首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of Pyrimidine Biosynthesis in Saccharomyces cerevisiae   总被引:34,自引:16,他引:18       下载免费PDF全文
Biochemical steps of the pyrimidine pathway have been found to be the same in yeast as in bacteria, and all except one step have been characterized. The activities of the first two enzymes, carbamoyl phosphate synthetase and aspartic transcarbamylase, are simultaneously controlled by feedback inhibition and repression. Moreover, these enzymes are coded by the same genetic region (ura-2) and seem to form a single enzymatic complex. The enzymes that follow later in the pathway are induced in a sequential way by the intermediary products and are insensitive to pyrimidine repression. The corresponding genes (ura-4, ura-1, ura-3) are not linked to each other or to ura-2, the gene for carbamoyl phosphate synthetase and aspartic transcarbamylase. Mutants that have simultaneously lost feedback inhibition by uridine triphosphate for carbamoyl phosphate synthetase and for aspartic transcarbamylase have been found and mapped in the gene ura-2.  相似文献   

2.
A four-step flavanone biosynthetic pathway was constructed and introduced into Saccharomyces cerevisiae. The recombinant yeast strain was fed with phenylpropanoid acids and produced the flavanones naringenin and pinocembrin 62 and 22 times more efficiently compared to previously reported recombinant prokaryotic strains. Microbial biosynthesis of the flavanone eriodictyol was also achieved.  相似文献   

3.
The hypothesis of an alternative pathway of sulphur amino acid synthesis as the basis of the prototrophy of sulphite reductase negative (Sr-) strains of Saccharomyces cerevisiae has been rejected. Met- mutants obtained after phenylmercuric nitrate treatment of Sr- strains accumulate H2S as the consequence of a metabolic block which leads to methionine auxotrophy. This mutation has been shown to be independent of the Sr locus. We assume that the molecular basis of the prototrophy of Sr- strains resides in a leaky missense induced in the Sr gene.  相似文献   

4.
Numerous membrane glycoproteins of Saccharomyces cerevisiae are posttranslationally modified by the addition of a glycophosphatidylinositol (GPI). These proteins can be detected most easily by metabolic labelling of yeast cells with 3H-myoinositol or 3H-palmitate. This report summarizes what little is known about the identity, biosynthesis and cellular localization of GPI-modified glycoproteins in Saccharomyces cerevisiae as well as what could be learned from the system with respect to the biosynthesis of GPI's in general.  相似文献   

5.
Glyoxylate biosynthesis in Saccharomyces cerevisiae is traditionally mainly ascribed to the reaction catalyzed by isocitrate lyase (Icl), which converts isocitrate to glyoxylate and succinate. However, Icl is generally reported to be repressed by glucose and yet glyoxylate is detected at high levels in S. cerevisiae extracts during cultivation on glucose. In bacteria there is an alternative pathway for glyoxylate biosynthesis that involves a direct oxidation of glycine. Therefore, we investigated the glycine metabolism in S. cerevisiae coupling metabolomics data and (13)C-isotope-labeling analysis of two reference strains and a mutant with a deletion in a gene encoding an alanine:glyoxylate aminotransferase. The strains were cultivated on minimal medium containing glucose or galactose, and (13)C-glycine as sole nitrogen source. Glyoxylate presented (13)C-labeling in all cultivation conditions. Furthermore, glyoxylate seemed to be converted to 2-oxovalerate, an unusual metabolite in S. cerevisiae. 2-Oxovalerate can possibly be converted to 2-oxoisovalerate, a key precursor in the biosynthesis of branched-chain amino acids. Hence, we propose a new pathway for glycine catabolism and glyoxylate biosynthesis in S. cerevisiae that seems not to be repressed by glucose and is active under both aerobic and anaerobic conditions. This work demonstrates the great potential of coupling metabolomics data and isotope-labeling analysis for pathway reconstructions.  相似文献   

