共查询到20条相似文献,搜索用时 14 毫秒
1.
Vázquez-Novelle MD Mailand N Ovejero S Bueno A Sacristán MP 《The Journal of biological chemistry》2010,285(52):40544-40553
The Cdc14 family of serine-threonine phosphatases antagonizes CDK activity by reversing CDK-dependent phosphorylation events. It is well established that the yeast members of this family bring about the M/G1 transition. Budding yeast Cdc14 is essential for CDK inactivation at the end of mitosis and fission yeast Cdc14 homologue Flp1/Clp1 down-regulates Cdc25 to ensure the inactivation of mitotic CDK complexes to trigger cell division. However, the functions of human Cdc14 homologues remain poorly understood. Here we have tested the hypothesis that Cdc14A might regulate Cdc25 mitotic inducers in human cells. We found that increasing levels of Cdc14A delay entry into mitosis by inhibiting Cdk1-cyclin B1 activity. By contrast, lowering the levels of Cdc14A accelerates mitotic entry. Biochemical analyses revealed that Cdc14A acts through key Cdk1-cyclin B1 regulators. We observed that Cdc14A directly bound to and dephosphorylated Cdc25B, inhibiting its catalytic activity. Cdc14A also regulated the activity of Cdc25A at the G2/M transition. Our results indicate that Cdc14A phosphatase prevents premature activation of Cdk1 regulating Cdc25A and Cdc25B at the entry into mitosis. 相似文献
2.
Daniel F McCain Irina E Catrina Alvan C Hengge Zhong-Yin Zhang 《The Journal of biological chemistry》2002,277(13):11190-11200
Cdc25 phosphatases are dual specificity phosphatases that dephosphorylate and activate cyclin-dependent kinases (CDKs), thereby effecting the progression from one phase of the cell cycle to the next. Despite its central role in the cell cycle, relatively little is known about the catalytic mechanism of Cdc25. In order to provide insights into the catalytic mechanism of Cdc25, we have performed a detailed mechanistic analysis of the catalytic domain of human Cdc25A. Our kinetic isotope effect results, Bronsted analysis, and pH dependence studies employing a range of aryl phosphates clearly indicate a dissociative transition state for the Cdc25A reaction that does not involve a general acid for the hydrolysis of substrates with low leaving group pK(a) values (5.45-8.05). Interestingly, our Bronsted analysis and pH dependence studies reveal that Cdc25A employs a different mechanism for the hydrolysis of substrates with high leaving group pK(a) values (8.68-9.99) that appears to require the protonation of glutamic acid 431. Mutation of glutamic acid 431 into glutamine leads to a dramatic drop in the hydrolysis rate for the high leaving group pK(a) substrates and the disappearance of the basic limb of the pH rate profile for the substrate with a leaving group pK(a) of 8.05, indicating that glutamic acid 431 is essential for the efficient hydrolysis of substrates with high leaving group pK(a). We suggest that hydrolysis of the high leaving group pK(a) substrates proceeds through an unfavored but more catalytically active form of Cdc25A, and we propose several models illustrating this. Since the activity of Cdc25A toward small molecule substrates is several orders of magnitude lower than toward the physiological substrate, cyclin-CDK, we suggest that the cyclin-CDK is able to preferentially induce this more catalytically active form of Cdc25A for efficient phosphothreonine and phosphotyrosine dephosphorylation. 相似文献
3.
