首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The distribution of constitutive heterochromatin and nucleolus organizer regions (NOR's) in somatic as well as in meiotic chromosomes of Bos taurus, Bos banteng, Bison bison, and their hybrids are analyzed. C-bands are present in the centromeric regions of every autosome. The X chromosome does not show a distinct C-band in the centromeric region, whereas the Y chromosome contains an appreciable amount of C-band material. In somatic metaphases, NOR's are present on the telomeric ends of five pairs of autosomes. During pachytene, five autosomal bivalents contain NOR's on their terminal ends. Meiotic preparations made from sterile bulls did not contain stages beyond the degenerating pachytene, which are C-banding, more frequently showed clustering of heterochromatin than did the pachytene stage in normal bulls.  相似文献   

2.
Boschi M  Belloni M  Robbins LG 《Genetics》2006,172(1):305-316
We have followed sex and second chromosome disjunction, and the effects of these chromosomes on sperm function, in four genotypes: wild-type males, males deficient for the Y-linked crystal locus, males with an X chromosome heterochromatic deficiency that deletes all X-Y pairing sites, and males with both deficiencies. Both mutant situations provoke chromosome misbehavior, but the disjunctional defects are quite different. Deficiency of the X heterochromatin, consonant with the lack of pairing sites, mostly disrupts X-Y disjunction with a decidedly second-level effect on major autosome behavior. Deleting crystal, consonant with the cytological picture of postpairing chromatin-condensation problems, disrupts sex and autosome disjunction equally. Even when the mutant-induced nondisjunction has very different mechanics, however, and even more importantly, even in the wild type, there is strong, and similar, meiotic drive. The presence of meiotic drive when disjunction is disrupted by distinctly different mechanisms supports the notion that drive is a normal cellular response to meiotic problems rather than a direct effect of particular mutants. Most surprisingly, in both wild-type and crystal-deficient males the Y chromosome moves to the opposite pole from a pair of nondisjoined second chromosomes nearly 100% of the time. This nonhomologous interaction is, however, absent when the X heterochromatin is deleted. The nonhomologous disjunction of the sex and second chromosomes may be the genetic consequence of the chromosomal compartmentalization seen by deconvolution microscopy, and the absence of Y-2 disjunction when the X heterochromatin is deleted suggests that XY pairing itself, or a previously unrecognized heterochromatic function, is prerequisite to this macrostructural organization of the chromosomes.  相似文献   

3.
The C-banding patterns in the chromosomes ofMicrotus oeconomus, M. arvalis andM. ochrogaster demonstrate differences in the amount and distribution of heterochromatin. Autosomal centromeric heterochromatin appears as conspicuous blocks or as small dots, and in several chromosomes no heterochromatin was detected; interstitial heterochromatin was observed in one autosome pair ofM. ochrogaster. The sex chromosomes also demonstrate differences in the C-banding pattern. InM. oeconomus, the X chromosome exhibits a block of centromeric heterochromatin which is larger than that of the autosomes; this characteristic helps to recognize the X chromosomes in the karyotype. InM. arvalis no heterochromatin was appreciated in the sex chromosomes. The Y chromosomes ofM. ochrogaster andM. oeconomus are entirely heterochromatic. During male meiosis heterochromatin shows condensation, association and chiasma prevention; the sex chromosomes pair end to end in the three species. At pairing, the Y chromosome ofM. arvalis is despiralized, but it appears condensed again shortly before separation of the bivalent.  相似文献   

4.
中国穿山甲(Manis pentadactyla)的细胞遗传学分析表明,染色体数目2n=40。除着丝粒C带外,还有染色体端部C带和插入性C带。两对小的端着丝粒染色体的随体部位有银染核仁组织者(Ag-NORs)。本文对穿山甲核型的多态性以及减数分裂联会复合体的结构,性染色(X,Y)在减数分裂前期的行为进行了分析和讨论。  相似文献   

5.
Arrangement of centromeres in mouse cells   总被引:17,自引:4,他引:17  
Applying a staining procedure which reveals constitutive heterochromatin to cytological preparations of the mouse (Mus musculus), one detects heterochromatin pieces at the centromeric areas of all chromosomes except the Y. The Y chromosome is somewhat heteropyenotic in general but possesses no intensely stained centromeric heterochromatin. The arrangement of the centromeric heterochromatin in interphase cells is apparently specific for a given cell type. In meiotic prophase, centromeric heterochromatin may form clusters among bivalents. From the location of the centromeric heterochromatin of the X chromosome in the sex bivalent, it is concluded that the association between the X and Y (common end) in meiosis is limited to the distal portions of the sex elements.  相似文献   