6.
Regulation of the biosynthesis of four of the five enzymes of the isoleucine-valine pathway was studied in Saccharomyces cerevisiae. A method is described for limiting the growth of a leucine auxotroph by using valine as a competitor for the permease. Limitation for isoleucine and valine was accomplished by the use of peptides containing these amino acids conjugated with glycine as nutritional supplements for auxotrophs. The enzymes were repressed on synthetic medium containing isoleucine, valine, and leucine, as well as on broth supplemented with these amino acids. Limitation for any of the three branched-chain amino acids led to derepression of the isoleucine-valine biosynthetic pathway. Maximal derepression ranged from 3-fold for threonine deaminase to approximately 10-fold for acetohydroxyacid synthase. (Two of the enzymes, acetohydroxyacid synthase and dihydroxyacid dehydrase, may be controlled by a mechanism different from that regulating threonine deaminase.) Possible molecular mechanisms for multivalent repression are discussed.  相似文献   

7.
Engineering nitrogenase in eukaryotes is hampered by its genetic complexity and by the oxygen sensitivity of its protein components. Of the three types of nitrogenases, the Fe-only nitrogenase is considered the simplest one because its function depends on fewer gene products than the homologous and more complex Mo and V nitrogenases. Here, we show the expression of stable Fe-only nitrogenase component proteins in the low-oxygen mitochondria matrix of S. cerevisiae. As-isolated Fe protein (AnfH) was active in electron donation to NifDK to reduce acetylene into ethylene. Ancillary proteins NifU, NifS and NifM were not required for Fe protein function. The FeFe protein existed as apo-AnfDK complex with the AnfG subunit either loosely bound or completely unable to interact with it. Apo-AnfDK could be activated for acetylene reduction by the simple addition of FeMo-co in vitro, indicating preexistence of the P-clusters even in the absence of coexpressed NifU and NifS. This work reinforces the use of Fe-only nitrogenase as simple model to engineer nitrogen fixation in yeast and plant mitochondria.  相似文献   

8.
A number of strains of Saccharomyces which produce sulphite by sulphate reduction were examined from an enzymatic and genetic point of view.There are a number of mechanisms that regulate this activity. All of these mechanisms involve the sulphite-reducing activity. In the strains examined, reduced function as a result of mutation in the Sr-locus (affecting H2S-NADP oxidoreductase EC 1.8.1.2), repression of biosynthesis of the enzyme because of a mutation below the specific locus, and inhibition of the enzyme by endogenous factors were found to be responsible. The production of sulphite can also be connected with a complex state of heterozygosity.It is probably this multiplicity of biochemical and genetic mechanisms that accounts for the frequency with which the production of sulphite is observed in wild strains in nature.This investigation was supported by a research grant of C.N.R. (Consiglio Nazionale delle Ricerche, Roma).  相似文献   

9.
10.
Zhao  Mengya  Zhang  Chuanbo  Wang  Haibin  He  Shifan  Lu  Wenyu 《Biotechnology letters》2022,44(7):857-865
Biotechnology Letters - To produce valerenic acid (VA) in Saccharomyces cerevisiae by engineering a heterologous synthetic pathway. Valerena-4,7(11)-diene synthase (VDS) derived from Valeriana...  相似文献   

11.
12.
Peter Orlean 《Genetics》2012,192(3):775-818
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.  相似文献   

13.
Like most other eukaryotes, Saccharomyces cerevisiae harbors a GPI anchoring machinery and uses it to attach proteins to membranes. While a few GPI proteins reside permanently at the plasma membrane, a majority of them gets further processed and is integrated into the cell wall by a covalent attachment to cell wall glucans. The GPI biosynthetic pathway is necessary for growth and survival of yeast cells. The GPI lipids are synthesized in the ER and added onto proteins by a pathway comprising 12 steps, carried out by 23 gene products, 19 of which are essential. Some of the estimated 60 GPI proteins predicted from the genome sequence serve enzymatic functions required for the biosynthesis and the continuous shape adaptations of the cell wall, others seem to be structural elements of the cell wall and yet others mediate cell adhesion. Because of its genetic tractability S. cerevisiae is an attractive model organism not only for studying GPI biosynthesis in general, but equally for investigating the intracellular transport of GPI proteins and the peculiar role of GPI anchoring in the elaboration of fungal cell walls.  相似文献   