Differential roles for checkpoint kinases in DNA damage-dependent degradation of the Cdc25A protein phosphatase 总被引:1,自引:0,他引:1
Jin J Ang XL Ye X Livingstone M Harper JW 《The Journal of biological chemistry》2008,283(28):19322-19328
In response to DNA damage, cells activate a signaling pathway that promotes cell cycle arrest and degradation of the cell cycle regulator Cdc25A. Cdc25A degradation occurs via the SCFbeta-TRCP pathway and phosphorylation of Ser-76. Previous work indicates that the checkpoint kinase Checkpoint kinase 1 (Chk1) is capable of phosphorylating Ser-76 in Cdc25A, thereby promoting its degradation. In contrast, other experiments involving overexpression of dominant Chk2 mutant proteins point to a role for Chk2 in Cdc25A degradation. However, loss-of-function studies that implicate Chk2 in Cdc25A turnover are lacking, and there is no evidence that Chk2 is capable of phosphorylating Ser-76 in Cdc25A despite the finding that Chk1 and Chk2 sometimes share overlapping primary specificity. We find that although Chk2 can phosphorylate many of the same sites in Cdc25A that Chk1 phosphorylates, albeit with reduced efficiency, Chk2 is unable to efficiently phosphorylate Ser-76. Consistent with this, Chk2, unlike Chk1, is unable to support SCFbeta-TRCP-mediated ubiquitination of Cdc25A in vitro. In CHK2(-/-) HCT116 cells, the kinetics of Cdc25A degradation in response to ionizing radiation is comparable with that seen in HCT116 cells containing Chk2, indicating that Chk2 is not generally required for timely DNA damage-dependent Cdc25A turnover. In contrast, depletion of Chk1 by RNA interference in CHK2(-/-) cells leads to Cdc25A stabilization in response to ionizing radiation. These data support the idea that Chk1 is the primary signal transducer linking activation of the ATM/ATR kinases to Cdc25A destruction in response to ionizing radiation. 相似文献
4.
Extracellular signal-regulated kinase (ERK) plays a central role in regulating cell growth, differentiation, and apoptosis. We previously found that 2-(2-mercaptoethanol)-3-methyl-1,4-napthoquinone or Compound 5 (Cpd 5), is a Cdc25A protein phosphatase inhibitor and causes prolonged, strong ERK phosphorylation which is triggered by epidermal growth factor receptor (EGFR) activation. We now report that Cpd 5 can directly cause ERK phosphorylation by inhibiting Cdc25A activity independently of the EGFR pathway. We found that Cdc25A physically interacted with and de-phosphorylated phospho-ERK both in vitro and in cell culture. Inhibition of Cdc25A activity by Cpd 5 resulted in ERK hyper-phosphorylation. Transfection of Hep3B human hepatoma cells with inactive Cdc25A mutant enhanced Cpd 5 action on ERK phosphorylation, whereas over-expression of Cdc25A attenuated this Cpd 5 action. Furthermore, endogenous Cdc25A knock-down by Cdc25A siRNA resulted in a constitutive-like ERK phosphorylation and Cpd 5 treatment further enhanced it. In EGFR-devoid NR6 fibroblasts and MEK (ERK kinase) mutated MCF7 cells, Cpd 5 treatment also resulted in ERK phosphorylation, providing support for the idea that Cpd 5 can directly act on ERK phosphorylation by inhibiting Cdc25A activity. These data suggest that phospho-ERK is likely another Cdc25A substrate, and Cpd 5-caused ERK phosphorylation is probably regulated by both EGFR-dependent and EGFR-independent pathways. 相似文献
5.
The human Cdc25A phosphatase plays a pivotal role at the G1/S transition by activating cyclin E and A/Cdk2 complexes through dephosphorylation. In response to ionizing radiation, Cdc25A is phosphorylated by both Chk1 and Chk2 on Ser-123. This in turn leads to ubiquitylation and rapid degradation of Cdc25A by the proteasome resulting in cell cycle arrest. We found that in response to UV irradiation, Cdc25A is phosphorylated at a different serine residue, Ser-75. Significantly, Cdc25A mutants carrying alanine instead of either Ser-75 or Ser-123 demonstrate that only Ser-75 mediates protein stabilization in response to UV-induced DNA damage. As a consequence, cyclin E/Cdk2 kinase activity was high. Furthermore, we find that Cdc25A was phosphorylated by Chk1 on Ser-75 in vitro and that the same site was also phosphorylated in vivo. Taken together, these data strongly suggest that phosphorylation of Cdc25A on Ser-75 by Chk1 and its subsequent degradation is required to delay cell cycle progression in response to UV-induced DNA lesions. 相似文献
6.
