首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two cultivars of Phaseolus vulgaris L., one responsive to colonization with microsymbionts (Mexico 309) and one less-responsive (Rio Tibagi) were grown in Leonard jars containing sand/vermiculite under greenhouse conditions. Bean plants were either left non-inoculated (controls) or were inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus etunicatum or a strain of Rhizobium leguminosarum bv. phaseoli (UMR-1899). Plants from the Mexico 309 cultivar maintained a higher growth rate, supported proportionately more nodules and mycorrhizae, and assimilated relatively more N or P when colonized by Rhizobium or Glomus, respectively, than did plants of the Rio Tibagi cultivar. Estimated specific nodule activity for Mexico 309 beans was more than twice that of Rio Tibagi, whereas the specific phosphorus uptake rate (SPUR) was 35% greater in the non-inoculated roots of Rio Tibagi compared to Mexico 309. Colonization by G. etunicatum more than doubled the SPUR for each cultivar compared to control roots. New acid phosphatase isozymes appeared in VAM-colonized roots of both cultivars compared to controls. Acid and alkaline phosphatase activities were significantly higher in G. etunicatum-colonized Mexico 309 roots, but not in Rio Tibagi mycorrhizae, compared to uninfected roots. Polyphosphate hydrolase activity was elevated in mycorrhizae of both cultivars compared to control roots. These results indicate that the dependence of a host on a specific endophyte increases when there are limitations to the supply of a nutrient that the endophyte can provide. The greater the increase in absorption or utilization capacity following colonization by the microsymbiont, the greater the dependence by the host. More importantly, identification of enzymatic activities that influence these plant-microbe associations opens the possibility that the specific genes that code for these enzymes could be targeted for future manipulation.  相似文献   

2.
Common bean (Phaseolus vulgaris) has become a cosmopolitan crop, but was originally domesticated in the Americas and has been grown in Latin America for several thousand years. Consequently an enormous diversity of bean nodulating bacteria have developed and in the centers of origin the predominant species in bean nodules is R. etli. In some areas of Latin America, inoculation, which normally promotes nodulation and nitrogen fixation is hampered by the prevalence of native strains. Many other species in addition to R. etli have been found in bean nodules in regions where bean has been introduced. Some of these species such as R. leguminosarum bv. phaseoli, R. gallicum bv. phaseoli and R. giardinii bv. phaseoli might have arisen by acquiring the phaseoli plasmid from R. etli. Others, like R. tropici, are well adapted to acid soils and high temperatures and are good inoculants for bean under these conditions. The large number of rhizobia species capable of nodulating bean supports that bean is a promiscuous host and a diversity of bean-rhizobia interactions exists. Large ranges of dinitrogen fixing capabilities have been documented among bean cultivars and commercial beans have the lowest values among legume crops. Knowledge on bean symbiosis is still incipient but could help to improve bean biological nitrogen fixation.  相似文献   

3.
Rhizobium tropici, R. leguminosarum bv phaseoli and R. loti each have an active C4-dicarboxylic acid transport system dependent on an energized membrane. Free thiol groups are probably involved at the active site. Since EDTA inhibited succinate transport in R. leguminosarum bv phaseoli and R. loti, divalent cations may participate in the process; the activity was reconstituted by the addition of Ca2+ or Mg2+. However, EDTA had no effect on succinate transport in R. tropici, R. meliloti or R. trifolii strains. Ca2+ or Mg2+ had a similar effect on the growth rates of R. tropici and R. leguminosarum bv phaseoli; R. tropici did not require Ca2+ to grow on minimal medium supplemented with succinate but R. leguminosarum bv phaseoli required either or both of the divalent cations Ca2+ and Mg2+. A R. tropici Mu-dI (lacZ) mutant defective in dicarboxylic acid transport, was isolated and found unable to form effective bean nodules.The authors are with the Division of Biochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Avda, Italia 3318, 11.600 Montevideo, Uruguay  相似文献   

4.
Summary A Tn5-induced mutant strain of R. phaseoli which failed to synthesize exopolysaccharide (EPS) was isolated and was shown to induce normal nitrogen-fixing nodules on Phaseolus beans, the host of this Rhizobium species. The corresponding wild-type Rhizobium DNA was cloned in a wide host-range vector and by isolating Tn5 insertions in this cloned DNA, mutations in a gene termed pss (polysaccharide synthesis) were isolated. These were introduced by marker exchange into near-isogenic strains of R. leguminosarum and R. phaseoli which differed only in the identity of their symbiotic plasmids. Whereas the EPS-deficient mutant strain of R. phaseoli induced normal nitrogen-fixing nodules on Phaseolus beans, the same mutation prevented nodulation of peas by a strain of R. leguminosarum which normally nodulates this host. Further, it was found that DNA cloned from the plant pathogen Xanthomonas campestris pathover campestris could correct the defect in EPS synthesis in R. leguminosarum and R. phaseoli and also restored the ability to nodulate peas to the pss::Tn5 mutant strain of R. leguminosarum.  相似文献   

