共查询到20条相似文献,搜索用时 15 毫秒
1.
The shikimate pathway, responsible for the biosynthesis of aromatic compounds, is essential for the growth of Mycobacterium tuberculosis and is a potential target for the design of new anti-tuberculosis drugs. The first step of this pathway is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). The DAH7PSs have been classified into two apparently unrelated types and, whereas structural data have been obtained for the type I DAH7PSs, no structural information is available for their type II counterparts. The type II DAH7PS from M.tuberculosis has been expressed in Escherichia coli, purified, functionally characterized and crystallized. It is found to be metal ion-dependent and subject to feedback inhibition by phenylalanine, tryptophan, tyrosine and chorismate, with a significant synergistic effect when tryptophan is used in combination with phenylalanine. The crystal structure of M.tuberculosis DAH7PS has been determined by single-wavelength anomalous diffraction and refined at 2.3A in complex with substrate phosphoenolpyruvate and Mn(2+). The structure reveals a tightly associated dimer of (beta/alpha)(8) TIM barrels. The monomer fold, the arrangement of key residues in the active site, and the binding modes of PEP and Mn(2+), all match those of the type I enzymes, and indicate a common ancestry for the type I and type II DAH7PSs, despite their minimal sequence identity. In contrast, the structural elements that decorate the core (beta/alpha)(8) fold differ from those in the type I enzymes, consistent with their different regulatory and oligomeric properties. 相似文献
2.
Dyer DH Lyle KS Rayment I Fox BG 《Protein science : a publication of the Protein Society》2005,14(6):1508-1517
Genome sequencing showed that two proteins in Mycobacterium tuberculosis H37Rv contain the metal binding motif (D/E)X(2)HX(approximately 100)(D/E)X(2)H characteristic of the soluble diiron enzyme superfamily. These putative acyl-ACP desaturase genes desA1 and desA2 were cloned from genomic DNA and expressed in Escherichia coli BL21(DE3). DesA1 was found to be insoluble, but in contrast, DesA2 was a soluble protein amenable to biophysical characterization. Here, we report the 2.0 A resolution X-ray structure of DesA2 determined by multiple anomalous dispersion (MAD) phasing from a Se-met derivative and refinement against diffraction data obtained on the native protein. The X-ray structure shows that DesA2 is a homodimeric protein with a four-helix bundle core flanked by five additional helices that overlay with 192 structurally equivalent amino acids in the structure of stearoyl-ACP Delta9 desaturase from castor plant with an rms difference 1.42 A. In the DesA2 crystals, one metal (likely Mn from the crystallization buffer) was bound in high occupancy at the B-site of the conserved metal binding motif, while the A-site was not occupied by a metal ion. Instead, the amino group of Lys-76 occupied this position. The relationships between DesA2 and known diiron enzymes are discussed. 相似文献
3.
Filgueira de Azevedo W Canduri F Simões de Oliveira J Basso LA Palma MS Pereira JH Santos DS 《Biochemical and biophysical research communications》2002,295(1):142-148
Tuberculosis (TB) resurged in the late 1980s and now kills approximately 3 million people a year. The reemergence of tuberculosis as a public health threat has created a need to develop new anti-mycobacterial agents. The shikimate pathway is an attractive target for herbicides and anti-microbial agents development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologs to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the shikimate kinase I encoding gene (aroK) was proposed to be present by sequence homology. Accordingly, to pave the way for structural and functional efforts towards anti-mycobacterial agents development, here we describe the molecular modeling of M. tuberculosis shikimate kinase that should provide a structural framework on which the design of specific inhibitors may be based. 相似文献
4.
Singh RK Kefala G Janowski R Mueller-Dieckmann C von Kries JP Weiss MS 《Journal of molecular biology》2005,346(1):1-11
The crystal structure of the enzyme 3-isopropylmalate dehydrogenase (IPMDH) from Mycobacterium tuberculosis (LeuB, Mtb-IPMDH, Rv2995c) without substrate or co-factor was determined at 1.65 A resolution, which is the highest resolution reported for an IPMDH to date. The crystals contain two functional dimers in the asymmetric unit in an arrangement close to a tetramer of D2 symmetry. Despite the absence of a substrate or inhibitor bound to the protein, the structure of the monomer resembles the previously observed closed form of the enzyme more closely than the open form. A comparison with the substrate complex of IPMDH from Thiobacillus ferrooxidans and the co-factor complex of the Thermus thermophilus enzyme revealed a close relationship of the active-site architecture between the various bacterial enzymes. The inhibitor O-isobutenyl oxalylhydroxamate was found to bind to the active site of IPMDH in a mode similar to the substrate isopropylmalate. 相似文献
5.
