首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The discovery of endogenous bioactive peptides has typically required a lengthy identification process. Computer-assisted analysis of cDNA and genomic DNA sequence information can markedly shorten the process. A bioinformatic analysis of full-length, enriched human cDNA libraries searching for previously unidentified bioactive peptides resulted in the identification and characterization of two related peptides of 28 and 20 amino acids, which we designated salusin-alpha and salusin-beta. Salusins are translated from an alternatively spliced mRNA of TOR2A, a gene encoding a protein of the torsion dystonia family. Intravenous administration of salusin-alpha or salusin-beta to rats causes rapid, profound hypotension and bradycardia. Salusins increase intracellular Ca2+, upregulate a variety of genes and induce cell mitogenesis. Salusin-beta stimulates the release of arginine-vasopressin from rat pituitary. Expression of TOR2A mRNA and its splicing into preprosalusin are ubiquitous, and immunoreactive salusin-alpha and salusin-beta are detected in many human tissues, plasma and urine, suggesting that salusins are endocrine and/or paracrine factors.  相似文献   

2.
We have examined the effect of dopamine on Ca(2+) uptake and its related signaling pathways in primary renal proximal tubule cells (PTCs). Dopamine increased Ca(2+) uptake in a concentration (>10(-10) M) and time- (>8 h) dependent manner. Dopamine-induced increase in Ca(2+) uptake was prevented by SCH 23390 (a DA(1) antagonist) rather than spiperone (a DA(2) antagonist). SKF 38393 (a DA(1) agonist) increased Ca(2+) uptake unlike the case with quinpirole (a DA(2) agonist). Dopamine-induced increase in Ca(2+) uptake was blocked by nifedipine and methoxyverapamil (L-type Ca(2+) channel blockers). Moreover, dopamine-induced increase in Ca(2+) uptake was blocked by pertussis toxin (a G(i) protein inhibitor), protein kinase A (PKA) inhibitor amide 14/22 (a PKA inhibitor), and SQ 22536 (an adenylate cyclase inhibitor). Subsequently, dopamine increased cAMP level. The PLC inhibitors (U 73122 and neomycin), the PKC inhibitors (staurosporine and bisindolylmaleimide I) suppressed the dopamine-induced increase of Ca(2+) uptake. SB 203580 (a p38 MAPK inhibitor) and PD 98059 (a MAPKK inhibitor) also inhibited the dopamine-induced increase of Ca(2+) uptake. Dopamine-induced p38 and p42/44 MAPK phosphorylation was blocked by SQ 22536, neomycin, and staurosporine. The stimulatory effect of dopamine on Ca(2+) uptake was significantly inhibited by the NF-kappaB inhibitors SN50, TLCK, and Bay 11-7082. In addition, dopamine significantly increased the level of NF-kappaB p65, which was prevented by either SQ 22536, neomycin, staurosporine, PD 98059, or SB 203580. Thus, dopamine stimulates Ca(2+) uptake in PTCs, initially through by G(s) coupled dopamine receptors, PLC/PKC, followed by MAPK, and ultimately by NF-kappaB activation.  相似文献   

3.
The cardiac Na(+)/Ca(2+) exchanger (NCX1) is the predominant mechanism for the extrusion of Ca(2+) from beating cardiomyocytes. The role of protein phosphorylation in the regulation of NCX1 function in normal and diseased hearts remains unclear. In our search for proteins that interact with NCX1 using a yeast two-hybrid screen, we found that the C terminus of calcineurin Abeta, containing the autoinhibitory domain, binds to the beta1 repeat of the central cytoplasmic loop of NCX1 that presumably constitutes part of the allosteric Ca(2+) regulatory site. The association of NCX1 with calcineurin was significantly increased in the BIO14.6 cardiomyopathic hamster heart compared with that in the normal control. In hypertrophic neonatal rat cardiomyocytes subjected to chronic phenylephrine treatment, we observed a marked depression of NCX activity measured as the rate of Na(+)(i)-dependent (45)Ca(2+) uptake or the rate of Na(+)(o)-dependent (45)Ca(2+) efflux. Depressed NCX activity was partially and independently reversed by the acute inhibition of calcineurin and protein kinase C activities with little effect on myocyte hypertrophic phenotypes. Studies of NCX1 deletion mutants expressed in CCL39 cells were consistent with the view that the beta1 repeat is required for the action of endogenous calcineurin and that the large cytoplasmic loop may be required to maintain the interaction of the enzyme with its substrate. Our data suggest that NCX1 is a novel regulatory target for calcineurin and that depressed NCX activity might contribute to the etiology of in vivo cardiac hypertrophy and dysfunction occurring under conditions in which both calcineurin and protein kinase C are chronically activated.  相似文献   