5.
The activities of glutamine synthetase (GS), nitrogenase and leghaemoglobin were measured during nodule development in Phaseolus vulgaris infected with wild-type or two non-fixing (Fix-) mutants of Rhizobium phaseoli. The large increase in GS activity which was observed during nodulation with the wild-type rhizobial strain occurred concomitantly with the detection and increase in activity of nitrogenase and the amount of leghaemoglobin. Moreover, this increase in GS was found to be due entirely to the appearance of a novel form of the enzyme (GSn1) in the nodule. The activity of the form (GSn2) similar to the root enzyme (GSr) remained constant throughout the experiment. In nodules produced by infection with the two mutant strains of Rhizobium phaseoli (JL15 and JL19) only trace amounts of GSn1 and leghaemoglobin were detected.Abbreviations DEAE-Sephacel diethylaminoethyl-Sephacel - GS glutamine synthetase  相似文献   

6.
Rhizobium etli strain TAL182 and R. leguminosarum bv phaseoli strain 8002, both of which produce melanin pigment, were tested for their nodulation competitiveness on beans by paired inoculation with two strains which do not produce melanin: R. tropici strain CIAT899 and Rhizobium sp. strain TAL1145. An assay was developed to distinguish nodules formed by the melanin-producing and non-producing strains. Strain TAL182 had discrete competitive superiority over CIAT899 and TAL1145 for nodulation of beans. Nodulation competitiveness was not correlated with the ability to produce melanin pigment or the host range of the Rhizobium strains tested.The authors are with the Department of Plant Molecular Physiology, University of Hawaii, 3050 Maile Way, Gillmore 402, Honolulu, HI 96822, USA  相似文献   

7.
Rhizobium Ieguminosarum biovar phaseoli type II strain CIAT899 nodulates a wide range of hosts: Phaseolus vulgaris (beans), Leucaena esculenta (leucaena) and Macroptilium atropurpureum (siratro). A nodulation region from the symbiotic plasmid has been isolated and characterized. This region, which is contained in the overlapping cosmid clones pCV38 and pCV117, is able to induce nodutes in beans, leucaena and siratro roots when introduced in strains cured for the symbiotic plasmid, pSym. In addition, this cloned region extends the host range of Rhizobium meliloti and R. leguminosarum biovar (bv.) trifolii wild-type strains to nodulate beans. Analysis of constructed subclones indicates that a 6.4 kb Hin dlll fragment contains the essential genes required for nodule induction on all three hosts. Rhizobium leguminosarum bv. phaseoli type I strain CE3 nodulates only beans. However, CE3 transconjugants harbouring plasmid pCV3802 (which hybridized to a nodD heterologous probe), were capable of eliciting nodules on leucaena and siratro roots. Our results suggest that the CIAT899 DNA region hybridizing with the R. meliloti nodD detector is involved in the extension of host specificity to promote nodule formation in P. vulgaris, L. esculenta and M. atropurpureum.  相似文献   

8.
Screening of Rhizobium leguminosarum bv. phaseoli strains showed some that were able to nodulate common beans (Phaseolus vulgaris L.) at high temperatures (35 and 38°C/8 h/day). The nodulation ability was not related to the capability to grow or produce melanin-like pigment in culture media at high temperatures. However, nodules formed at high temperatures were ineffective and plants did not accumulate N in shoots. Two thermal shocks of 40°C/8 h/day at flowering time drastically decreased nitrogenase activity and nodule relative efficiency of plants otherwise grown at 28°C. Recovery of nitrogenase activity began only after seven days, when new nodules formed; total incorporation of N in tops did not recover for 2 weeks. Non-inoculated beans receiving mineral N were not affected by the thermal shock, and when growing continuously at 35 or 38°C had total N accumulated in shoots reduced by only 18%.  相似文献   