Pereira JH Canduri F de Oliveira JS da Silveira NJ Basso LA Palma MS de Azevedo WF Santos DS 《Biochemical and biophysical research communications》2003,312(3):608-614
The shikimate pathway is an attractive target for herbicides and antimicrobial agent development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologues to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the EPSP synthase was proposed to be present by sequence homology. Accordingly, in order to pave the way for structural and functional efforts towards anti-mycobacterial agent development, here we describe the molecular modeling of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase isolated from M. tuberculosis that should provide a structural framework on which the design of specific inhibitors may be based on. Significant differences in the relative orientation of the domains in the two models result in "open" and "closed" conformations. The possible relevance of this structural transition in the ligand biding is discussed. 相似文献
6.
Fonseca IO Magalhães ML Oliveira JS Silva RG Mendes MA Palma MS Santos DS Basso LA 《Protein expression and purification》2006,46(2):429-437
Tuberculosis (TB) poses a major worldwide public health problem. The increasing prevalence of TB, the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, and the devastating effect of co-infection with HIV have highlighted the urgent need for the development of new antimycobacterial agents. Analysis of the complete genome sequence of M. tuberculosis shows the presence of genes involved in the aromatic amino acid biosynthetic pathway. Experimental evidence that this pathway is essential for M. tuberculosis has been reported. The genes and pathways that are essential for the growth of the microorganisms make them attractive drug targets since inhibiting their function may kill the bacilli. We have previously cloned and expressed in the soluble form the fourth shikimate pathway enzyme of the M. tuberculosis, the aroE-encoded shikimate dehydrogenase (mtSD). Here, we present the purification of active recombinant aroE-encoded M. tuberculosis shikimate dehydrogenase (mtSD) to homogeneity, N-terminal sequencing, mass spectrometry, assessment of the oligomeric state by gel filtration chromatography, determination of apparent steady-state kinetic parameters for both the forward and reverse directions, apparent equilibrium constant, thermal stability, and energy of activation for the enzyme-catalyzed chemical reaction. These results pave the way for structural and kinetic studies, which should aid in the rational design of mtSD inhibitors to be tested as antimycobacterial agents. 相似文献
7.
8.
Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis 总被引:5,自引:0,他引:5
Chen F Zhou J Luo F Mohammed AB Zhang XL 《Biochemical and biophysical research communications》2007,357(3):743-748
Worldwide, tuberculosis (TB) remains the most frequent and important infectious disease causing morbidity and death. One-third of the world's population is infected with Mycobacterium tuberculosis (MTB), the etiologic agent of TB. Because of the global health problems of TB, the development of potent new anti-TB drugs without cross-resistance with known antimycobacterial agents is urgently needed. In this study, we have applied a Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process to identify a single aptamer (NK2) that binds to virulent strain M. tuberculosis (H37Rv) with high affinity and specificity. We have found that this aptamer improves CD4(+)T cells to produce IFN-gamma after binding to H37Rv. The different component between H37Rv and BCG was identified as some membrane protein. Moreover, the survival rates of mice challenged with i.v. H37Rv have been prolonged after treatment with single injection of aptamer NK2. The bacterial numbers were significantly lower in the spleen of mice treated with aptamer NK2. The histopathological examination of lung biopsy specimens showed lesser pulmonary alveolar fusion and swelling in the presence of the aptamer. These results suggest that aptamer NK2 has inhibitory effects on M. tuberculosis and can be used as antimycobacterial agent. 相似文献
9.