Peng H Xie W Kim DI Zalkow LH Powis G Otterness DM Abraham RT 《Bioorganic & medicinal chemistry》2000,8(2):299-306
A group of steroidal derived acids were synthesized and found to be human Cdc25A inhibitors. Their potency ranged from 1.1 to > 100 microM; the best ones compare very favorably with that of the novel cyano-containing 5,6-seco-cholesteryl acid 1 (IC50=2.2microM) reported by us recently (Peng, H.; Zalkow, L. H.; Abraham, R. T.; Powis, G. J. Med. Chem. 1998, 41, 4677). Structure-activity relationships of these compounds revealed that a hydrophobic cholesteryl side chain and a free carboxyl group are crucial for activity. The distance between these two pharmacophores is also important for the potency of these compounds. Several of the compounds showed selective growth inhibition effects in the NCI in vitro cancer cell line panel. 相似文献
7.
Donzelli M Busino L Chiesa M Ganoth D Hershko A Draetta GF 《Cell cycle (Georgetown, Tex.)》2004,3(4):469-471
We have recently demonstrated that regulation of Cdc25A protein abundance during S phase and in response to DNA damage is mediated by SCF(betaTrCP) activity. Based on sequence homology of known betaTrCP substrates, we found that Cdc25A contains a conserved motif (DSG), phosphorylation of which is required for interaction with betaTrCP.1 Here, we show that phosphorylation at Ser 82 within the DSG motif anchors Cdc25A to betaTrCP and that Chk1-dependent phosphorylation at Ser 76 affects this interaction as well as betaTrCP-dependent degradation. We propose that a hierarchical order of phosphorylation events commits Cdc25A to betaTrCP-dependent degradation. According to our model, phosphorylation at Ser 76 is a "priming" step required for Ser 82 phosphorylation, which in turn allows recruitment of Cdc25A by betaTrCP and subsequent betaTrCP-dependent degradation. 相似文献
8.
Bulavin DV Higashimoto Y Demidenko ZN Meek S Graves P Phillips C Zhao H Moody SA Appella E Piwnica-Worms H Fornace AJ 《Nature cell biology》2003,5(6):545-551
Negative regulation of the Cdc25C protein phosphatase by phosphorylation on Ser 216, the 14-3-3-binding site, is an important regulatory mechanism used by cells to block mitotic entry under normal conditions and after DNA damage. During mitosis, Cdc25C is not phosphorylated on Ser 216 and ionizing radiation (IR) does not induce either phosphorylation of Ser 216, or binding to 14-3-3. Here, we show that Cdc25C is phosphorylated on Ser 214 during mitosis, which in turn prevents phosphorylation of Ser 216. Mutation of Ser 214 to Ala reconstitutes Ser 216 phosphorylation and 14-3-3 binding during mitosis. Introduction of exogenous Cdc25C(S214A) into HeLa cells depleted of endogenous Cdc25C results in a substantial delay to mitotic entry. This effect was fully reversed in a S214A/S216A double-mutant, implying that the inhibitory effect of S214A mutant was entirely dependent on Ser 216 phosphorylation. A similar regulatory mechanism may also apply to another mitotic phosphatase, Cdc25B, as well as mitotic phosphatases of other species, including Xenopus laevis. We propose that this pathway ensures that Cdc2 remains active once mitosis is initiated and is a key control mechanism for maintaining the proper order of cell-cycle transitions. 相似文献
9.
《Cell cycle (Georgetown, Tex.)》2013,12(19):3157-3164
Hypoxia is a common feature of solid tumors and represents a critical factor in their progression and responsiveness to chemotherapy and radiotherapy. We now report that hypoxic exposure of colon cancer cells decreased the protein levels of the cell cycle-controlling phosphatase Cdc25A. Hypoxia decreased the mitotic population and caused S-phase arrest in these cells. Suppression of Cdc25A was phosphatase family member-specific, as a similar decrease was not observed with closely related Cdc25B or Cdc25C phosphatases. Pharmacological and genetic blockade of Chk1 and Chk2 failed to inhibit the hypoxia-mediated loss of Cdc25A, indicating this process was not regulated by a traditional ATM/ATR checkpoint response. In addition, hypoxia did not affect ectopically expressed Cdc25A levels suggesting independence from an increase in proteasomal degradation. Cdc25A mRNA levels also decreased in human colon cancer cells 24 hr after hypoxia supporting a mechanistic role for decreased Cdc25A expression or mRNA stability. The reduction in Cdc25A mRNA and protein was dependent on the cyclin-dependent kinase inhibitor p21 and miR-21, which were upregulated in HCT116 colon cancer cells during hypoxia. These results reveal previously unknown mechanisms for the transient suppression of Cdc25A, providing a coordinated and fundamental adaptive change that may be exploited by cancer cells conferring proliferative and survival advantages. 相似文献
10.
