共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased Bean (Phaseolus vulgaris L.) Nodulation Competitiveness of Genetically Modified Rhizobium Strains 总被引:2,自引:4,他引:2
下载免费PDF全文

Rhizobium leguminosarum bv. phaseoli strain collections harbor heterogeneous groups of bacteria in which two main types of strains may be distinguished, differing both in the symbiotic plasmid and in the chromosome. We have analyzed under laboratory conditions the competitive abilities of the different types of Rhizobium strains capable of nodulating Phaseolus vulgaris L. bean. R. leguminosarum bv. phaseoli type I strains (characterized by nif gene reiterations and a narrow host range) are more competitive than type II strains (that have a broad host range), and both types are more competitive than the promiscuous rhizobia isolated from other tropical legumes able to nodulate beans. Type I strains become even more competitive by the transfer of a non-Sym, 225-kilobase plasmid from type II strain CFN299. This plasmid has been previously shown to enhance the nodulation and nitrogen fixation capabilities of Agrobacterium tumefaciens transconjugants carrying the Sym plasmid of strain CFN299. Other type I R. leguminosarum bv. phaseoli transconjugants carrying two symbiotic plasmids (type I and type II) have been constructed. These strains have a diminished competitive ability. The increase of competitiveness obtained in some transconjugants seems to be a transient property. 相似文献
2.
Influence of Azospirillum Strains on the Nodulation of Clovers by Rhizobium Strains 总被引:1,自引:2,他引:1
下载免费PDF全文

Mixed cultures of several Azospirillum and Rhizobium trifolii strains caused either an inhibition or stimulation of nodule formation on plant hosts as compared with nodulation of plants inoculated with R. trifolii alone. Azospirillum strains affected the nodulation process at a precise cell ratio (R. trifolii/Azospirillum cells) and time of inoculation. All Azospirillum strains used showed a variation in their ability to inhibit or enhance nodulation by R. trifolii strains. When nonviable cell preparations of Azospirillum strains were used for mixing experiments, no effect on nodulation was observed. A decrease in the effectiveness of normally Nod+ Fix+R. trifolii strains was observed when an Azospirillum strain caused an increase in nodule number. 相似文献
3.
Competition of Rhizobium japonicum Strains in Early Stages of Soybean Nodulation 总被引:3,自引:8,他引:3
下载免费PDF全文

Renee M. Kosslak B. Ben Bohlool Stephen Dowdle Michael J. Sadowsky 《Applied microbiology》1983,46(4):870-873
The effects of preexposure of soybean (Glycine max L. Merrill) roots to Rhizobium japonicum strains and subsequent establishment of other strains in the nodules were investigated by using combinations of effective strains (USDA 110 and USDA 138) and effective-ineffective strains (USDA 110 and SM-5). Strain USDA 110 was a better competitor than either USDA 138 or SM-5 on cultivars Lee and Peking. However, when either of the two less-competitive strains was inoculated into 2-day-old seedlings before USDA 110 was, their nodule occupancy increased significantly on both cultivars. With USDA 138 as the primary inoculum and USDA 110 delayed for 6, 48, and 168 h, the incidence of USDA 138 nodules increased on cultivar Peking from 6% (at zero time) to 28, 70, and 82% and on cultivar Lee from 17% (at zero time) to 32, 88, and 95% for the three time delays, respectively. Preexposure of 2-week-old roots of cultivar Lee to USDA 138 had essentially the same effect: the incidence of USDA 138 nodules increased from 23% at zero time to 89 and 97% when USDA 110 was delayed for 24 and 72 h, respectively. When the ineffective strain SM-5 was used as the primary inoculum, followed by USDA 110 72 h later, the percentage of nodules containing SM-5 increased from 7 to 76%. These results indicate that the early events in the nodulation process of soybeans are perhaps the most critical for competition among R. japonicum strains. 相似文献
4.
Trifolitoxin Production Increases Nodulation Competitiveness of Rhizobium etli CE3 under Agricultural Conditions 总被引:2,自引:0,他引:2
下载免费PDF全文