6.
N. O. Bianchi  J. Ayres 《Chromosoma》1971,34(3):254-260
The chromosome complement and patterns of heterochromatin distribution (as demonstrated by the DNA d-r method) were studied from three different guinea pigs. Karyotype analyses showed that one of the females had a heteromorphic sex pair formed by a submetacentric X chromosome and a subterminal X chromosome originated by a shortening of the short arm (x-chromosome). The heterochromatin was mainly found in the pericentromeric areas of the autosomes and X chromosomes and in the short arm of pair 7. The Y chromosome exhibited a degree of heterochromatinization different from that of pericentromeric areas.—The analysis of the heterochromatin distribution in the X chromosomes showed that the smaller size of the heteromorphic x-chromosoine was probably due to a lack of heterochromatin in its short arm. Moreover, two out of the three animals studied had a heteromorphic pattern of heterochromatinization in the pair 21 characterized by heterochromatinization of the pericentromeric area in one chromosome and almost complete heterochromatinization of the other homologue.—It is suggested that most of the heterochromatin disclosed by the DNA d-r method is formed by repetitious DNA; and that the Y chromosome and perhaps some autosome regions in guinea pigs are formed by a type of heterochromatin with properties different from those of the constitutive and facultative heterochromatin (intermediate heterochromatin).Supported in part by NIH Grant 5-501-RR05672-02 and by NIH contract 70-2299.  相似文献   

7.
Xiang Y  Hawley RS 《Genetics》2006,174(1):67-78
Bridges (1916) observed that X chromosome nondisjunction was much more frequent in XXY females than it was in genetically normal XX females. In addition, virtually all cases of X nondisjunction in XXY females were due to XX <--> Y segregational events in oocytes in which the two X chromosomes had failed to undergo crossing over. He referred to these XX <--> Y segregation events as "secondary nondisjunction." Cooper (1948) proposed that secondary nondisjunction results from the formation of an X-Y-X trivalent, such that the Y chromosome directs the segregation of two achiasmate X chromosomes to opposite poles on the first meiotic spindle. Using in situ hybridization to X and YL chromosomal satellite sequences, we demonstrate that XX <--> Y segregations are indeed presaged by physical associations of the X and Y chromosomal heterochromatin. The physical colocalization of the three sex chromosomes is observed in virtually all oocytes in early prophase and maintained at high frequency until midprophase in all genotypes examined. Although these XXY associations are usually dissolved by late prophase in oocytes that undergo X chromosomal crossing over, they are maintained throughout prophase in oocytes with nonexchange X chromosomes. The persistence of such XXY associations in the absence of exchange presumably facilitates the segregation of the two X chromosomes and the Y chromosome to opposite poles on the developing meiotic spindle. Moreover, the observation that XXY pairings are dissolved at the end of pachytene in oocytes that do undergo X chromosomal crossing over demonstrates that exchanges can alter heterochromatic (and thus presumably centromeric) associations during meiotic prophase.  相似文献   

8.
Sex chromosomes,recombination, and chromatin conformation   总被引:17,自引:0,他引:17  
  相似文献   

9.
Summary The association pattern was studied in 2715 mitoses of 90 meningiomas with different numbers of acrocentric chromosomes. In cells with monosomy 22, a significant increase of mitoses with associations was observed in comparison to cells with a normal karyotype. The number of associating acrocentric chromosomes was highly significantly increased. This surplus was not only caused by a highly significant increase of associating G chromosomes but also of D chromosomes. The loss of further acrocentric chromosomes had no significant influence on the number of mitoses with associations or the number of associating chromosomes. Based on the well-known correlations between the nucleolus organization and the association pattern, the results seem to indicate a compensation mechanism among the nucleoles organizing regions (NOR's) which keeps the supply of nucleolar material constant and simultaneously causes a higher association tendency between the remaining acrocentric chromosomes. The increase of associations in the 22 monosomic cells was interpreted as a overcompensation after the loss of only one NOR.  相似文献   