4.
The present study was aimed to investigate the regulatory effect of protein kinase C (PKC) on intracellular Ca(2+) handling in hydrogen sulfide (H(2)S)-preconditioned cardiomyocytes and its consequent effects on ischemia challenge. Immunoblot analysis was used to assess PKC isoform translocation in the rat cardiomyocytes 20 h after NaHS (an H(2)S donor, 10(-4) M) preconditioning (SP, 30 min). Intracellular Ca(2+) was measured with a spectrofluorometric method using fura-2 ratio as an indicator. Cell length was compared before and after ischemia-reperfusion insults to indicate the extent of hypercontracture. SP motivated translocation of PKCalpha, PKCepsilon, and PKCdelta to membrane fraction but only translocation of PKCepsilon and PKCdelta was abolished by an ATP-sensitive potassium channel blocker glibenclamide. It was also found that SP significantly accelerated the decay of both electrically and caffeine-induced intracellular [Ca(2+)] transients, which were reversed by a selective PKC inhibitor chelerythrine. These data suggest that SP facilitated Ca(2+) removal via both accelerating uptake of Ca(2+) into sarcoplasmic reticulum and enhancing Ca(2+) extrusion through Na(+)/Ca(2+) exchanger in a PKC-dependent manner. Furthermore, blockade of PKC also attenuated the protective effects of SP against Ca(2+) overload during ischemia and against myocyte hypercontracture at the onset of reperfusion. We demonstrate for the first time that SP activates PKCalpha, PKCepsilon, and PKCdelta in cardiomyocytes via different signaling mechanisms. Such PKC activation, in turn, protects the heart against ischemia-reperfusion insults at least partly by ameliorating intracellular Ca(2+) handling.  相似文献   

5.
Gastrin-releasing peptide (GRP) and its amphibian homolog, bombesin, are potent secretogogues in mammals. We determined the roles of intracellular free Ca(2+) ([Ca(2+)](i)), protein kinase C (PKC), and mitogen-activated protein kinases (MAPK) in GRP receptor (GRP-R)-regulated secretion. Bombesin induced either [Ca(2+)](i) oscillations or a biphasic elevation in [Ca(2+)](i). The biphasic response was associated with peptide secretion. Receptor-activated secretion was blocked by removal of extracellular Ca(2+), by chelation of [Ca(2+)](i), and by treatment with inhibitors of phospholipase C, conventional PKC isozymes, and MAPK kinase (MEK). Agonist-induced increases in [Ca(2+)](i) were also inhibited by dominant negative MEK-1 and the MEK inhibitor, PD89059, but not by an inhibitor of PKC. Direct activation of PKC by a phorbol ester activated MAPK and stimulated peptide secretion without a concomitant increase in [Ca(2+)](i). Inhibition of MEK blocked both bombesin- and phorbol 12-myristate 13-acetate-induced secretion. GRP-R-regulated secretion is initiated by an increase in [Ca(2+)](i); however, elevated [Ca(2+)](i) is insufficient to stimulate secretion in the absence of activation of PKC and the downstream MEK/MAPK pathways. We demonstrated that the activity of MEK is important for maintaining elevated [Ca(2+)](i) levels induced by GRP-R activation, suggesting that MEK may affect receptor-regulated secretion by modulating the activity of Ca(2+)-sensitive PKC.  相似文献   