9.
Summary The relationship between N2-fixation, nitrate reductase and various enzymes of ammonia assimilation was studied in the nodules and leaves ofC. arietinum. In the nodules of the plants growing on atmospheric nitrogen, maximum activities of glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagine synthetase (AS) and aspartate aminotransferase (AAT) were recorded just prior to maximum activity of nitrogenase. In nitrate fed plants, the first major peak of GDH and AS coincided with that of nitrate reductase in the nodules. With the exception of AS, application of nitrate decreased the activities of all these enzymes in nodules but not in leaves. Activities of GS, GOGAT and AAT were affected to much greater extent than that of GDH. On comparing the plants grown without nitrate and those with nitrate, the ratios of the activities of GDH/GS and GDH/GOGAT in nitrate given plants, increased by 4 and 12 fold, respectively. The results presented in this paper suggest that in nodules of nitrate fed plants, assimilation of ammonia via GDH assumes much greater importance.  相似文献   

10.
Rhizobium tropici nodulates field-grown Phaseolus vulgaris in France   总被引:1,自引:0,他引:1  
Two hundred and eighty seven isolates of Rhizobium nodulating Phaseolus vulgaris L. were sampled in France from four geographically distant field populations. They were characterized by their colony morphology and by plasmid profiles. A representative sample was further characterized: a) by the ability of each isolate to nodulate a potential alternative host Leucaena leucocephala and to grow on specific media, and b) by RFLP analysis of PCR amplified 16S rRNA genes. On the basis of their phenotypic and genetic characteristics the isolates could be assigned either to Rhizobium leguminosarum bv phaseoli, or to R. tropici. The two species co-occurred at three sites. R. leguminosarum bv phaseoli represented 2%, 4%, 72% and 100% of the population at the four different sites. Eighteen and 22 different plasmid profiles were identified within R. tropici and R. leguminosarum bv phaseoli, respectively. Some of them were conserved between distant geographical regions. The fact that R. tropici was found in France shows that this species is not limited to tropical regions and gives additional evidence of the multi-specific nature of the Phaseolus microsymbiont, even over a geographically limited area.  相似文献   

11.
We report the isolation, mutational analysis and the nucleotide sequence of the Rhizobium leguminosarum bv. phaseoli nifA gene. Comparison of the deduced amino acid sequence with other NifA sequences indicated the presence of the conserved central activator and the C-terminal DNA-binding domains. Nodules elicited by a R. leguminosarum bv. phaseoli nifA mutant were symbiotically ineffective. The expression of a nifA-gusA fusion was shown to be independent on the oxygen status of the cell. We cloned the three nifH copies of R. leguminosarum bv. phaseoli and determined the nucleotide sequence of their promoter regions. The expression of nifH-gusA fusions is induced under microaerobic conditions and is dependent on the presence of NifA.Abbreviations bp base pair(s) - kb kilobase(s) - ORF open reading frame  相似文献   

12.
Various enzymes involved in the initial metabolic pathway for ammonia assimilation by Methanobacterium ivanovii were examined. M. ivanovii showed significant activity of glutamine synthetase (GS). Glutamate synthase (GOGAT) and alanine dehydrogenase (ADH) were present, wheras, glutamate dehydrogenase (GDH) was not detected. When M. ivanovii was grown with different levels of NH + 4 (i.e. 2, 20 or 200 mM), GS, GOGAT and ADH activities varied in response to NH + 4 concentration. ADH was not detected at 2 mM level, but its activity increased with increased levels of NH + 4 in the medium. Both GS and GOGAT activities increased with decreasing concentrations of NH + 4 and were maximum when ammonia was limiting, suggesting that at low NH + 4 levels, GS and GOGAT are responsible for ammonia assimilation and at higher NH + 4 levels, ADH might play a role. Metabolic mutants of M. ivanovii that were auxotrophic for glutamine were obtained and analyzed for GS activity. Results indicate two categories of mutants: i) GS-deficient auxotrophic mutants and ii) GS-impaired auxotrophic mutants.Abbreviations GS Glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

