of native intact dynein. All other alignments showed at least 10-fold lower affinity for microtubules with the exception of one, which had an intermediate affinity. Based on these results and on amino acid sequence analysis, we hypothesize that dynein utilizes small amounts of sliding displacement between the two strands of its coiled-coil stalk as a means of communication between the AAA core of the motor and the MTBD during the mechanochemical cycle.  相似文献   

11.
Theaflavin derivatives and catechin derivatives are the major polyphenols in black tea and green tea, respectively. Several tea polyphenols, especially those with galloyl moiety, can inhibit HIV-1 replication with multiple mechanisms of action. Here we showed that the theaflavin derivatives had more potent anti-HIV-1 activity than catechin derivatives. These tea polyphenols could inhibit HIV-1 entry into target cells by blocking HIV-1 envelope glycoprotein-mediated membrane fusion. The fusion inhibitory activity of the tea polyphenols was correlated with their ability to block the formation of the gp41 six-helix bundle, a fusion-active core conformation. Computer-aided molecular docking analyses indicate that these tea polyphenols, theaflavin-3,3'-digallate (TF3) as an example, may bind to the highly conserved hydrophobic pocket on the surface of the central trimeric coiled coil formed by the N-terminal heptad repeats of gp41. These results indicate that tea, especially black tea, may be used as a source of anti-HIV agents and theaflavin derivatives may be applied as lead compounds for developing HIV-1 entry inhibitors targeting gp41.  相似文献   

12.
Existing experimental as well as computational screening methods select potential ligands or drug candidates on the basis of binding affinity. Since the binding affinity is a function of the enthalpy (DeltaH) and entropy (DeltaS) changes, it is apparent that improved binding can be achieved in different ways: by optimizing DeltaH, DeltaS, or a combination of both. However, the behavior of enthalpically or entropically optimized inhibitors is fundamentally different, including their response to mutations that may elicit drug resistance. In the design of HIV-1 protease inhibitors, high binding affinity has usually been achieved by preshaping lead compounds to the geometry of the binding site and by incorporating a high degree of hydrophobicity. The thermodynamic consequence of that approach is that the binding affinity of the resulting inhibitors becomes entropically favorable but enthalpically unfavorable. Specifically, the resulting high binding affinity is due to an increased solvation entropy (hydrophobic effect) combined with a reduced loss of conformational entropy of the inhibitor upon binding (structural rigidity). Here we report that tripeptide inhibitors derived from the transframe region of Gag-Pol (Glu-Asp-Leu and Glu-Asp-Phe) bind to the HIV-1 protease with a favorable enthalpy change. This behavior is qualitatively different from that of known inhibitors and points to new strategies for inhibitor design. Since the binding affinities of enthalpically favorable and enthalpically unfavorable inhibitors have opposite temperature dependence, it is possible to design fast screening protocols that simultaneously select inhibitors on the basis of affinity and enthalpy.  相似文献   

13.
A five-membered ring amino acid (Ac5c), the peptides of which exhibit a preference for helical secondary structures, was introduced into peptides for the purpose of designing coiled coil peptides with high binding affinities. We prepared five types of peptides containing Ac5c with different numbers or at different positions. The incorporation of Ac5c into peptides enhanced their α-helicities; however, in contrast to our expectations, it did not result in stable coiled coil formation. The structures of side chains in hydrophobic amino acids, not α-helicities appeared to be important for stable hydrophobic interactions between peptides. Although we were unable to develop coiled coil peptides with high binding affinities, the present results will be useful for designing novel coiled coil peptides.  相似文献   