10.
A characteristic feature of spider karyotypes is the predominance of unusual multiple X chromosomes. To elucidate the evolution of spider sex chromosomes, their meiotic behavior was analyzed in 2 major clades of opisthothele spiders, namely, the entelegyne araneomorphs and the mygalomorphs. Our data support the predominance of X(1)X(2)0 systems in entelegynes, while rare X(1)X(2)X(3)X(4)0 systems were revealed in the tuberculote mygalomorphs. The spider species studied exhibited a considerable diversity of achiasmate sex chromosome pairing in male meiosis. The end-to-end pairing of sex chromosomes found in mygalomorphs was gradually replaced by the parallel attachment of sex chromosomes in entelegynes. The observed association of male X univalents with a centrosome at the first meiotic division may ensure the univalents' segregation. Spider meiotic sex chromosomes also showed other unique traits, namely, association with a chromosome pair in males and inactivation in females. Analysis of these traits supports the hypothesis that the multiple X chromosomes of spiders originated by duplications. In contrast to the homogametic sex of other animals, the homologous sex chromosomes of spider females were already paired at premeiotic interphase and were inactivated until prophase I. Furthermore, the sex chromosome pairs exhibited an end-to-end association during these stages. We suggest that the specific behavior of the female sex chromosomes may have evolved to avoid the negative effects of duplicated X chromosomes on female meiosis. The chromosome ends that ensure the association of sex chromosome pairs during meiosis may contain information for discriminating between homologous and homeologous X chromosomes and thus act to promote homologous pairing. The meiotic behavior of 4 X chromosome pairs in mygalomorph females, namely, the formation of 2 associations, each composed of 2 pairs with similar structure, suggests that the mygalomorph X(1)X(2)X(3)X(4)0 system originated by the duplication of the X(1)X(2)0 system via nondisjunctions or polyploidization.  相似文献   

11.
Sex chromosomes differ from autosomes by dissimilar gene content and, at a more advanced stage of their evolution, also in structure and size. This is driven by the divergence of the Y or W from their counterparts, X and Z, due to reduced recombination and the resulting degeneration as well as the accumulation of sex-specific and sexually antagonistic genes. A paradigmatic example for Y-chromosome evolution is found in guppies. In these fishes, conflicting data exist for a morphological and molecular differentiation of sex chromosomes. Using molecular probes and the previously established linkage map, we performed a cytogenetic analysis of sex chromosomes. We show that the Y chromosome has a very large pseudoautosomal region, which is followed by a heterochromatin block (HCY) separating the subtelomeric male-specific region from the rest of the chromosome. Interestingly, the size of the HCY is highly variable between individuals from different population. The largest HCY was found in one population of Poecilia wingei, making the Y almost double the size of the X and the largest chromosome of the complement. Comparative analysis revealed that the Y chromosomes of different guppy species are homologous and share the same structure and organization. The observed size differences are explained by an expansion of the HCY, which is due to increased amounts of repetitive DNA. In one population, we observed also a polymorphism of the X chromosome. We suggest that sex chromosome-linked color patterns and other sexually selected genes are important for maintaining the observed structural polymorphism of sex chromosomes.  相似文献   

12.
Sex chromosome configurations in pachytene spermatocytes of an XYY mouse   总被引:1,自引:0,他引:1  
C Tease 《Genetical research》1990,56(2-3):129-133
Karyotypic investigation of a phenotypically normal but sterile male mouse showed the presence of an XYY sex chromosome constitution. The synaptic behaviour of the three sex chromosomes was examined in 65 pachytene cells. The sex chromosomes formed a variety of synaptic configurations: an XYY trivalent (40%); an XY bivalent and Y univalent (38.5%); an X univalent and YY bivalent (13.8%); or X, Y, Y univalence (7.7%). There was considerable variation in the extent of synapsis and some of the associations clearly involved nonhomologous pairing. These observations have been compared with previously published information on chromosome configurations at metaphase I from other XYY males.  相似文献   