Sridharan S Wang L Brown AK Dover LG Kremer L Besra GS Sacchettini JC 《Journal of molecular biology》2007,366(2):469-480
Mycolic acids are long chain alpha-alkyl branched, beta-hydroxy fatty acids that represent a characteristic component of the Mycobacterium tuberculosis cell wall. Through their covalent attachment to peptidoglycan via an arabinogalactan polysaccharide, they provide the basis for an essential outer envelope membrane. Mycobacteria possess two fatty acid synthases (FAS); FAS-I carries out de novo synthesis of fatty acids while FAS-II is considered to elongate medium chain length fatty acyl primers to provide long chain (C(56)) precursors of mycolic acids. Here we report the crystal structure of Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase (ACP) II mtKasB, a mycobacterial elongation condensing enzyme involved in FAS-II. This enzyme, along with the M. tuberculosis beta-ketoacyl ACP synthase I mtKasA, catalyzes the Claisen-type condensation reaction responsible for fatty acyl elongation in FAS-II and are potential targets for development of novel anti-tubercular drugs. The crystal structure refined to 2.4 A resolution revealed that, like other KAS-II enzymes, mtKasB adopts a thiolase fold but contains unique structural features in the capping region that may be crucial to its preference for longer fatty acyl chains than its counterparts from other bacteria. Modeling of mtKasA using the mtKasB structure as a template predicts the overall structures to be almost identical, but a larger entrance to the active site tunnel is envisaged that might contribute to the greater sensitivity of mtKasA to the inhibitor thiolactomycin (TLM). Modeling of TLM binding in mtKasB shows that the drug fits the active site poorly and results of enzyme inhibition assays using TLM analogues are wholly consistent with our structural observations. Consequently, the structure described here further highlights the potential of TLM as an anti-tubercular lead compound and will aid further exploration of the TLM scaffold towards the design of novel compounds, which inhibit mycobacterial KAS enzymes more effectively. 相似文献
10.
The structure of Mycobacterium tuberculosis MPT51 (FbpC1) defines a new family of non-catalytic alpha/beta hydrolases 总被引:2,自引:0,他引:2
Mycobacterium tuberculosis, the causative agent of tuberculosis, is known to secrete a number of highly immunogenic proteins that are thought to confer pathogenicity, in part, by mediating binding to host tissues. Among these secreted proteins are the trimeric antigen 85 (Ag85) complex and the related MPT51 protein, also known as FbpC1. While the physiological function of Ag85, a mycolyltransferase required for the biosynthesis of the cell wall component alpha,alpha'-trehalose dimycolate (or cord factor), has been identified recently, the function of the closely related MPT51 (approximately 40% identity with the Ag85 components) remains to be established. The crystal structure of M.tuberculosis MPT51, determined to 1.7 A resolution, shows that MPT51, like the Ag85 components Ag85B and Ag85C2, folds as an alpha/beta hydrolase, but it does not contain any of the catalytic elements required for mycolyltransferase activity. Moreover, the absence of a recognizable alpha,alpha'-trehalose monomycolate-binding site and the failure to detect an active site suggest that the function of MPT51 is of a non-enzymatic nature and that MPT51 may in fact represent a new family of non-catalytic alpha/beta hydrolases. Previous experimental evidence and the structural similarity to some integrins and carbohydrate-binding proteins led to the hypothesis that MPT51 might have a role in host tissue attachment, whereby ligands may include the serum protein fibronectin and small sugars. 相似文献
11.
The transketolase (TKT) enzyme in Mycobacterium tuberculosis
represents a novel drug target for tuberculosis treatment and has low homology
with the orthologous human enzyme. Here, we report on the structural and kinetic
characterization of the transketolase from M. tuberculosis
(TBTKT), a homodimer whose monomers each comprise 700 amino acids. We show that
TBTKT catalyses the oxidation of donor sugars xylulose-5-phosphate and
fructose-6-phosphate as well as the reduction of the acceptor sugar
ribose-5-phosphate. An invariant residue of the TKT consensus sequence required
for thiamine cofactor binding is mutated in TBTKT; yet its catalytic activities
are unaffected, and the 2.5 Å resolution structure of full-length TBTKT
provides an explanation for this. Key structural differences between the human
and mycobacterial TKT enzymes that impact both substrate and cofactor
recognition and binding were uncovered. These changes explain the kinetic
differences between TBTKT and its human counterpart, and their differential
inhibition by small molecules. The availability of a detailed structural model
of TBTKT will enable differences between human and M.
tuberculosis TKT structures to be exploited to design selective
inhibitors with potential antitubercular activity. 相似文献
12.
Fonseca IO Silva RG Fernandes CL de Souza ON Basso LA Santos DS 《Archives of biochemistry and biophysics》2007,457(2):123-133
Mycobacterium tuberculosis shikimate dehydrogenase (MtbSD) catalyzes the fourth reaction in the shikimate pathway, the NADPH-dependent reduction of 3-dehydroshikimate. To gather information on the kinetic mechanism, initial velocity patterns, product inhibition, and primary deuterium kinetic isotope effect studies were performed and the results suggested a steady-state ordered bi-bi kinetic mechanism. The magnitudes of both primary and solvent kinetic isotope effects indicated that the hydride transferred from NADPH and protons transferred from the solvent in the catalytic cycle are not significantly rate limiting in the overall reaction. Proton inventory analysis indicates that one proton gives rise to solvent isotope effects. Multiple isotope effect studies indicate that both hydride and proton transfers are concerted. The pH profiles revealed that acid/base chemistry takes place in catalysis and substrate binding. The MtbSD 3D model was obtained in silico by homology modeling. Kinetic and chemical mechanisms for MtbSD are proposed on the basis of experimental data. 相似文献
13.