13.
Lithgow  J.K.  Danino  V. E.  Jones  J.  Downie  J.A. 《Plant and Soil》2001,232(1-2):3-12
Strains of Rhizobium leguminosarum use a cell density-dependent gene regulatory system to assess their population density. This is achieved by the accumulation of N-acyl-homoserine lactones (AHLs) in the environment during growth of the bacteria and these AHLs stimulate the induction of various bacterial genes that are up-regulated in the late-exponential and stationary phases of growth. A genetically well-characterised strain of R. leguminosarum biovar viciae was found to have four genes, whose products synthesise different AHLs. We have analysed AHL production by four genetically distinct isolates of R. leguminosarum, three of bv. viciae and one of bv. phaseoli. Distinct differences were seen in the pattern of AHLs produced by the bv. viciae strains compared with bv. phaseoli and the increased levels and diversity of AHLs found in bv. viciae strains can be attributed to the rhiI gene, which is located on the symbiotic (Sym) plasmid and is up-regulated when the bacteria are grown in the rhizosphere. Additional complexity to the profile of AHLs is found to be associated with highly transmissible plasmid pRL1JI of R. leguminosarum bv. viciae, but this is not observed with some other strains, including those carrying different transmissible plasmids. In addition to AHLs produced by the products of genes on the symbiotic plasmid, there is clear evidence for the presence of other AHL production loci. Expression levels and patterns of AHLs can change markedly in different growth media. These results indicate that there is a network of quorum-sensing loci in different strains of R. leguminosarum and these loci may play a role in adapting to rhizosphere growth and plasmid transfer.  相似文献   

14.
Cadmium causes oxidative damage and hence affects nitrogen assimilation. In the present work we tested the relationship between the inactivation of the enzymes involved in nitrogen assimilation pathway (glutamine synthetase (GS)/glutamate synthase (GOGAT)) and the protein oxidation in nodules of soybean (Glycine max L.) plants under Cd2+ stress. Therefore, the effect of Cd2+ and reduced gluthatione (GSH) on GS and GOGAT activities, and protein abundance and oxidation were analyzed. Under the metal treatment, amino acids oxidative modification occurred, evidenced by the accumulation of carbonylated proteins, especially those of high molecular weight. When Cd2+ was present in the nutrient solution, although a decrease in GS and GOGAT activities was observed (17 and 52%, respectively, compared to controls), the protein abundance of both enzymes remained similar to control nodules. When GSH was added together with Cd2+ in the nutrient medium, it protected the nodule against Cd2+ induced oxidative damage, maintaining GS and GOGAT activities close to control values. These results allow us to conclude that the inactivation of the nitrogen assimilation pathway by Cd2+ in soybean nodules is due to an increment in GS and GOGAT oxidation that can be prevented by the soluble antioxidant GSH. Section Editor: H. Schat  相似文献   

15.
Summary A field experiment was performed to assess the effects of Rhizobium inoculation and nitrogen fertilizer (100 kg N ha–1) on four cultivars of Phaseolus beans; Carioca, Negro Argel, Venezuela 350 and Rio Tibagi. In the inoculated treatment 2.5 kg N ha–1 of15N labelled fertilizer was added in order to apply the isotope dilution technique to quantify the contribution of N2 fixation to the nutrition of these cultivars.Nodulation of all cultivars in the uninoculated treatments was poor, but the cultivars Carioca and Negro Argel were well nodulated when inoculated. Even when inoculated, nodulation of the cultivars Venezuela 350 and Rio Tibagi was poor and these cultivars showed little response to inoculation in terms of nitrogen accumulation or grain yield. The estimates of the contribution of N2 fixation estimated using the isotope dilution technique, for the Carioca and Negro Argel cultivars, amounted to 31.7 and 18.4 kg N ha–1 respectively. These two cultivars produced 991 and 883 kg ha–1 of grain, respectively, when inoculated and 663 and 620 kg ha–1 with the addition of 100 kg N ha–1 of N fertilizer. The response to nitrogen was particularly poor due to high leaching losses in the very sandy soil at the experimental site.The Venezuela 350 and Rio Tibagi cultivars only responded to N fertilizer and not to inoculation with Rhizobium which stresses the great importance of selecting plant cultivars for nitrogen fixation in the field.  相似文献   

16.
The fixLJ genes of Rhizobium leguminosarum biovar phaseoli CNPAF512 were identified by DNA hybridization of a genomic library with an internal fragment of the Rhizobium meliloti fixJ gene. The nucleotide sequence was determined and the corresponding amino acid sequence was aligned with the amino acid sequences of the FixL proteins of R. meliloti, Bradyrhizobium japonicum and Azorhizobium caulinodans. While the FixJ protein and the carboxy-terminal part of the FixL protein are highly homologous to the other FixL and FixJ proteins, the homology in the central heme-binding, oxygen-sensing domain and in the amino-terminal domain of FixL is very low. The R. leguminosarum bv. phaseoli FixL protein does not contain the heme-binding motif defined for the previously described FixL proteins. R. leguminosarum bv. phaseoli fixLJ and fixJ mutants were constructed. These mutants can still fix nitrogen, albeit at a reduced level. Expression analysis of nifA-gusA and nifH-gusA fusions in the constructed mutants revealed that the R. leguminosarum bv. phaseoli fixLJ genes are involved in microaerobic nifH expression but not in nifA expression.The nucleotide sequence data reported will appear in the EMBL, Genbank and DDBJ Nucleotide Sequence Databases under the accession number U27314  相似文献   