13.
Analysis of human spermatozoa and lymphocytes using C-banding techniques and in situ hybridization has shown a higher order packaging of the human genome. Chromosomes are not distributed entirely at random within the nucleus. In particular, chromosomes 1, 9, and 16, carrying large blocks of pericentromeric heterochromatin, and the Y chromosome, carrying heterochromatin in Yq12, are in close proximity to each other within the nucleus and are involved in somatic pairing with nonhomologous chromosomes. In order to determine whether the close proximity of these chromosomes in any way is attributable to the distribution of heterochromatin, double in situ hybridization was performed on chromosomes 1--Y, 9--Y, and 16--Y as well as on 1--X, 9--X, and 16--X-with chromosome X as the other gonosome carrying less heterochromatin-in human spermatozoa. Each pair was found to have a nonrandom spatial distribution. However, comparison of the arrangement of chromosomes 1--Y versus 1--X and 9--Y versus 9--X revealed that heterochromatin cannot be the only cause for the tendency of chromosome fusion, because only the results of the chromosome pair 1--Y/1--X could support this proposition. In conclusion, the heterochromatin effect cannot be, in itself, an adequate explanation for chromosome association, implicating as well other mechanisms.  相似文献   

14.
In scarab beetle species of the genus Pentodon, the lack of analysis of sex chromosomes in females along with the poor characterization of sex chromosomes in the males, prevented all previous investigations from conclusively stating sex determination system. In this study, somatic chromosomes from females and spermatogonial chromosomes from males of Pentodon bidens punctatum (Coleoptera: Scarabaeoidea: Scarabaeidae) from Sicily have been analyzed using non-differential Giemsa staining. Two modal numbers of chromosomes were obtained: 2n = 20 and 19 in females and males, respectively. This finding along with other karyological characteristics such as the occurrence of one unpaired, heterotypic chromosome at metaphase-I and two types of metaphase-II spreads in spermatocytes demonstrate that a XO male/XX female sex determining mechanism - quite unusual among Scarabaeoidea - operates in the species investigated here. Spermatocyte chromosomes have also been examined after a number of banding techniques and fluorescent in situ hybridization with ribosomal sequences as a probe (rDNA FISH). The results obtained showed that silver and CMA(3) staining were inadequate to localize the chromosome sites of nucleolus organizer regions (NORs) due to the over-all stainability of both constitutive heterochromatin and heterochromatin associated to the NORs. This suggests that heterochromatic DNA of P. b. punctatum is peculiar as compared with other types of heterochromatin studied so far in other invertebrate taxa. By rDNA FISH major ribosomal genes were mapped on the X chromosome.  相似文献   

15.
The JIL-1 kinase localizes to interband regions of Drosophila polytene chromosomes and phosphorylates histone H3 Ser10. Analysis of JIL-1 hypomorphic alleles demonstrated that reduced levels of JIL-1 protein lead to global changes in polytene chromatin structure. Here we have performed a detailed ultrastructural and cytological analysis of the defects in JIL-1 mutant chromosomes. We show that all autosomes and the female X chromosome are similarly affected, whereas the defects in the male X chromosome are qualitatively different. In polytene autosomes, loss of JIL-1 leads to misalignment of interband chromatin fibrils and to increased ectopic contacts between nonhomologous regions. Furthermore, there is an abnormal coiling of the chromosomes with an intermixing of euchromatic regions and the compacted chromatin characteristic of banded regions. In contrast, coiling of the male X polytene chromosome was not observed. Instead, the shortening of the male X chromosome appeared to be caused by increased dispersal of the chromatin into a diffuse network without any discernable banded regions. To account for the observed phenotypes we propose a model in which JIL-1 functions to establish or maintain the parallel alignment of interband chromosome fibrils as well as to repress the formation of contacts and intermingling of nonhomologous chromatid regions. Electronic Supplementary Material Supplementary material is available for this article at and accessible for authorised users  相似文献   

16.
The mitotic chromosomes of the neotenic (sensu Gould, 1977, and Alberch et al., 1979) salamander Necturus maculosus (Rafinesque) have been examined using a C-band technique to demonstrate the distribution of heterochromatin. The C-banded mitotic chromosomes provide evidence of a highly differentiated XY male/XX female sex chromosome heteromorphism, in which the X and Y chromosomes differ greatly in size and morphology, and in the amount and distribution of C-band heterochromatin. The X chromosome represents one of the largest biarmed chromosomes in the karyotype and is indistinguishable from similar sized autosomes on the basis of C-band heterochromatin. The Y chromosome, on the other hand, is diminutive, morphologically distinct from all other chromosomes of the karyotype, and is composed almost entirely of C-band heterochromatin. The discovery of an X/Y chromosome heteromorphism in this species is consistent with the observation by King (1912) of a heteromorphic spermatogenic bivalent. Karyological and phylogenetic implications are discussed.  相似文献   