6.
7.
Phosphatidic acid (PA), which can be synthesized de novo, or as a product of phosphatidylcholine hydrolysis and/or phosphorylation of 1,2-diacylglycerol (DAG), mediates diverse cellular functions in various cell types, including cardiomyocytes. We set out to characterize the effect of PA on intracellular free calcium ([Ca2+]i) and inositol-1,4,5-trisphosphate (IP(3)) levels in primary cultures of neonatal rat cardiomyocytes. Addition of PA led to rapid, concentration and time dependent increases in both IP(3) and [Ca2+]i levels in adherent cells. There was strong correlation in the concentration-response relationships between IP(3) and [Ca2+]i increases evoked by PA. Incubation with the sarcoplasmic reticulum (SR) Ca2+ pump inhibitor, cyclopiazonic acid (CPA), significantly attenuated the PA evoked [Ca2+]i increase but had no significant effect on IP(3) accumulation. The phospholipase C (PLC) inhibitor, D-609, attenuated both IP(3) and [Ca2+]i elevations evoked by PA whereas staurosporine (STS), a potent and non-selective PKC inhibitor, had no significant effect on either. Another PLC inhibitor, U73122, but not its inactive analog, U73343, also inhibited PA evoked increases in [Ca2+]i. Depletion of extracellular calcium attenuated both basal and PA evoked increases in [Ca2+]i. The PLA(2) inhibitors, bromophenylacyl-bromide (BPB) and CDP-choline, had no effect on PA evoked [Ca2+]i responses. Neither the DAG analog, dioctanoylglycerol, nor the DAG kinase inhibitor, R59949, affected PA evoked changes in [Ca2+]i. Taken together, these data indicate that PA, in a manner independent of PKC, DAG, or PLA(2), may enhance Ca2+ release from IP(3) sensitive SR Ca(2+) stores via activation of PLC in neonatal rat cardiomyocytes.  相似文献   

8.
Fu MG  Wang XH  Jiang ZS  Pang YZ  Liu NK  Tang CS 《生理学报》1999,51(5):597-601
本研究观察了钙调神经磷酸酶依赖的信号通路在血管紧张素Ⅱ诱导的大鼠心肌细胞肥大中的作用。在AngⅡ刺激的大鼠心肌细胞肥大模型上,应用环孢素A(CsA)阻断CaN通路,观察心肌细胞^3H-亮氨酸掺入,CaN,MAPK及PKC活性的变化。结果表明,AngⅡ(10^-7mol/L)刺激大鼠心肌细胞^3H-亮氨酸掺入较对照组增高46%(P〈0.01),CsA(0.5-5μg/ml)可以浓度依赖性方式抑制An  相似文献   

9.
It has been suggested that bradykinin (BK) plays an important role in regulating neointimal formation after vascular injury. However, implication of BK in the growth of rat vascular smooth muscle cells (VSMCs) is controversial. Therefore, we examined the mitogenic effect of BK on VSMCs associated with activation of mitogen-activated protein kinase (MAPK). Both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were activated by BK in time- and concentration-dependent manners. Pretreatment of these cells with neither pertussis toxin nor cholera toxin attenuated the BK-induced responses. Pretreatment of VSMCs with Hoe 140 (a selective B(2) receptor antagonist), U73122 (an inhibitor of phospholipase C), and BAPTA/AM (an intracellular Ca(2+) chelator) inhibited both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to BK. BK-induced [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were inhibited by pretreatment of VSMCs with tyrosine kinase inhibitors (genistein and herbimycin A), protein kinase C (PKC) inhibitors (staurosporine, Go-6976, and Ro-318220), an MAPK kinase inhibitor (PD98059), and a p38 MAPK inhibitor (SB203580). Overexpression of the dominant negative mutants, H-Ras-15A and Raf-N4, suppressed p42/p44 MAPK activation induced by BK and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. From these results, we concluded that the mitogenic effect of BK is mediated through activation of the Ras/Raf/MEK/MAPK pathway similar to that of PDGF-BB. BK-mediated MAPK activation was modulated by Ca(2+), PKC, and tyrosine kinase all of which are associated with cell proliferation in rat cultured VSMCs.  相似文献   

10.
Chen M  Li X  Dong Q  Li Y  Liang W 《Regulatory peptides》2005,125(1-3):9-15
Neuropeptide Y (NPY) has been shown to participate in cardiac hypertrophy. However, the mechanisms by which NPY induces cardiomyocyte hypertrophy are poorly understood. This study tested the hypothesis that NPY induces cardiomyocyte hypertrophy through Ca2+/CaM-dependent calcineurin (CaN) pathway in cultured neonatal rat cardiomyocytes. After 24-h treatment, NPY (100 nM) significantly increased 3H-leucine incorporation and c-Jun mRNA expression, concomitant with augment of CaN activity and protein level in cardiomyocytes compared to those cells without NPY treatment. The enhancement of 3H-leucine incorporation and c-Jun mRNA expression in cardiomyocytes treated with NPY were markedly inhibited by cyclosporine A (CsA), a selective inhibitor of CaN. We also investigated the effect of NPY on intracellular Ca2+ level in cardiomyocytes. There were no obvious changes in intracellular Ca2+ level of cytoplasm and nucleus in cardiomyocytes treated with NPY (100 nM) for 10 min. However, NPY significantly increased intracellular Ca2+ level of cytoplasm and nucleus in cardiomyocytes after 24-h treatment. The result suggested that NPY could induce hypertrophy of cardiomyocytes via Ca2+/CaM-dependent CaN signal pathway. The enhancement of [Ca2+]i caused by NPY may activate CaN signal pathways to mediate cardiac hypertrophy.  相似文献   

