首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Dynamic changes in local sweat rates (Sw) and local evaporation rates from clothing (Ecl) have been observed during hot exposure. Four young male subjects wearing a cotton T-shirt and half shorts were exposed to 40 °C/50% for 1 h following exposure to 28 °C/50% for 30 min. Amount of water absorbed in clothing (Msw), clothing surface temperatures (Tcl), local heat flow rates, skin temperatures, body weight, rectal temperature, Sw and Ecl were continuously measured. Upon exposure to the heat, decrease in heat gain to the skin was observed as opposed to increase in Sw, Ecl, Msw and heat gain to the clothing surface.  相似文献   

2.
Conifer foliage structures affect branch and bud temperature by altering the development and convective resistance of the thermal boundary layer. This paper examines foliage effects on forced convection in branches and buds of Picea glauca (Moench) Voss and Pinus contorta Dougl. Ex. Loud., two species that represent the range of variation in foliage structure among conifers. Forced convection is characterized by a power law relating Nusselt (heat transfer) and Reynolds (boundary layer development) numbers. Data were collected in a laminar flow wind tunnel for free stream velocities of 0.16-6.95 m s(-1). Scaling parameters were compared against literature values for silver cast branch replicas, a bed of real foliage, cylinders, and tube banks. Foliage structures reduced Nusselt numbers (heat transfer) relative to cylinders, which are typically used to approximate leafless branches and buds. Significantly different scaling relationships were observed for all foliage structures considered. Forced convection scaling relationships varied with foliage structure. The scaling relationships reported here account for variation within populations of branches and buds and can be used to characterize forced convection in a forest canopy.  相似文献   

3.
Penguins, mostly live in the extremely cold Antarctic, are known to have feathers and down, which are light weight, compact and extremely efficient in preventing heat loss. Nevertheless, the mechanisms of heat transfer through the penguin feathers and down, and how the unique characteristics of penguin feathers and down make them such good thermal insulators are not fully understood. In this paper, an integrated model of heat transfer through the penguin feathers and down is developed and computed using finite volume method, with the geometrical structure of the barbules being considered. Monte-Carlo method is adopted to determine the radiative absorption and emission constant in the integrated model. The effective thermal conductance of penguin feathers and down computed from our model compared well with the experimentally measured value reported in the literature. Three models (penguin model, random fibre model (fibre radius=3microm) and random fibre model (fibre radius=10microm)) are further simulated and compared. Results showed that the relative small radius of the barbules of penguin feather and their geometrical structure are responsible for the reduction of heat loss in cold environment.  相似文献   

4.
The heat uptake that resulted from immersing the hand and wrist into a water-filled calorimeter maintained at temperatures between 37-40 degrees C was measured under standard conditions in a group of eight subjects of either sex. The rate of heat transfer (W) increased exponentially with temperature and was a function of hand or body size and age, but not sex. The heat transfer rate normalized to hand mass (W.kg-1) was determined by temperature and age: best-fit mean values (and 95% confidence limits of the population) were 6.0 W.kg-1 (3.2-11.2 W.kg-1) at an immersion temperature of 37 degrees C and 25.4 W.kg-1 (13.7-47.0 W.kg-1) at 40 degrees C. The application of these results to limits on specific energy absorption rate induced in the hands and wrists by radiofrequency dielectric heat sealer welders is discussed.  相似文献   

5.
In order to study convective heat transfer of small leaves, the steady‐state and transient heat flux of small leaf‐shaped model structures (area of one side = 1730 mm2) were studied under zero and low (= 100 mm s?1) wind velocities by using a computer simulation method. The results show that: (1) distinct temperature gradients of several degrees develop over the surface of the model objects during free and mixed convection; and (2) the shape of the objects and onset of low wind velocities has a considerable effect on the resulting temperature pattern and on the time constant τ. Small leaves can thus show a temperature distribution which is far from uniform under zero and low wind conditions. The approach leads, however, to higher leaf temperatures than would be attained by ‘real’ leaves under identical conditions, because heat transfer by transpiration is neglected. The results demonstrate the fundamental importance of a completely controlled environment when measuring heat dissipation by free convection. As slight air breezes alter the temperature of leaves significantly, the existence of purely free convection appears to be questionable in the case of outdoor conditions. Contrary to the prognoses yielded by standard approximations, no quantitative effect of buoyancy on heat transfer under the considered conditions could be detected for small‐sized leaf shapes.  相似文献   

6.
在土柱栽培条件下研究膜下滴灌土壤深层水对棉花根系生长的影响及与植株地上部生长的关系,设置土壤(60~120 cm)有深层水和无深层水2个处理,每处理设2个生育期间灌溉处理,分别为田间持水量70%和55%.结果表明:棉花总根质量密度、40~120 cm土层根长密度、根系活力等与地上部干质量间均具有显著的相关关系.生育期间耕层70%田间持水量条件下,土壤有深层水处理的总根质量密度与无深层水处理无明显差异,但40~120 cm土层的根长密度增加,根系活力增强,提高了土壤贮备水消耗量,增加了地上部干质量,最终获得较高的经济产量及水分利用效率.土壤有深层水条件下,生育期间耕层55%田间持水量处理的根冠比较大,40~120 cm土层根长密度和80~120 cm土层根系活力相对较高,土壤贮备水消耗量大幅提高,但仍无法弥补生育期间水分亏缺对根系及地上部生物量造成的负面影响,导致经济产量显著低于70%田间持水量处理.综上,充足的土壤深层水配合生育期间耕层65%~75%田间持水量,可促进棉花根系向下生长,有利于实现膜下滴灌棉花节水高产高效生产.  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号