17.
毛冠鹿种内异染色质变化与染色体多态   总被引:1,自引:0,他引:1  
采用原代和传代培养方法对8头毛冠鹿(Elaphodus cephalophus)的皮肤细胞进行了染色体研究,发现了一种核型与以前所报道的几种核型不一致,确定为一新核型。在该核型中,染色体众数2n=47,2条X染色体异型,一条为端着丝粒,另一条为近端着丝粒。C-带显示该核型中异染色质除了分布在2条X染色体长臂中之外,在第一对大的端着丝粒染色体中的一条近着丝粒区出现一异染色质“柄”。结合C-带及薄层扫描结果对毛冠鹿种内常染色体、性染色体中异染色质的含量和分布与染色体多态的关系进行了探讨。  相似文献   

18.
Mitotic metaphase chromosomes of Silene latifolia (white campion) and Silene dioica (red campion) were studied and no substantial differences between the conventional karyotypes of these two species were detected. The classification of chromosomes into three distinct groups proposed for S. latifolia by Ciupercescu and colleagues was considered and discussed. Additionally, a new small satellite on the shorter arm of homobrachial chromosome 5 was found. Giemsa C-banded chromosomes of the two analysed species show many fixed and polymorphic heterochromatic bands, mainly distally and centromerically located. Our C-banding studies provided an opportunity to better characterize the sex chromosomes and some autosome types, and to detect differences between the two Silene karyotypes. It was shown that S. latifolia possesses a larger amount of polymorphic heterochromatin, especially of the centromeric type. The two Silene sex chromosomes are easily distinguishable not only by length or DNA amount differences but also by their Giemsa C-banding patterns. All Y chromosomes invariably show only one distally located band, and no other fixed or polymorphic bands on this chromosome were observed in either species. The X chromosomes possess two terminally located fixed bands, and some S. latifolia X chromosomes also have an extra-centric segment of variable length. The heterochromatin amount and distribution revealed by our Giemsa C-banding studies provide a clue to the problem of sex chromosome and karyotype evolution in these two closely related dioecious Silene species.  相似文献   

19.
Cytogenetic analysis of Astylus antis using mitotic and meiotic cells was performed to characterize the haploid and diploid numbers, sex determination system, chromosome morphology, constitutive heterochromatin distribution pattern and chromosomes carrying nucleolus organizer regions (NORs). Analysis of spermatogonial metaphase cells revealed the diploid number 2n = 18, with mostly metacentric chromosomes. Metaphase I cells exhibited 2n = 8II+Xyp and a parachute configuration of the sex chromosomes. Spermatogonial metaphase cells submitted to C-banding showed the presence of small dots of constitutive heterochromatin in the centromeric regions of nearly all the autosomes and on the short arm of the X chromosome (Xp), as well as an additional band on one of the arms of pair 1. Mitotic cells submitted to double staining with base-specific fluorochromes (DAPI-CMA(3) ) revealed no regions rich in A+T or G+C sequences. Analysis of spermatogonial mitotic cells after sequential Giemsa/AgNO (3) staining did not reveal any specific mark on the chromosomes. Meiotic metaphase I cells stained with silver nitrate revealed a strong impregnation associated to the sex chromosomes, and in situ hybridization with an 18S rDNA probe showed ribosomal cistrons in an autosomal bivalent.  相似文献   

20.
Austroicetes interioris is polymorphic for pericentric inversions. The three autosomal polymorphisms are considered to be heterotic. In each case the chromosome with the inversion differs from its standard counterpart in the amount of heterochromatin present. Consequently the various karyotypes have appreciable diversity in heterochromatin content. Two of the inversion chromosomes form a terminal association considered to be chiasmate in nature. The resulting quadrivalents favour one particular first metaphase orientation and this causes segregation distortion. The terminal associations and the heterochromatin disparity between the members of each polymorphism are considered to be due to translocations with break points situated in regions of little genetic activity near chromosome tips and causing interchange of telomeres but not of euchromatic segments. Evolutionary implications of such rearrangements are discussed.Supported by Public Health Service Grant RG 7212 from the Division of General Medical Sciences, United States National Institutes of Health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号