11.
In a previous study, we demonstrated that parathyroid hormone (PTH) stimulates in rat duodenal cells (enterocytes) the phosphorylation and activity of extracellular signal-regulated mitogen-activated protein kinase (MAPK) isoforms ERK1 and ERK2. As PTH activates adenylyl cyclase (AC) and phospholipase C and increases intracellular Ca(2+) in these cells, in the present study we evaluated the involvement of cAMP, Ca(2+) and protein kinase C (PKC) on PTH-induced MAPK activation. We found that MAPK phosphorylation by the hormone did not depend on PKC activation. PTH response could, however, be mimicked by addition of forskolin (5-15 microM), an AC activator, or Sp-cAMP (50-100 microM), a cAMP agonist, and suppressed to a great extent by the AC inhibitor, compound Sq-22536 (0.2-0.4 mM) and the cAMP antagonist Rp-cAMP (0.2 mM). Removal of external Ca(2+) (EGTA 0.5 mM), chelation of intracellular Ca(2+) with BAPTA (5 microM), or blockade of L-type Ca(2+)-channels with verapamil (10 microM) significantly decreased PTH-activation of MAPK. Furthermore, a similar degree of phosphorylation of MAPK was elicited by the Ca(2+) mobilizing agent thapsigargin, the Ca(2+) ionophore A23187, ionomycin and membrane depolarization with high K(+). Inclusion of the calmodulin inhibitor fluphenazine (50 microM) did not prevent hormone effects on MAPK. Taken together, these results indicate that cAMP and Ca(2+) play a role upstream in the signaling mechanism leading to MAPK activation by PTH in rat enterocytes. As Ca(2+) and cAMP antagonists did not block totally PTH-induced MAPK phosphorylation, it is possible that linking of the hormone signal to the MAPK pathway may additionally involve Src, which has been previously shown to be rapidly activated by PTH. Of physiological significance, in agreement with the mitogenic role of the MAPK cascade, PTH increased enterocyte DNA synthesis, and this effect was blocked by the specific inhibitor of MAPK kinase (MEK) PD098059, indicating that hormone modulation of MAPK through these messenger systems stimulates duodenal cell proliferation.  相似文献   

12.
Oxidized low-density lipoprotein (OX-LDL) contributes significantly to the development of atherosclerosis. However, the mechanisms of OX-LDL-induced vascular smooth muscle cell (VSMC) proliferation are not completely understood. Therefore, we investigated the effect of OX-LDL on cell proliferation associated with a specific pattern of mitogen-activated protein kinase (MAPK) by [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in canine cultured VSMCs. OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in VSMCs. Pretreatment of these cells with pertussis toxin (PTX) for 24 hours attenuated the OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation, indicating that these responses were mediated through a receptor coupled to a PTX-sensitive G protein. In cells pretreated with PMA for 24 h and with either the PKC inhibitor staurosporine or the tyrosine kinase inhibitor genistein for 1h, substantially reduced the [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to OX-LDL. Removal of Ca(2+) by addition of BAPTA/AM plus EGTA significantly inhibited OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation, indicating the requirement of Ca(2+) for these responses. OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation was completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 MAPK). Furthermore, we also showed that overexpression of dominant negative mutants of Ras (RasN17) and Raf (Raf-301) completely suppressed MEK1/2 and p42/p44 MAPK activation induced by OX-LDL and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. Taken together, these results suggest that the mitogenic effect of OX-LDL is mediated through a PTX-sensitive G-protein-coupled receptor that involves the activation o Ras/Raf/MEK/MAPK pathway similar to those of PDGF-BB in canine cultured VSMCs.  相似文献   