Eduardo A. Robleto Kenneth Kmiecik Edward S. Oplinger James Nienhuis Eric W. Triplett 《Applied microbiology》1998,64(7):2630-2633
A major barrier to the use of nitrogen-fixing inoculum strains for the enhancement of legume productivity is the inability of commercially available strains to compete with indigenous rhizobia for nodule formation. Despite extensive research on nodulation competitiveness, there are no examples of field efficacy studies of strains that have been genetically improved for nodulation competitiveness. We have shown previously that production of the peptide antibiotic trifolitoxin (TFX) by Rhizobium etli results in significantly increased nodule occupancy values in nonsterile soil in growth chamber experiments (E. A. Robleto, A. J. Scupham, and E. W. Triplett, Mol. Plant-Microbe Interact. 10:228–233, 1997). To determine whether TFX production by Rhizobium etli increases nodulation competitiveness in field-grown plants, seeds of Phaseolus vulgaris were inoculated with mixtures of Rhizobium etli strains at different ratios. The three nearly isogenic inoculum strains used included TFX-producing and non-TFX-producing strains, as well as a TFX-sensitive reference strain. Data was obtained over 2 years for nodule occupancy and over 3 years for assessment of the effect of the TFX production phenotype on grain yield. In comparable mixtures in which the test strain accounted for between 5 and 50% of the inoculum, the TFX-producing strain exhibited at least 20% greater nodule occupancy than the non-TFX-producing strain in both years. The TFX production phenotype had no effect on grain yield over 3 years; the average yields reached 2,400 kg/ha. These results show that addition of the TFX production phenotype significantly increases nodule occupancy under field conditions without adverse effects on grain yield. As we used common inoculation methods in this work, there are no practical barriers to the commercial adoption of the TFX system for agriculture. 相似文献
5.
Competition Among Rhizobium leguminosarum Strains for Nodulation of Lentils (Lens esculenta) 总被引:1,自引:10,他引:1
下载免费PDF全文

Thirty-one cultures of Rhizobium leguminosarum were screened for effectiveness (C2H2 reduction) on lentils (Lens esculenta). Fluorescent antibodies prepared against three of the most effective strains (Hawaii 5-0, Nitragin 92A3, and Nitragin 128A12) exhibited a high degree of strain specificity; the antibodies reacted strongly with their homologous rhizobia in culture and with bacteroids in nodules. They did not cross-react with one another, and only weakly with 5 of the 47 other R. leguminosarum cultures tested. In competition studies in the growth chamber, whenever strain Nitragin 92A3 was included in the inoculum mixture, it consistently (but not always significantly, P = 0.05) occupied the majority of nodules on all four cultivars used. However, some degree of strain X cultivar interaction was apparent: Hawaii 5-0 was of equal competitiveness (P = 0.05) with Nitragin 92A3 on three of the varieties (Commercial, Tekoa, and Benewah), but inferior (P = 0.01) on the Chilean variety; Nitragin 92A3 completely dominated (P = 0.01) Nitragin 128A12 on all cultivars; and Hawaii 5-0 was of equal competitiveness (P = 0.05) to Nitragin 128A12 on the Chilean variety and more competitive (P = 0.01) on the commercial variety and less so on the other two varieties. In field experiments, Hawaii 5-0 proved of equal competitiveness (P = 0.01) with Nitragin 92A3 in one soil (an Inceptisol) and superior (P ≤ 0.05) to it in another (an Oxisol). Incidence of double-strain occupancy of nodules varied from 0 to 36% in vermiculite, depending on the strains in the mixture and the host variety, and from 0 to 38% in the field, depending on the strains in the mixture and the soil type. The results suggest a close relationship between the competitiveness of a strain and its occurrence in doubly infected nodules. 相似文献
6.
A Hydrophobic Mutant of Rhizobium etli Altered in Nodulation Competitiveness and Growth in the Rhizosphere 总被引:2,自引:0,他引:2
下载免费PDF全文