14.
Recently, a new type of hybrid resulting from the hybridization between Saccharomyces cerevisiae and Saccharomyces kudriavzevii was described. These strains exhibit physiological properties of potential biotechnological interest. A preliminary characterization of these hybrids showed a trend to reduce the S. kudriavzevii fraction of the hybrid genome. We characterized the genomic constitution of several wine S. cerevisiae × S. kudriavzevii strains by using a combined approach based on the restriction fragment length polymorphism analysis of gene regions, comparative genome hybridizations with S. cerevisiae DNA arrays, ploidy analysis, and gene dose determination by quantitative real-time PCR. The high similarity in the genome structures of the S. cerevisiae × S. kudriavzevii hybrids under study indicates that they originated from a single hybridization event. After hybridization, the hybrid genome underwent extensive chromosomal rearrangements, including chromosome losses and the generation of chimeric chromosomes by the nonreciprocal recombination between homeologous chromosomes. These nonreciprocal recombinations between homeologous chromosomes occurred in highly conserved regions, such as Ty long terminal repeats (LTRs), rRNA regions, and conserved protein-coding genes. This study supports the hypothesis that chimeric chromosomes may have been generated by a mechanism similar to the recombination-mediated chromosome loss acting during meiosis in Saccharomyces hybrids. As a result of the selective processes acting during fermentation, hybrid genomes maintained the S. cerevisiae genome but reduced the S. kudriavzevii fraction.The genus Saccharomyces consists of seven biological species: S. arboricolus, S. bayanus, S. cariocanus, S. cerevisiae, S. kudriavzevii, S. mikatae, and S. paradoxus (29, 59) and the partially allotetraploid species S. pastorianus (46, 58).The hybrid species S. pastorianus, restricted to lager brewing environments, arose from two or more natural hybridization events between S. cerevisiae and a S. bayanus-like yeast (7, 16, 28, 46). Recent studies of S. bayanus have also revealed the hybrid nature of certain strains of this species, which has subsequently been subdivided into two groups, S. bayanus var. bayanus, containing a variety of hybrid strains, and S. bayanus var. uvarum, also referred to as S. uvarum, that contains nonhybrid strains (45, 46).New hybrids of other species from the genus Saccharomyces have recently been described. Hybrid yeasts of S. cerevisiae and S. kudriavzevii have been characterized among wine (6, 20, 33) and brewing yeasts (21); even triple hybrids of S. cerevisiae, S. bayanus, and S. kudriavzevii have been identified (20, 41).The first natural Saccharomyces interspecific hybrid identified, the lager brewing yeast S. pastorianus (S. carlsbergensis) (42, 57), has become one of the most investigated types of yeast hybrids. The genome structure of these hybrids has been examined by competitive array comparative genome hybridization (aCGH) (5, 16, 28), complete genome sequencing (28), and PCR-restriction fragment length polymorphism (RFLP) analysis of 48 genes and partial sequences of 16 genes (46). The aCGH analyses of several S. pastorianus strains with S. cerevisiae-only DNA arrays (5, 28) revealed the presence of aneuploidies due to deletions of entire regions of the S. cerevisiae fraction of the hybrid genomes. A recent aCGH analysis of S. pastorianus strains with S. cerevisiae and S. bayanus DNA arrays (16) showed two groups of strains according to their genome structure and composition. These groups arose from two independent hybridization events, and each one is characterized by a reduction and an amplification of the S. cerevisiae genome fraction, respectively.The genetic characterization of the wine S. cerevisiae and S. kudriavzevii hybrids by restriction analysis of five nuclear genes located in different chromosomes, 5.8S-ITS rDNA region and the mitochondrial COX2 gene, revealed the presence of three types of hybrids in Swiss wines, thus indicating the presence of different hybrid genomes (20). In a recent study (21), we identified six new types of S. cerevisiae and S. kudriavzevii hybrids among brewing strains, which were compared to wine hybrids by a genetic characterization based on RFLP analysis of 35 protein-encoding genes. This analysis confirmed the presence of three different genome types among wine hybrids that contain putative chimeric chromosomes, probably generated by a recombination between homeologous chromosomes of different parental origins.The aim of the present study is to investigate the genome composition and structure of wine hybrids of S. cerevisiae and S. kudriavzevii. This has been achieved by a combined approach based on the RFLP analysis of 35 gene regions from our previous study, comparative genome hybridizations using S. cerevisiae DNA macroarrays, a ploidy analysis by flow cytometry, and gene dose determinations by quantitative real-time PCR. This multiple approach allowed us to confirm the presence of chimeric chromosomes and define the mechanisms involved in their origins.  相似文献   