Camila Matiollo Gabriela Ecco Angela Camila Orbem Menegatti Guilherme Razzera Javier Vernal Hernán Terenzi 《Biochimica et Biophysica Acta - Proteins and Proteomics》2013,1834(1):191-196
S-nitrosylation is associated with signal transduction and microbicidal activity of nitric oxide (NO). We have recently described the S-nitrosylation of Mycobacterium tuberculosis protein tyrosine phosphatase A, PtpA, an enzyme that plays an important role in mycobacteria survival inside macrophages. This post-translational modification decreases the activity of the enzyme upon modification of a single Cys residue, C53. The aim of the present work was the investigation of the effect of S-nitrosylation in PtpA kinetic parameters, thermal stability and structure. It was observed that the KM of nitrosylated PtpA was similar to its unmodified form, but the Vmax was significantly reduced. In contrast, treatment of PtpA C53A with GSNO, did not alter either KM or Vmax. These results confirmed that PtpA S-nitrosylation occurs specifically in the non-catalytic C53 and that this modification does not affect substrate affinity. Using circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy techniques it was shown that PtpA S-nitrosylation decreased protein thermal stability and promoted a local effect in the surroundings of the C53 residue, which interfered in both protein stability and function. 相似文献
14.
Pang Y Zhou Y Wang S Lu J Lu B He G Wang L Zhao Y 《Journal of microbiological methods》2011,86(3):291-297
The mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) method is one of the most important methods that have been used in recent years for genotyping Mycobacterium tuberculosis. Agarose gel electrophoresis and capillary electrophoresis have been used to determine the size of amplicons, however, both of these methods have shortcomings. Here, we develop and evaluate a novel method for MIRU-VNTR typing based on high resolution melting (HRM) analysis. The MIRU40 locus was selected to evaluate different real-time PCR machines and the accuracy of our method; the Roche LightCycler 480 provided greatest consistency between the Tm value and repeat number and was used in subsequent evaluations. Our method gives greater accuracy in comparison with conventional agarose gel electrophoresis (98.9% vs. 90.9%, p = 0.017), and, with the help of fitting formulae, can be used to obtain the number of MIRU tandem repeats from the Tm value. To validate our method we analyzed 12 classical MIRU loci to genotype 88 clinical isolates. The number of MIRU tandem repeats was determined accurately, quickly and conveniently. 相似文献
15.
Romano M Aryan E Korf H Bruffaerts N Franken CL Ottenhoff TH Huygen K 《Microbes and infection / Institut Pasteur》2012,14(1):86-95
Novel vaccines are needed to control tuberculosis (TB), the bacterial infectious disease that together with malaria and HIV is worldwide responsible for high levels of morbidity and mortality. TB can result from the reactivation of an initially controlled latent infection by Mycobacterium tuberculosis (Mtb). Mtb proteins for which a possible role in this reactivation process has been hypothesized are the five homologs of the resuscitation-promoting factor of Micrococcus luteus, namely Mtb Rv0867c (rpfA), Rv1009 (rpfB), Rv1884c (rpfC), Rv2389c (rpfD) and Rv2450c (rpfE). Analysis of the immune recognition of these 5 proteins following Mtb infection or Mycobacterium bovis BCG vaccination of mice showed that Rv1009 (rpfB) and Rv2389c (rpfD) are the most antigenic in the tested models. We therefore selected rpfB and rpfD for testing their vaccine potential as plasmid DNA vaccines. Elevated cellular immune responses and modest but significant protection against intra-tracheal Mtb challenge were induced by immunization with the rpfB encoding DNA vaccine. The results indicate that rpfB is the most promising candidate of the five rpf-like proteins of Mtb in terms of its immunogenicity and protective efficacy and warrants further analysis for inclusion as an antigen in novel TB vaccines. 相似文献
16.