14.
15.
One of the most serious side effects associated with the therapy of HIV-1 infection is the appearance of viral strains that exhibit resistance to protease inhibitors. The active site mutant V82F/I84V has been shown to lower the binding affinity of protease inhibitors in clinical use. To identify the origin of this effect, we have investigated the binding thermodynamics of the protease inhibitors indinavir, ritonavir, saquinavir, and nelfinavir to the wild-type HIV-1 protease and to the V82F/I84V resistant mutant. The main driving force for the binding of all four inhibitors is a large positive entropy change originating from the burial of a significant hydrophobic surface upon binding. At 25 degrees C, the binding enthalpy is unfavorable for all inhibitors except ritonavir, for which it is slightly favorable (-2.3 kcal/mol). Since the inhibitors are preshaped to the geometry of the binding site, their conformational entropy loss upon binding is small, a property that contributes to their high binding affinity. The V82F/I84V active site mutation lowers the affinity of the inhibitors by making the binding enthalpy more positive and making the entropy change slightly less favorable. The effect on the enthalpy change is, however, the major one. The predominantly enthalpic effect of the V82F/I84V mutation is consistent with the idea that the introduction of the bulkier Phe side chain at position 82 and the Val side chain at position 84 distort the binding site and weaken van der Waals and other favorable interactions with inhibitors preshaped to the wild-type binding site. Another contribution of the V82F/I84V to binding affinity originates from an increase in the energy penalty associated with the conformational change of the protease upon binding. The V82F/I84V mutant is structurally more stable than the wild-type protease by about 1.4 kcal/mol. This effect, however, affects equally the binding affinity of substrate and inhibitors.  相似文献   