17.
Glutamine synthetase expression was studied in developing root-nodules of common bean with regard to the time-course of specific activity, antigen accumulation, polypeptide composition and in vitro translation products. This analysis shows that the nodule-specific GS polypeptide (GS-gamma) is detected prior to the nitrogenase acetylene-reducing activity, and that its accumulation together with that of the GS-alpha and GS-beta polypeptides vary with nodule age. GS-gamma is present in ineffective nodules, although in a lower ratio to GS-beta than in wild-type nodules. Comparisons of in vitro translated and in vivo synthesized GS polypeptides suggest no post-translational modifications. The possible factors and mechanisms involved in the regulation of expression of GS polypeptides are discussed.  相似文献   

18.
Corynebacterium callunae (NCIB 10338) grows faster on glutamate than ammonia when used as sole nitrogen sources. The levels of glutamine synthetase (GS; EC 6.3.1.2) and glutamate synthase (GOGAT; EC 1.4.1.13) of C. callunae were found to be influenced by the nitrogen source. Accordingly, the levels of GS and GOGAT activities were decreased markedly under conditions of ammonia excess and increased under low nitrogen conditions. In contrast, glutamate dehydrogenase (GDH; EC 1.4.1.4) activities were not significantly affected by the type or the concentration of the nitrogen source supplied. The carbon source in the growth medium could also affect GDH, GS and GOGAT levels. Of the carbon sources tested in the presence of 2 mM or 10 mM ammonium chloride as the nitrogen source pyruvate, acetate, fumarate and malate caused a decrease in the levels of all three enzymes as compared with glucose. GDH, GS and GOGAT levels were slightly influenced by aeration. Also, the enzyme levels varied with the growth phase. Methionine sulfoximine, an analogue of glutamine, markedly inhibited both the growth of C. callunae cells and the transferase activity of GS. The apparent K m values of GDH for ammonia and glutamate were 17.2 mM and 69.1 mM, respectively. In the NADPH-dependent reaction of GOGAT, the apparent K m values were 0.1 mM for -ketoglutarate and 0.22 mM for glutamine.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase  相似文献   

19.
Effective (N2-fixing) alfalfa (Medicago sativa L.) and plant-controlled ineffective (non-N2-fixing) alfalfa recessive for the in1 gene were compared to determine the effects of the in1 gene on nodule development, acetylene reduction activity (ARA), and nodule enzymes associated with N assimilation and disease resistance. Effective nodule ARA reached a maximum before activities of glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AAT), asparagine synthetase (AS), and phosphoenolpyruvate carboxylase (PEPC) peaked. Ineffective nodule ARA was only 5% of effective nodule ARA. Developmental profiles of GS, GOGAT, AAT, and PEPC activities were similar for effective and ineffective nodules, but activities in ineffective nodules were lower and declined earlier. Little AS activity was detected in developing ineffective nodules. Changes in GS, GOGAT, AAT, and PEPC activities in developing and senescent effective and ineffective nodules generally paralleled amounts of immunologically detectable enzyme polypeptides. Effective nodule GS, GOGAT, AAT, AS, and PEPC activities declined after defoliation. Activities of glutamate dehydrogenase, malate dehydrogenase, phenylalanine ammonia lyase, and caffeic acid-o-methyltransferase were unrelated to nodule effectiveness. Maximum expression of nodule N-assimilating enzymes appeared to require the continued presence of a product associated with effective bacteroids that was lacking in in1 effective nodules.  相似文献   

20.
Activities of ammonium assimilating enzymes glutamate dehydrogenase (GDH), glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) as well as the amino acid content were higher in nodules compared to roots. Their activities increased at 40 and 60 d after sowing, with a peak at 90 d, a time of maximum nitrogenase activity. The GS/GOGAT ratio had a positive correlation with the amino acid content in nodules. Higher activities of AST than ALT may be due to lower glutamine and higher asparagine content in xylem. The data indicated that glutamine synthetase and glutamate synthase function as the main route for the assimilation of fixed N, while NADH-dependent glutamate dehydrogenase may function at higher NH4 + concentration in young and senescing nodules. Enzyme activities in lentil roots reflected a capacity to assimilate N for making the amino acids they may need for both growth and export to upper parts of the plant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号