We isolated and characterized CE3003, a Tn5-induced mutant with altered colony morphology derived from Rhizobium etli CE3. CE3003 produced domed colonies and was highly hydrophobic as indicated by its ability to partition into hexadecane, whereas its parent produced flat colonies and was hydrophilic. On bean plants, CE3003 induced nodules and reduced acetylene. CE3003 and CE3 grew at similar rates when they were grown separately or together in culture medium or inoculated singly onto bean seeds. However, when they were mixed at a 1:1 ratio and applied to seeds, CE3003 achieved significantly lower populations than CE3 in the rhizosphere. Five days after coinoculation of CE3 and CE3003, the population of the mutant was less than 10% of the population of CE3 in the bean rhizosphere. To determine the nodulation competitiveness of the mutant, it was coinoculated with CE3 at various ratios at planting, and the ratio of the nodules occupied by each strain was determined 21 days later. A 17,000-fold excess of CE3003 in mixed inocula was required to obtain equal nodule occupancy by the two strains. A genomic library of strain CE3 was mobilized into CE3003, and we identified a cosmid, pRA3003, that restored the parental colony morphology and hydrophilicity to the mutant. Restoration of the parental colony morphology was accompanied by recovery of the ability to grow competitively in the rhizosphere and to compete for nodulation of beans. The data show an association between cell surface hydrophobicity, nodulation competitiveness, and competitive growth in the rhizosphere in mutant CE3003. 相似文献
7.
Plasmids which contained wild-type or mutated Rhizobium meliloti nodulation (nod) genes were introduced into Nod−R. trifolii mutants ANU453 and ANU851 and tested for their ability to nodulate clover. Cloned wild-type and mutated R. meliloti nod gene segments restored ANU851 to Nod+, with the exception of nodD mutants. Similarly, wild-type and mutant R. meliloti nod genes complemented ANU453 to Nod+, except for nodCII mutants. Thus, ANU851 identifies the equivalent of the R. meliloti nodD genes, and ANU453 specifies the equivalent of the R. meliloti nodCII genes. In addition, cloned wild-type R. trifolii nod genes were introduced into seven R. meliloti Nod− mutants. All seven mutants were restored to Nod+ on alfalfa. Our results indicate that these genes represent common nodulation functions and argue for an allelic relationship between nod genes in R. meliloti and R. trifolii. 相似文献
8.
Procedure for Obtaining Efficient Root Nodulation of a Pea Cultivar by a Desired Rhizobium Strain and Preempting Nodulation by Other Strains
下载免费PDF全文

The specificity between the sym-2 gene bred into certain cultivars of pea (Pisum sativum L.) and the nodX gene, present only rarely in isolates of Rhizobium leguminosarum, can be exploited to preempt competition or nodulation blocking by a Rhizobium strain indigenous to a soil environment. The principle is to isolate an R. leguminosarum strain prevalent in a locale, convert it into a strain that will nodulate a desirable pea cultivar carrying sym-2 by establishing nodX in it, and then use the resulting Rhizobium strain with the pea cultivar carrying sym-2. To accomplish this, we first constructed a transposon Tn5 derivative called Tn5nodX and an efficient delivery vehicle that is suicidal in R. leguminosarum. We tested the potential utility of the system in greenhouse experiments. The results are encouraging enough to warrant extensive experiments under field conditions. 相似文献
9.
Rhizobium meliloti nif nod gene cluster was transferred conjugally to Azotobacter, and the modified Azotobacter showed nodulation and nitrogen fixation on alfalfa plants. 相似文献
10.
M. Julia Althabegoiti Luis Lozano Gonzalo Torres-Tejerizo Ernesto Orme?o-Orrillo Marco A. Rogel Víctor González Esperanza Martínez-Romero 《Journal of bacteriology》2012,194(23):6651-6652
Here we present the genome sequence of Rhizobium grahamii CCGE502. R. grahamii groups with other newly described broad-host-range species, which are not very efficient Phaseolus vulgaris symbionts, with a wide geographic distribution and which constitutes a novel Rhizobium clade. 相似文献
11.
Host Plant Effects on Nodulation and Competitiveness of the Bradyrhizobium japonicum Serotype Strains Constituting Serocluster 123 总被引:5,自引:3,他引:5
下载免费PDF全文