16.
Cellular entry of human immunodeficiency virus type 1 (HIV-1) involves fusion of viral and cellular membranes and is mediated by structural transitions in viral glycoprotein gp41. The antiviral C-peptide T20 targets the gp41 N-terminal heptad repeat region (N-HR), blocking gp41 conformational changes essential for the entry process. To probe the T20 structure-activity relationship, we engineered a molecular mimic of the entire gp41 N-HR coiled coil using the 5-Helix design strategy. T20 bound this artificial protein (denoted 5H-ex) with nanomolar affinity (KD = 30 nm), close to its IC50 concentration (∼3 nm) but much weaker than the affinity of a related inhibitory C-peptide C37 (KD = 0.0007 nm). T20/C37 competitive binding assays confirmed that T20 interacts with the hydrophobic groove on the surface of the N-HR coiled coil outside of a deep pocket region crucial for C37 binding. We used 5H-ex to investigate how the T20 N and C termini contributed to the inhibitor binding activity. Mutating three aromatic residues at the T20 C terminus (WNWF → ANAA) had no effect on affinity, suggesting that these amino acids do not participate in T20 binding to the gp41 N-HR. The results support recent evidence pointing to a different role for these residues in T20 inhibition (Peisajovich, S. G., Gallo, S. A., Blumenthal, R., and Shai, Y. (2003) J. Biol. Chem. 278, 21012–21017; Liu, S., Jing, W., Cheung, B., Lu, H., Sun, J., Yan, X., Niu, J., Farmar, J., Wu, S., and Jiang, S. (2007) J. Biol. Chem. 282, 9612–9620). By contrast, mutations near the T20 N terminus substantially influenced inhibitor binding strength. When Ile was substituted for Thr in the second T20 position, a 40-fold increase in binding affinity was measured (KD = 0.75 nm). The effect of this affinity enhancement on T20 inhibitory potency varied among different viral strains. The original T20 and the higher affinity T20 variant had similar potency against wild type HIV-1. However, the higher affinity T20 variant was significantly more potent against T20-resistant virus. The findings suggest that other factors in addition to binding affinity play a role in limiting T20 potency. As a mimetic of the complete gp41 N-HR coiled coil region, 5H-ex will be a useful tool to further elucidate mechanistic profiles of C-peptide inhibitors.The HIV-12 surface glycoprotein Env promotes viral entry through the fusion of viral and cellular membranes (3). Env consists of three gp120 surface subunits and three gp41 transmembrane subunits arranged as a trimer-of-heterodimers on the virion surface. In the current model of HIV-1 entry, cellular receptor binding to gp120 initiates a series of coordinated structural transformations that stimulate gp41 to extend and insert its N-terminal fusion peptide into target cell membranes (see Fig. 1A) (4, 5). This high energy extended intermediate structure ultimately collapses into a trimer-of-hairpins conformation that juxtaposes the gp41 fusion peptide and transmembrane domain. Because the fusion peptide and transmembrane domain are inserted in target cell and viral membranes, formation of the trimer-of-hairpins is proposed to bring these membranes into the close proximity required for efficient fusion.Open in a separate windowFIGURE 1.HIV-1 gp41 and its role in viral membrane fusion. A, a model of HIV-1 entry (46). In native Env prior to receptor activation, gp41 is held in a metastable conformation by a canopy of gp120 proteins (green). Receptor binding to gp120 stimulates gp41 to extend and insert its fusion peptide segment (red) into the target cell membrane. The N-HR (gray) and C-HR (blue) regions of the gp41 ectodomain are transiently exposed in this prehairpin state. Subsequently, gp41 collapses into the trimer-of-hairpins conformation that brings the gp41 fusion peptides, transmembrane regions (purple), and their associated membranes into the close proximity for membrane fusion. The actual disposition of gp120 in both the prehairpin and trimer-of-hairpins states is uncertain; for clarity, the protein is omitted in the schematic of the trimer-of-hairpins conformation. B, a diagram of HIV-1 gp41 identifying its fusion peptide (FP), N-HR, C-HR, MPER (MP), transmembrane (TM), and cytoplasmic (cyto) domains. Amino acid sequences above and below the diagram are derived from the N-HR and C-HR/MPER regions of EnvHXB2; all but the MPER sequence WNWF (magenta) were used in the design of 5H-ex. The N-HR and C-HR segments found in the original 5-Helix are boxed in gray and blue, respectively, whereas the sequences of C37 and T20 are denoted by lines. The side chains of the C-HR amino acids marked with + pack into the hydrophobic pocket at the C terminus of the N-HR coiled coil.The core of the trimer-of-hairpins is a bundle of six α-helices formed by two hydrophobic heptad repeat sequences in the N- and C-terminal regions of the gp41 ectodomain (N-HR and C-HR, respectively) (6, 7). In the trimer-of-hairpins, the N-HR segments from three gp41 ectodomains form a central trimeric coiled coil, around which the three C-HR segments pack as antiparallel helices into hydrophobic grooves (811). In the prehairpin extended conformation, the N-HR and C-HR segments are unassociated and transiently accessible to inhibitors of HIV-1 entry (5, 12). Several such inhibitors are formed from the peptide sequence of the C-HR and adjacent gp41 regions (4, 6, 13, 14). Denoted C-peptides, they work in a dominant negative fashion by binding to the exposed N-HR coiled coil, thereby blocking trimer-of-hairpins formation and inhibiting viral membrane fusion (4, 1521). One C-peptide, T20 (also called enfuvirtide), has shown antiviral activity in vivo and has been approved for use in the treatment of HIV-1 infection (22, 23).T20 is a 36-amino acid peptide extending from Tyr638 in the middle of the C-HR to Phe673 in the Trp-rich membrane proximal external region (MPER) that precedes the gp41 transmembrane domain (residue numbering is according to the EnvHXB2 sequence; see Fig. 1B) (13). In T20, these C-terminal MPER-derived residues are critical for inhibitory activity, although their structure and function in the gp41-bound state are currently unknown (1, 24, 25). A second class of similarly potent C-peptides includes C34 (residues 628–661) and the slightly larger C37 (residues 625–661) (4, 6, 26, 27). These peptides are derived entirely from the C-HR sequence and thus are shifted in the N-terminal direction compared with T20 (Fig. 1B). The interactions of C34 and C37 with gp41 are greatly stabilized by residues Trp628, Trp631, and Ile635 near the C-HR N terminus (4). Their bulky hydrophobic side chains pack into a deep hydrophobic pocket on the surface of the N-HR coiled coil. T20 lacks these pocket binding residues and their stabilizing effect. However, T20 does contain bulky hydrophobic residues (Trp670, Trp672, and Phe673) at its C terminus that might pack into a similar pocket at the other end of the N-HR coiled coil.High resolution structures of the gp41 trimer-of-hairpins have aided our understanding of the mechanism of C-peptide inhibition. These structures have enabled the design of polypeptides that mimic the gp41 N-HR coiled coil and bind C34/C37, thereby providing a tool to probe the structure-activity relationships of the inhibitors (26, 2830). No similar tool is available for investigating T20 inhibition in detail. The structures of the gp41 trimer-of-hairpins do not include the T20 C terminus (9 residues) nor the gp41 N-terminal segments that putatively interact with it. Furthermore, gp41 N-HR-derived peptides predicted to interact with T20 are poorly soluble and difficult to use in solution phase interaction assays (6). Here we describe the design of a soluble protein (denoted 5H-ex) that mimics the putative T20-binding site on the N-HR coiled coil. 5H-ex interacts with T20 with an equilibrium dissociation constant (KD) of 30 nm, close to the T20 50% inhibitory concentration (IC50) of 3 nm. Using this protein, we explored the extent to which the N and C termini of T20 contribute to its binding activity. First, we showed that the MPER-derived residues at the peptide C terminus do not stabilize the 5H-ex/T20 interaction. Second, we identified an N-terminal substitution that significantly enhanced T20 binding affinity and improved peptide inhibitory activity against T20-resistant HIV-1. The results suggest that T20 binding to the N-HR coiled coil is stabilized primarily by residues derived from the C-HR and not the MPER. 5H-ex is likely to be a useful tool in probing the structure-activity relationship of T20.  相似文献   