15.
Cell-free extracts from Saccharomyces cerevisiae catalyzed the incorporation of glucosyl residues from UDP-[U-14C]glucose into beta-1,3-glucans which contained a significant proportion of beta-1,6-glycosidic linkages. When GDP-[U-14C]glucose was used as substrate only trace amounts of glucose were incorporated. Activity of beta-glucan synthetase was distributed among membrane and cell wall fractions, specific activity being higher in this latter. Beta-glucan synthesized by membrane and cell wall fractions contained 0.6% and 2.5% of beta-1,6-glycosidic linkages respectively. A marked decrease in the activity of beta-glucan synthetase occurred as the cells aged. Significant activity of glycogen synthetase was detected only in cells which had reached the stationary phase of growth.  相似文献   

16.
Several wine isolates of Saccharomyces were analysed for six molecular markers, five nuclear and one mitochondrial, and new natural interspecific hybrids were identified. The molecular characterization of these Saccharomyces hybrids was performed based on the restriction analysis of five nuclear genes (CAT8, CYR1, GSY1, MET6 and OPY1, located in different chromosomes), the ribosomal region encompassing the 5.8S rRNA gene and the two internal transcribed spacers, and sequence analysis of the mitochondrial gene COX2. This method allowed us to identify and characterize new hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii, between S. cerevisiae and Saccharomyces bayanus, as well as a triple hybrid S. bayanusxS. cerevisiaexS. kudriavzevii. This is the first time that S. cerevisiaexS. kudriavzevii hybrids have been described which have been involved in wine fermentation.  相似文献   

17.
Summary The effects of oxygen (100%), paraquat (0.5 mM), and copper (0.1 mM) on the growth and the biosynthesis of the antioxidant enzymes, superoxide dismutase (SOD) and catalase, were studied in Saccharomyces cerevisiae grown in glucose-limited chemostat cultures. The effect of dilution rates (D, h−1) on cell mass, glucose consumption, ethanol production, oxygen uptake, and specific activities of SOD and catalase were also investigated at each steady state. SOD was optimally produced at D-values between 0.22 and 0.26 h−1 in the presence of oxygen or paraquat, and at D-values greater than 0.17 h−1 when copper was used. On the other hand, catalase activity decreased with increasing D-values. However, the presence of copper or 100% oxygen repressed catalase activity at low D-values (D<0.1 h−1), and decreased the rate of oxygen uptake at all D-values tested. The presence of paraquat affected the rate of oxygen uptake only at high D-values (D>0.22 h−1). We also studied the effect of oxygen concentration on the biosynthesis of SOD and catalase at D=0.1 h−1. The data clearly show that synthesis of SOD and catalase, though correlated with changes in oxygen tension, are independent of one another. Paper Number 10871 of the Journal Series of North Carolina Agricultural Research Service, Raleigh, NC 27 695. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned  相似文献   

18.
Industrial biotechnology employs the controlled use of microorganisms for the production of synthetic chemicals or simple biomass that can further be used in a diverse array of applications that span the pharmaceutical, chemical and nutraceutical industries. Recent advances in metagenomics and in the incorporation of entire biosynthetic pathways into Saccharomyces cerevisiae have greatly expanded both the fitness and the repertoire of biochemicals that can be synthesized from this popular microorganism. Further, the availability of the S. cerevisiae entire genome sequence allows the application of systems biology approaches for improving its enormous biosynthetic potential. In this review, we will describe some of the efforts on using S. cerevisiae as a cell factory for the biosynthesis of high-value natural products that belong to the families of isoprenoids, flavonoids and long chain polyunsaturated fatty acids. As natural products are increasingly becoming the center of attention of the pharmaceutical and nutraceutical industries, the use of S. cerevisiae for their production is only expected to expand in the future, further allowing the biosynthesis of novel molecular structures with unique properties.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号