Strains in Bradyrhizobium japonicum serocluster 123 are the major indigenous competitors for nodulation in a large portion of the soybean production area of the United States. Serocluster 123 is defined by the serotype strains USDA 123, USDA 127, and USDA 129. The objective of the work reported here was to evaluate the ability of two soybean genotypes, PI 377578 and PI 417566, to restrict the nodulation and reduce the competitiveness of serotype strains USDA 123, USDA 127, and USDA 129 in favor of the highly effective strain CB1809 and to determine how these soybean genotypes alter the competitive relationships among the three serotype strains in the serocluster. The soybean genotypes PI 377578 and PI 417566 along with the commonly grown cultivar Williams were planted in soil essentially free of soybean rhizobia and inoculated with single-strain treatments of USDA 123, USDA 127, USDA 129, or CB1809 and six dual-strain competition treatments of USDA 123, USDA 127, or USDA 129 versus CB1809, USDA 123 versus USDA 127, USDA 123 versus USDA 129, and USDA 127 versus USDA 129. PI 377578 severely reduced the nodulation and competitiveness of USDA 123 and USDA 127, while PI 417566 similarly affected the nodulation and competitiveness of USDA 129. Thus, the two soybean genotypes can reduce the nodulation and competitiveness of each of the three serocluster 123 serotype strains. Our results indicate that host control of restricted nodulation and reduced competitiveness is quite specific and effectively discriminates between B. japonicum strains which are serologically related. 相似文献
12.
Genetic Analysis of Rhizobium leguminosarum bv. Phaseoli Mutants Defective in Nodulation and Nodulation Suppression
下载免费PDF全文

Nodulation-defective rhizobia and their nodule-forming derivatives containing cloned DNA from the wild type were used to study nodulation suppression in Phaseolus vulgaris L. Non-nitrogen-fixing derivatives which formed rhizobia-containing white nodules induced partial suppression. Comparison of this with the complete suppression by Fix+ derivatives and a Fix- mutant which formed rhizobia-containing pink nodules suggests that the extent of suppression may be related to successive stages of nodule development. 相似文献
13.
Competitiveness of Rhizobium trifolii Strains Associated with Red Clover (Trifolium pratense L.) in Mississippi Soils 总被引:1,自引:3,他引:1
下载免费PDF全文