《Cell cycle (Georgetown, Tex.)》2013,12(4):467-469
We have recently demonstrated that regulation of Cdc25A protein abundance during S phase and in response to DNA damage is mediated by SCFβTrCP activity. Based on sequence homology of known βTrCP substrates, we found that Cdc25A contains a conserved motif (DSG), phosphorylation of which is required for interaction with βTrCP1. Here, we show that phosphorylation at Ser 82 within the DSG motif anchors Cdc25A to βTrCP and that Chk1-dependent phosphorylation at Ser 76 affects this interaction as well as βTrCP-dependent degradation. We propose that a hierarchical order of phosphorylation events commits Cdc25A to βTrCP-dependent degradation. According to our model, phosphorylation at Ser 76 is a “priming” step required for Ser 82 phosphorylation, which in turn allows recruitment of Cdc25A by βTrCP and subsequent βTrCP-dependent degradation. 相似文献
11.
Rhodanese domains are ubiquitous structural modules occurring in the three major evolutionary phyla. They are found as tandem repeats, with the C-terminal domain hosting the properly structured active-site Cys residue, as single domain proteins or in combination with distinct protein domains. An increasing number of reports indicate that rhodanese modules are versatile sulfur carriers that have adapted their function to fulfill the need for reactive sulfane sulfur in distinct metabolic and regulatory pathways. Recent investigations have shown that rhodanese domains are also structurally related to the catalytic subunit of Cdc25 phosphatase enzymes and that the two enzyme families are likely to share a common evolutionary origin. In this review, the rhodanese/Cdc25 phosphatase superfamily is analyzed. Although the identification of their biological substrates has thus far proven elusive, the emerging picture points to a role for the amino-acid composition of the active-site loop in substrate recognition/specificity. Furthermore, the frequently observed association of catalytically inactive rhodanese modules with other protein domains suggests a distinct regulatory role for these inactive domains, possibly in connection with signaling. 相似文献
12.
《Current biology : CB》1999,9(1):1-10
Background: In human cells, the mitosis-inducing kinase Cdc2 is inhibited by phosphorylation on Thr14 and Tyr15. Disruption of these phosphorylation sites abrogates checkpoint-mediated regulation of Cdc2 and renders cells highly sensitive to agents that damage DNA. Phosphorylation of these sites is controlled by the opposing activities of the Wee1/Myt1 kinases and the Cdc25 phosphatase. The regulation of these enzymes is therefore likely to be crucial for the operation of the G2–M DNA-damage checkpoint.Results: Here, we show that the activity of Cdc25 decreased following exposure to ionizing radiation. The irradiation-induced decrease in Cdc25 activity was suppressed by wortmannin, an inhibitor of phosphatidylinositol (PI) 3-kinases, and was dependent on the function of the gene that is mutated in ataxia telangiectasia. We also identified two human kinases that phosphorylate and inactivate Cdc25 in vitro. One is the previously characterized Chk1 kinase. The second is novel and is homologous to the Cds1/Rad53 family of checkpoint kinases in yeast. Human Cds1 was found to be activated in response to DNA damage.Conclusions: These results suggest that, in human cells, the DNA-damage checkpoint involves direct inactivation of Cdc25 catalyzed by Cds1 and/or Chk1. 相似文献
13.