17.
Dystrophia myotonica protein kinase (DMPK) is a serine/threonine kinase composed of a kinase domain and a coiled‐coil domain involved in the multimerization. The crystal structure of the kinase domain of DMPK bound to the inhibitor bisindolylmaleimide VIII (BIM‐8) revealed a dimeric enzyme associated by a conserved dimerization domain. The affinity of dimerisation suggested that the kinase domain alone is insufficient for dimerisation in vivo and that the coiled‐coil domains are required for stable dimer formation. The kinase domain is in an active conformation, with a fully‐ordered and correctly positioned αC helix, and catalytic residues in a conformation competent for catalysis. The conserved hydrophobic motif at the C‐terminal extension of the kinase domain is bound to the N‐terminal lobe of the kinase domain, despite being unphosphorylated. Differences in the arrangement of the C‐terminal extension compared to the closely related Rho‐associated kinases include an altered PXXP motif, a different conformation and binding arrangement for the turn motif, and a different location for the conserved NFD motif. The BIM‐8 inhibitor occupies the ATP site and has similar binding mode as observed in PDK1.  相似文献   

18.
19.
The HIV-1 gp41 protein promotes viral entry by mediating the fusion of viral and cellular membranes. A prominent pocket on the surface of a central trimeric coiled coil within gp41 was previously identified as a potential target for drugs that inhibit HIV-1 entry. We designed a peptide, IQN17, which properly presents this pocket. Utilizing IQN17 and mirror-image phage display, we identified cyclic, D-peptide inhibitors of HIV-1 infection that share a sequence motif. A 1.5 A cocrystal structure of IQN17 in complex with a D-peptide, and NMR studies, show that conserved residues of these inhibitors make intimate contact with the gp41 pocket. Our studies validate the pocket per se as a target for drug development. IQN17 and these D-peptide inhibitors are likely to be useful for development and identification of a new class of orally bioavailable anti-HIV drugs.  相似文献   

20.
The HIV-1 envelope glycoprotein gp41 fusion intermediate is a promising drug target for inhibiting viral entry. However, drug development has been impeded by challenges inherent in mediating the underlying protein–protein interaction. Here we report on the identification of fragments that bind to a C-terminal sub-pocket adjacent to the well-known hydrophobic pocket on the NHR coiled coil. Using a specifically designed assay and ligand-based NMR screening of a fragment library, we identified a thioenylaminopyrazole compound with a dissociation constant of ~500 μM. Interaction with the C-terminal sub-pocket was confirmed by paramagnetic relaxation enhancement NMR experiments, which also yielded the binding mode. Shape-based similarity searching detected additional phenylpyrazole and phenyltriazole fragments within the library, enriching the hit rate over random screening, and revealing molecular features required for activity. Discovery of the novel scaffolds and binding mechanism suggests avenues for extending the interaction surface and improving the potency of a hydrophobic pocket binding inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号