Five strains of Rhizobium trifolii were evaluated in competition with indigenous populations in nodulating red clover (Trifolium pratense L.) cv. Kenland in two different soils in Mississippi. Double antibiotic resistance acquisition was used to measure the proportion of nodules occupied by the introduced mutant strains. In vertisol soil, strains RP113-7, 162BB1, LM1, and 162P17 were recovered in at least 94% of the assayed nodules, whereas TA1 was found in 83.8% of the nodules. At an ultisol location, significant differences were detected within the introduced rhizobia. Strain RP113-7 was recovered at very high rates (99.2% of the assayed nodules), whereas strains 162BB1, LM1, 162P17, and TA1 were all found in 84.9 to 96.0% of the nodules sampled. Forage yield and percent crude protein levels were lower with the less effective but competitive strain (TA1) at both locations. Results indicated that more effective strains of R. trifolii can increase red clover production and symbiotic nitrogen fixation under different environmental conditions in Mississippi. 相似文献
14.
利用柱层析、薄层层析(TLC)和高压液相色谱(HPLC)从紫云英种子中分离并纯化对紫云英根瘤菌nd基因表达有诱导活性的成分,质谱(MS)鉴定为抽皮素(naringenin)。19种类黄酮或非类黄酮化合物对紫云英根瘤菌结瘤基因表达的诱导活性实验表明,紫云英根瘤菌的结瘤基因可以应答多种诱导咸分,除抽皮素外,还有类黄酮物质毛地黄黄酮(luteolin)、大豆素(daidzein)以及非类黄酮化合物7-羟基香豆素(umbelliferone)和葫芦巴碱(trigonelline)。 相似文献
15.
M. Teresa Cubo Ana M. Buendia-Claveria John E. Beringer Jos E. Ruiz-Sainz 《Applied microbiology》1988,54(7):1812-1817
Different Rhizobium and Bradyrhizobium strains were screened for their ability to produce melanin. Pigment producers (Mel+) were found among strains of R. leguminosarum biovars viceae, trifolii, and phaseoli, R. meliloti, and R. fredii; none of 19 Bradyrhizobium strains examined gave a positive response. Melanin production and nod genes were plasmid borne in R. leguminosarum biovar trifolii RS24. In R. leguminosarum biovar phaseoli CFN42 and R. meliloti GR015, mel genes were located in the respective symbiotic plasmids. In R. fredii USDA 205, melanin production correlated with the presence of its smallest indigenous plasmid. 相似文献
16.
Mutualisms are common in nature, though these symbioses can be quite permeable to cheaters in situations where one individual parasitizes the other by discontinuing cooperation yet still exploits the benefits of the partnership. In the Rhizobium-legume system, there are two separate contexts, namely nodulation and nitrogen fixation processes, by which resident Rhizobium individuals can benefit by cheating. Here, we constructed reversible and irreversible mutations in key nodulation and nitrogen-fixation pathways of Rhizobium etli and compared their interaction with plant hosts Phaseolus vulgaris to that of wild type. We show that R. etli reversible mutants deficient in nodulation factor production are capable of intra-specific cheating, wherein mutants exploit other Rhizobium individuals capable of producing these factors. Similarly, we show that R. etli mutants are also capable of cheating inter-specifically, colonizing the host legume yet contributing nothing to the partnership in terms of nitrogen fixation. Our findings indicate that cheating is possible in both of these frameworks, seemingly without damaging the stability of the mutualism itself. These results may potentially help explain observations suggesting that legume plants are commonly infected by multiple bacterial lineages during the nodulation process. 相似文献
17.
Role of Motility and Chemotaxis in Efficiency of Nodulation by Rhizobium meliloti 总被引:10,自引:1,他引:10
下载免费PDF全文

Caetano-Anollés G Wall LG De Micheli AT Macchi EM Bauer WD Favelukes G 《Plant physiology》1988,86(4):1228-1235
Spontaneous mutants of Rhizobium meliloti L5-30 defective in motility or chemotaxis were isolated and compared against the parent with respect to symbiotic competence. Each of the mutants was able to generate normal nodules on the host plant alfalfa (Medicago sativa), but had slightly delayed nodule formation, diminished nodulation in the initially susceptible region of the host root, and relatively low representation in nodules following co-inoculation with equal numbers of the parent. When inoculated in growth pouches with increasing dosages of the parental strain, the number of nodules formed in the initially susceptible region of the root increased sigmoidally, with an optimum concentration of about 105 to 106 bacteria/plant. The dose-response behavior of the nonmotile and nonchemotactic mutants was similar, but they required 10- to 30-fold higher concentrations of bacteria to generate the same number of nodules. The distribution frequencies of nodules at different positions along the primary root were very similar for the mutants and parent, indicating that reduced nodulation by the mutants in dose-response experiments probably reflects reduced efficiency of nodule initiation rather than developmentally delayed nodule initiation. The number of bacteria that firmly adsorbed to the host root surface during several hours of incubation was 5- to 20-fold greater for the parent than the mutants. The mutants were also somewhat less effective than their parent as competitors in root adsorption assays. It appears that motility and chemotaxis are quantitatively important traits that facilitate the initial contact and adsorption of symbiotic rhizobia to the host root surface, increase the efficiency of nodule initiation, and increase the rate of infection development. 相似文献
18.
Indigenous serotypes 1-01 and 2-02 of Rhizobium trifolii occupied similar percentages (18 to 23%) of root nodules on soil-grown subclover (Trifolium subterraneum L.) and were virtually absent (4.5%) from nodules of soil-grown white clover (Trifolium repens L.). In contrast (with the exception of one dilution [10−4]), serotype 1-01 occupied a substantial portion of nodules (16 to 40%) on white clover seedlings grown on mineral salts agar and exposed to samples of the same soil in the form of a 10-fold dilution series (10−1 to 10−5). Under the latter conditions, occupancy of subclover nodules by 1-01 and of nodules of both plant species by 2-02 was consistent with the results obtained with soil-grown plants. 相似文献
19.
Chemotaxis of Rhizobium meliloti towards Nodulation Gene-Inducing Compounds from Alfalfa Roots 总被引:2,自引:0,他引:2
下载免费PDF全文