Cdc25A phosphatase regulates cell cycle progression by removing the inhibitory phosphates from cyclin-dependent kinases. Activity of Cdc25A depends on its phosphorylation status. During normal cell cycle progression and after DNA damage phosphorylation by Chk1 (or Chk2) triggers Cdc25A degradation via ubiquitin-proteasome pathway. In this study we investigate the role of various phosphorylation sites (Ser123, Ser75, Ser17 and Ser115) in the regulation of Cdc25A stability. We have shown that only S75A mutation abrogates Cdc25A degradation both in normal and stress conditions. We also studied the influence of stable form of Cdc25A on checkpoint progression after DNA damage. We have found out that delay in DNA synthesis after UV and IR does not depend on Cdc25A activity. However, the presence of stable Cdc25A increases the number of mitotic cells after these stresses. 相似文献
14.
S Jinno K Suto A Nagata M Igarashi Y Kanaoka H Nojima H Okayama 《The EMBO journal》1994,13(7):1549-1556
The cdc25+ tyrosine phosphatase is a key mitotic inducer of the fission yeast Schizosaccharomyces pombe, controlling the timing of the initiation of mitosis. Mammals contain at least three cdc25+ homologues called cdc25A, cdc25B and cdc25C. In this study we investigate the biological function of cdc25A. Although very potent in rescuing the S.pombe cdc25 mutant, cdc25A is less structurally related to the S.pombe enzyme. Northern and Western blotting detection reveals that unlike cdc25B, cdc25C and cdc2, cdc25A is predominantly expressed in late G1. Moreover, immunodepletion of cdc25A in rat cells by microinjection of a specific antibody effectively blocks their cell cycle progression from G1 into the S phase, as determined by laser scanning single cell cytometry. These results indicate that cdc25A is not a mitotic regulator but a novel phosphatase that plays a crucial role in the start of the cell cycle. In view of its strong ability to activate cdc2 kinase and its specific expression in late G1, cdc2-related kinases functioning early in the cell cycle may be targets for this phosphatase. 相似文献
15.
Proteasome-dependent degradation of human CDC25B phosphatase 总被引:2,自引:0,他引:2
The CDC25 dual specificity phosphatase is a universal cell cycle regulator. The evolutionary conservation of this enzyme from yeast to man bears witness to its major role in the control of cyclin-dependent kinases (CDK) activity that are central regulators of the cell cycle machinery. CDC25 phosphatase both dephosphorylates and activates CDKs. Three human CDC25s have been identified. CDC25A is involved in the control of G1/S, and CDC25C at G2/M throught the activation of CDK1-cyclin B. The exact function of CDC25B however remains elusive. We have found that CDC25B is degraded by the proteasome pathway in vitro and in vivo. This degradation is dependent upon phosphorylation by the CDK1-cyclin A complex, but not by CDK1-cyclin B. Together with the observations of others made in yeast and mammals, our results suggest that CDC25B might act as a mitotic starter triggering the activation of an auto-amplification loop before being degraded. 相似文献
16.
The Wee1 kinase restrains entry into mitosis by phosphorylating and inhibiting cyclin-dependent kinase 1 (Cdk1). The Cdc25 phosphatase promotes entry into mitosis by removing Cdk1 inhibitory phosphorylation. Experiments in diverse systems have established that Wee1 and Cdc25 are regulated by protein phosphatase 2A (PP2A), but a full understanding of the function and regulation of PP2A in entry into mitosis has remained elusive. In budding yeast, entry into mitosis is controlled by a specific form of PP2A that is associated with the Cdc55 regulatory subunit (PP2A(Cdc55)). We show here that related proteins called Zds1 and Zds2 form a tight stoichiometric complex with PP2A(Cdc55) and target its activity to Cdc25 but not to Wee1. Conditional inactivation of the Zds proteins revealed that their function is required primarily at entry into mitosis. In addition, Zds1 undergoes cell cycle-dependent changes in phosphorylation. Together, these observations define a role for the Zds proteins in controlling specific functions of PP2A(Cdc55) and suggest that upstream signals that regulate PP2A(Cdc55) may play an important role in controlling entry into mitosis. 相似文献
17.