13.
Multiple intracellular signaling pathways have been shown to regulate the hypertrophic growth of cardiomyocytes. Both necessary and sufficient roles have been described for the mitogen activated protein kinase(1) (MAPK) signaling pathway, specific protein kinase C (PKC) isoforms, and calcineurin. Here we investigate the interdependence between calcineurin, MAPK, and PKC isoforms in regulating cardiomyocyte hypertrophy using three separate approaches. Hearts from hypertrophic calcineurin transgenic mice were characterized for PKC and MAPK activation. Transgenic hearts demonstrated activation of c-Jun NH(2)-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK1/2), but not p38 MAPK factors. Calcineurin transgenic hearts demonstrated increased activation of PKCalpha, beta(1), and theta, but not of epsilon, beta(2), or lambda. In a second approach, cultured cardiomyocytes were infected with a calcineurin adenovirus to induce hypertrophy and the effects of pharmacologic inhibitors or co-infection with a dominant negative adenovirus were examined. Calcineurin-mediated hypertrophy was prevented with PKC inhibitors, Ca(2+) chelation, and attenuated with a dominant negative SEK-1 (MKK4) adenovirus, but inhibitors of ERK or p38 activation had no effect. In a third approach, we examined the activation of MAPK factors and PKC isoforms during the progression of load-induced hypertrophy in aortic banded rats with or without cyclosporine. We determined that inhibition of calcineurin activity with cyclosporine prevented PKCalpha, theta, and JNK activation, but did not affect PKCepsilon, beta, lambda, ERK1/2, or p38 activation. Collectively, these data indicate that calcineurin hypertrophic signaling is interconnected with PKCalpha, theta, and JNK in the heart, while PKCepsilon, beta, lambda, p38, and ERK1/2 are not involved in calcineurin-mediated hypertrophy.  相似文献   

14.
Liu J  Wu LL  Li L  Zhang L  Song ZE 《Regulatory peptides》2005,127(1-3):11-18
Platelet-derived growth factor (PDGF) is a dimeric molecule consisting of disulfide-bonded A- and B-polypeptide chains. Homodimeric (PDGF-AA, PDGF-BB) as well as heterodimeric (PDGF-AB) isoforms exert their effects on target cells by binding with different specificities to two structurally related protein tyrosine kinase receptors, denoted alpha- and beta-receptors. PDGF stimulates growth in various cell types, but little is known about its effect on mammalian cardiomyocytes. Therefore, growth-promoting effect of PDGF on rat cardiomyocytes was investigated. Primary culture of neonatal rat ventricular myocytes was prepared and cellular growth was estimated by [3H]-leucine incorporation assay. Tyrosine-phosphorylated PDGF-beta receptor of cardiomyocytes was determined by immunoblotting analysis after immunoprecipitation. PDGF-beta receptor, extracellular signal-regulated kinase (ERK) 1/2 and phosphorylated ERK1/2 of cardiomyocytes were measured by immunoblotting analysis. [3H]-leucine incorporation into the cultured myocytes was increased in a time- and dose-dependent manner after PDGF-BB stimulation. Phosphorylation of PDGF-beta receptor and ERK1/2 in cardiomyocytes was increased after short-term stimulation of PDGF-BB. Protein expression of PDGF-beta receptor and ERK1/2 was increased after long-term stimulation of PDGF-BB. [(3)H]-leucine incorporation into the cultured myocytes induced by PDGF-BB was partly blocked by mitogen-activated ERK-activating kinase (MEK) inhibitor PD98059, phospholipase C (PLC) inhibitor U73122, and protein kinase C (PKC) inhibitor staurosporin aglycone, respectively. Therefore, PDGF beta receptor, ERK1/2, PLC and PKC are involved in the signal transduction of PDGF-induced growth response of rat cardiac myocytes.  相似文献   