Luteolin, a flavone present in seed exudates of alfalfa, induces nodulation genes (nod) in Rhizobium meliloti and also serves as a biochemically specific chemoattractant for the bacterium. The present work shows that R. meliloti RCR2011 is capable of very similar chemotactic responses towards 4′,7-dihydroxyflavone, 4′,7-Dihydroxyflavanone, and 4,4′-dihydroxy-2-methoxychalcone, the three principal nod gene inducers secreted by alfalfa roots. Chemotactic responses to the root-secreted nod inducers in capillary assays were usually two- to four-fold above background and, for the flavone and flavonone, occurred at concentrations lower than those required for half-maximal induction of the nodABC genes. Complementation experiments indicated that the lack of chemotactic responsiveness to luteolin seen in nodD1 and nodA mutants of R. meliloti was not due to mutations in the nod genes, as previously thought. Thus, while nod gene induction and flavonoid chemotaxis have the same biochemical specificity, these two functions appear to have independent receptors or transduction pathways. The wild-type strain was found to suffer selective, spontaneous loss of chemotaxis towards flavonoids during laboratory subculture. 相似文献
20.
Host-Controlled Restriction of Nodulation by Bradyrhizobium japonicum Strains in Serogroup 110
下载免费PDF全文

We previously reported the identification of a soybean plant introduction (PI) genotype, PI 417566, which restricts nodulation by Bradyrhizobium japonicum MN1-1c (USDA 430), strains in serogroup 129, and USDA 110 (P. B. Cregan, H. H. Keyser, and M. J. Sadowsky, Appl. Environ. Microbiol. 55:2532-2536, 1989, and Crop Sci. 29:307-312, 1989). In this study, we further characterized nodulation restriction by PI 417566. Twenty-four serogroup 110 isolates were tested for restricted nodulation on PI 417566. Of the 24 strains examined, 62.5% were restricted in nodulation by the PI genotype. The remainder of the serogroup 110 strains tested (37.5%), however, formed significant numbers of nodules on PI 417566, suggesting that host-controlled restriction of nodulation by members of serogroup 110 is strain dependent. Analysis of allelic variation at seven enzyme-encoding loci by multilocus enzyme electrophoresis indicated that the serogroup 110 isolates can be divided into two major groups. The majority of serogroup 110 isolates which nodulated PI 417566 belonged to the same multilocus enzyme electrophoresis group. B. japonicum USDA 110 and USDA 123 were used as coinoculants in competition-for-nodulation studies using PI 417566. Over 98% of the nodules formed on PI 417566 contained USDA 123, whereas less than 2% contained USDA 110. We also report the isolation of a Tn5 mutant of USDA 110 which has overcome nodulation restriction conditioned by PI 417566. This mutant, D4.2-5, contained a single Tn5 insertion and nodulated PI 417566 to an extent equal to that seen with the unrestricted strain USDA 123. The host range of D4.2-5 on soybean plants and other legumes was unchanged relative to that of USDA 110, except that the mutant nodulated Glycine max cv. Hill more efficiently. While strain USDA 110 has the ability to block nodulation by D4.2-5 on PI 417566, the nodulation-blocking phenomenon was not seen unless strain USDA 110 was inoculated at a 100-fold greater concentration than the mutant strain. 相似文献