Goulding CW Bowers PM Segelke B Lekin T Kim CY Terwilliger TC Eisenberg D 《Journal of molecular biology》2007,365(2):275-283
Fatty acid biosynthesis is essential for the survival of Mycobacterium tuberculosis and acetyl-coenzyme A (acetyl-CoA) is an essential precursor in this pathway. We have determined the 3-D crystal structure of M. tuberculosis citrate lyase beta-subunit (CitE), which as annotated should cleave protein bound citryl-CoA to oxaloacetate and a protein-bound CoA derivative. The CitE structure has the (beta/alpha)(8) TIM barrel fold with an additional alpha-helix, and is trimeric. We have determined the ternary complex bound with oxaloacetate and magnesium, revealing some of the conserved residues involved in catalysis. While the bacterial citrate lyase is a complex with three subunits, the M. tuberculosis genome does not contain the alpha and gamma subunits of this complex, implying that M. tuberculosis CitE acts differently from other bacterial CitE proteins. The analysis of gene clusters containing the CitE protein from 168 fully sequenced organisms has led us to identify a grouping of functionally related genes preserved in M. tuberculosis, Rattus norvegicus, Homo sapiens, and Mus musculus. We propose a novel enzymatic function for M. tuberculosis CitE in fatty acid biosynthesis that is analogous to bacterial citrate lyase but producing acetyl-CoA rather than a protein-bound CoA derivative. 相似文献
17.
Sriram D Yogeeswari P Methuku S Vyas DR Senthilkumar P Alvala M Jeankumar VU 《Bioorganic & medicinal chemistry letters》2011,21(18):5149-5154
Various 3-nitropropionamides were synthesized and evaluated for in vitro activities against log and starved phase culture of two mycobacterial species and Mycobacterium tuberculosis (MTB) isocitrate lyase (ICL) enzyme inhibition studies. Among 22 compounds, 1-cyclopropyl-7-(3,5-dimethyl-4-(3-nitropropanoyl)piperazin-1-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (22) was found to be the most active compound in vitro with MICs of 0.16 and 0.04 μM against log- and starved-phase culture of MTB. Compound 22 also showed good enzyme inhibition of MTB ICL with IC(50) of 0.10 ± 0.01 μM. The docking studies also confirmed the binding potential of the compounds at the ICL active site. 相似文献
18.
19.
Mori S Yamasaki M Maruyama Y Momma K Kawai S Hashimoto W Mikami B Murata K 《Biochemical and biophysical research communications》2005,327(2):500-508
NAD kinase is a key enzyme in NADP biosynthesis. We solved the crystal structure of polyphosphate/ATP-NAD kinase from Mycobacterium tuberculosis (Ppnk) complexed with NAD (Ppnk-NAD) at 2.6A resolution using apo-Ppnk structure solved in this work, and revealed the details of the structure and NAD-binding site. Superimposition of tertiary structures of apo-Ppnk and Ppnk-NAD demonstrated a substantial conformational difference in a loop (Ppnk-flexible loop). As a quaternary structure, these Ppnk structures exhibited tetramer as in solution condition. Notably, the Ppnk-flexible loop was involved in the intersubunit contact and probably related to the NAD-binding of the other subunit. Furthermore, the two residues (Asp189, His226) substantially contributed to creating NAD-binding site on the other subunit. The two residues and the residues involved in NAD-binding were conserved. However, residues corresponding to the Ppnk-flexible loop were not conserved, making us to speculate that the Ppnk-flexible loop may be Ppnk-specific. 相似文献
20.
Caceres RA Timmers LF Ducati RG da Silva DO Basso LA de Azevedo WF Santos DS 《Biochimie》2012,94(1):155-165
Consumption has been a scourge of mankind since ancient times. This illness has charged a high price to human lives. Many efforts have been made to defeat Mycobacterium tuberculosis (Mt). The M. tuberculosis purine nucleoside phosphorylase (MtPNP) is considered an interesting target to pursuit new potential inhibitors, inasmuch it belongs to the purine salvage pathway and its activity might be involved in the mycobacterial latency process. Here we present the MtPNP crystallographic structure associated with acyclovir and phosphate (MtPNP:ACY:PO4) at 2.10 Å resolution. Molecular dynamics simulations were carried out in order to dissect MtPNP:ACY:PO4 structural features, and the influence of the ligand in the binding pocket stability. Our results revealed that the ligand leads to active site lost of stability, in agreement with experimental results, which demonstrate a considerable inhibitory activity against MtPNP (Ki = 150 nM). Furthermore, we observed that some residues which are important in the proper ligand’s anchor into the human homologous enzyme do not present the same importance to MtPNP. Therewithal, these findings contribute to the search of new specific inhibitors for MtPNP, since peculiarities between the mycobacterial and human enzyme binding sites have been identified, making a structural-based drug design feasible. 相似文献