15.
The elevated level of thrombin has been detected in the airway fluids of asthmatic patients. However, the implication of thrombin in the pathogenesis of bronchial hyperreactivity was not completely understood. Therefore, in this study we investigated the effect of thrombin on cell proliferation and p42/p44 mitogen-activated protein kinase (MAPK) activation in human tracheal smooth muscle cells (TSMCs). Thrombin stimulated [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in TSMCs. Pretreatment of TSMCs with pertussis toxin (PTX) significantly inhibited [3H]thymidine incorporation and phosphorylation of MAPK induced by thrombin. These responses were attenuated by tyrosine kinase inhibitors genistein and herbimycin A, phosphatidyl inositide (PI)-phospholipase C (PLC) inhibitor U73122, protein kinase C (PKC) inhibitor GF109203X, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and PI 3-kinase inhibitors wortmannin and LY294002. In addition, thrombin-induced [3H]-thymidine incorporation and p42/p44 MAPK phosphorylation was completely inhibited by PD98059 (an inhibitor of MEK1/2), indicating that activation of MEK1/2 was required for these responses. Furthermore, overexpression of dominant negative mutants, RasN17 and Raf-301, significantly suppressed p42/p44 MAPK activation induced by thrombin and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. These results conclude that the mitogenic effect of thrombin was mediated through the activation of Ras/Raf/MEK/MAPK pathway. Thrombin-mediated MAPK activation was modulated by PI-PLC, Ca(2+), PKC, tyrosine kinase, and PI 3-kinase associated with cell proliferation in cultured human TSMCs.  相似文献   

16.
林瑶  牛勃  解军  颜真 《生命科学研究》2006,10(3):224-227
采用差速贴壁法体外原代培养大鼠心肌细胞;NPY刺激培养的心肌细胞增殖;RNA干涉特异性抑制CaN的活性,阻断NPY刺激的心肌细胞中Ca2 /CaM-CaN信号转导通路;观察对CaN活性、表达水平和心肌细胞蛋白合成速率的变化.实验结果显示NPY可增加心肌细胞的CaN活性和表达,加快细胞内蛋白合成速率.RNA干涉抑制CaN活性后,明显降低NPY刺激的蛋白合成速率.CaN参与了NPY刺激的心肌细胞增殖,RNA干涉通过抑制CaN的活性可阻断N PY诱导的心肌细胞肥大Ca2 /CaM-CaN通路.  相似文献   

17.
18.
MKP—1在血管紧张素Ⅱ导致心肌肥大反应中的调控作用   总被引:2,自引:0,他引:2  
Liu PQ  Lu W  Wang TH  Pan JY 《生理学报》2000,52(5):365-370
本研究主要从丝裂原活化蛋白激酶磷酸酶-1(MKP-1)角度,研究丝裂原活化蛋白激酶(MAPK)信号途径在血管紧张素Ⅱ介导的新生大鼠心肌细胞肥大反应中的作用及调控机制。实验以心肌细胞蛋白合成速率、蛋白含量及细胞表面积作为心肌肥大反应的指标,以凝胶内MBP原位磷酸化测定MAPK活性,以免疫印迹法(Western boltting)分别测定MKP-1及磷酸化p44MAPK、p42MAPK蛋白表达。结果发  相似文献   

19.
Bile secretion is regulated by different signaling transduction pathways including protein kinase C (PKC). However, the role of different PKC isoforms for bile formation is still controversial. This study investigates the effects of PKC isoform selective activators and inhibitors on PKC translocation, bile secretion, bile acid uptake, and subcellular transporter localization in rat liver, isolated rat hepatocytes and in HepG2 cells. In rat liver activation of Ca(2+)-dependent cPKCalpha and Ca(2+)-independent PKCepsilon by phorbol 12-myristate 13-acetate (PMA, 10nmol/liter) is associated with their translocation to the plasma membrane. PMA also induced translocation of the cloned rat PKCepsilon fused to a yellow fluorescent protein (YFP), which was transfected into HepG2 cells. In the perfused liver, PMA induced marked cholestasis. The PKC inhibitors G?6850 (1 micromol/liter) and G?6976 (0.2 micromol/liter), a selective inhibitor of Ca(2+)-dependent PKC isoforms, diminished the PMA effect by 50 and 60%, respectively. Thymeleatoxin (Ttx,) a selective activator of Ca(2+)-dependent cPKCs, did not translocate rat PKCepsilon-YFP transfected in HepG2 cells. However, Ttx (0.5-10 nmol/liter) induced cholestasis similar to PMA and led to a retrieval of Bsep from the canalicular membrane in rat liver while taurocholate-uptake in isolated hepatocytes was not affected. G?6976 completely blocked the cholestatic effect of Ttx but had no effect on tauroursodeoxycholate-induced choleresis. The data identify Ca(2+)-dependent PKC isoforms as inducers of cholestasis. This is mainly due to inhibition of taurocholate excretion involving transporter retrieval from the canalicular membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号