Cdc25A, a dual-specificity protein phosphatase, plays a critical role in cell cycle progression. Although cyclin-dependent kinases are established substrates, Cdc25A may also affect other proteins. We have shown here that Cdc25A interacts with epidermal growth factor receptor (EGFR) both physically and functionally in Hep3B human hepatoma cells. Cdc25A inhibitor Cpd 5, a vitamin K analog, inhibited Cdc25A activity in the Cdc25A-EGFR immunocomplex and consequently caused prolonged EGFR tyrosine phosphorylation. Both purified GST-Cdc25A protein and endogenous Hep3B cellular Cdc25A dephosphorylated tyrosine-phosphorylated EGFR, and Cpd 5 antagonized the phosphatase activity of Cdc25A. A functional Cdc25A-EGFR interaction was seen in NR-6 fibroblasts expressing ectopic EGFR but not with a receptor lacking the C terminus or a mutated kinase domain. These data link the cell cycle control Cdc25A phosphatase to an EGFR-linked mitogenic signaling pathway specifically involving EGFR dephosphorylation. 相似文献
18.
Using a combination of steady-state and single-turnover kinetics, we probe the temperature dependence of substrate association and chemistry for the reaction of Cdc25B phosphatase with its Cdk2-pTpY/CycA protein substrate. The transition state for substrate association is dominated by an enthalpic barrier (DeltaH(++) of 13 kcal/mol) and has a favorable entropic contribution of 4 kcal/mol at 298 K. Phosphate transfer from Cdk2-pTpY/CycA to enzyme (DeltaH(++) of 12 kcal/mol) is enthalpically more favorable than for the small molecule substrate p-nitrophenyl phosphate (DeltaH(++) of 18 kcal/mol), yet entropically less favorable (TDeltaS(++) of 2 vs. -6 kcal/mol at 298 K, respectively). By measuring the temperature dependence of binding and catalysis for several hotspot mutants involved in binding of protein substrate, we determine the enthalpy-entropy compensations for changes in rates of association and phosphate transfer compared to the wild type system. We conclude that the transition state for enzyme-substrate association involves tight and specific contacts at the remote docking site and that phospho-transfer from Cdk2-pTpY/CycA to the pre-organized active site of the enzyme is accompanied by unfavorable entropic rearrangements that promote rapid product dissociation. 相似文献
19.
Three new diterpenoids and one known diterpenoid have been isolated from a sea anemone of the order Actiniara, and the structures of the new compounds, actiniarins A-C (1-3) were established on the basis of extensive 1D and 2D NMR spectroscopic data interpretation. Compound 1 has a six-membered ring hemiacetal ring, and the equilibrium of this ring is discussed. All the isolates were evaluated for their inhibition of Cdc25B and for cytotoxicity against the A2780 ovarian cancer cell line. 相似文献
20.
Cdc25 is a dual-specificity phosphatase that catalyzes the activation of the cyclin-dependent kinases, thus causing initiation and progression of successive phases of the cell cycle. Although it is not significantly structurally homologous to other well-characterized members, Cdc25 belongs to the class of well-studied cysteine phosphatases as it contains their active site signature motif. However, the catalytic acid needed for protonation of the leaving group has yet to be identified. To elucidate the role and identity of this key catalytic residue, we have performed a detailed pH-dependent kinetic analysis of Cdc25B. The pK(a) of the catalytic cysteine was found to be 5.6-6.3 in steady state and one-turnover burst experiments using the small molecule substrates p-nitrophenyl phosphate and 3-O-methylfluorescein phosphate. Interestingly, Cdc25B does not exhibit the typical bell-shaped pH-rate profile with small molecule substrates seen in other cysteine phosphatases and indicative of the catalytic acid because it lacks pH dependence between 6.5 and 9. Reactions of Cdc25B with the natural substrate Cdk2-pTpY/CycA, however, did yield a bell-shaped pH-rate profile with a pK(a) of 6.1 for the catalytic acid residue. Recent structural studies of Cdc25 have suggested that Glu474 [Fauman, E. B., et al. (1998) Cell 93, 617-625] or Glu478 [Reynolds, R. A., et al. (1999) J. Mol. Biol. 293, 559-568] could function as the catalytic acid in Cdc25B. Using site-directed mutagenesis and truncation experiments, however, we found that neither of these residues, nor the unstructured C-terminus, is responsible for the observed pH dependence. These results indicate that the catalytic acid does not appear to lie within the known structure of Cdc25B and may lie on its protein substrate. 相似文献