首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many studies have documented long-term changes in adult marine fish distributions and linked these changes to climate change and multi-decadal climate variability. Most marine fish, however, have complex life histories with morphologically distinct stages, which use different habitats. Shifts in distribution of one stage may affect the connectivity between life stages and thereby impact population processes including spawning and recruitment. Specifically, many marine fish species have a planktonic larval stage, which lasts from weeks to months. We compared the spatial distribution and seasonal occurrence of larval fish in the Northeast U.S. Shelf Ecosystem to test whether spatial and temporal distributions changed between two decades. Two large-scale ichthyoplankton programs sampled using similar methods and spatial domain each decade. Adult distributions from a long-term bottom trawl survey over the same time period and spatial area were also analyzed using the same analytical framework to compare changes in larval and adult distributions between the two decades. Changes in spatial distribution of larvae occurred for 43% of taxa, with shifts predominately northward (i.e., along-shelf). Timing of larval occurrence shifted for 49% of the larval taxa, with shifts evenly split between occurring earlier and later in the season. Where both larvae and adults of the same species were analyzed, 48% exhibited different shifts between larval and adult stages. Overall, these results demonstrate that larval fish distributions are changing in the ecosystem. The spatial changes are largely consistent with expectations from a changing climate. The temporal changes are more complex, indicating we need a better understanding of reproductive timing of fishes in the ecosystem. These changes may impact population productivity through changes in life history connectivity and recruitment, and add to the accumulating evidence for changes in the Northeast U.S. Shelf Ecosystem with potential to impact fisheries and other ecosystem services.  相似文献   

2.
Connectivity among marine populations is critical for persistence of metapopulations, coping with climate change, and determining the geographic distribution of species. The influence of pelagic larval duration (PLD) on connectivity has been studied extensively, but relatively little is known about the influence of other biological parameters, such as the survival and behavior of larvae, and the fecundity of adults, on population connectivity. Furthermore, the interaction between the seascape (habitat structure and currents) and these biological parameters is unclear. We explore these interactions using a biophysical model of larval dispersal across the Indo-Pacific. We describe an approach that quantifies geographic patterns of connectivity from demographically relevant to evolutionarily significant levels across a range of species. We predict that at least 95% of larval settlement occurs within 155?km of the source population and within 13 days irrespective of the species' life history, yet long-distant connections remain likely. Self-recruitment is primarily driven by the local oceanography, larval mortality, and the larval precompetency period, whereas broad-scale connectivity is strongly influenced by reproductive output (abundance and fecundity of adults) and the length of PLD. The networks we have created are geographically explicit models of marine connectivity that define dispersal corridors, barriers, and the emergent structure of marine populations. These models provide hypotheses for empirical testing.  相似文献   

3.
No-take marine reserves can be powerful management tools, but only if they are well designed and effectively managed. We review how ecological guidelines for improving marine reserve design can be adapted based on an area’s unique evolutionary, oceanic, and ecological characteristics in the Gulf of California, Mexico. We provide ecological guidelines to maximize benefits for fisheries management, biodiversity conservation and climate change adaptation. These guidelines include: representing 30% of each major habitat (and multiple examples of each) in marine reserves within each of three biogeographic subregions; protecting critical areas in the life cycle of focal species (spawning and nursery areas) and sites with unique biodiversity; and establishing reserves in areas where local threats can be managed effectively. Given that strong, asymmetric oceanic currents reverse direction twice a year, to maximize connectivity on an ecological time scale, reserves should be spaced less than 50–200 km apart depending on the planktonic larval duration of target species; and reserves should be located upstream of fishing sites, taking the reproductive timing of focal species in consideration. Reserves should be established for the long term, preferably permanently, since full recovery of all fisheries species is likely to take?>?25 years. Reserve size should be based on movement patterns of focal species, although marine reserves?>?10 km long are likely to protect?~?80% of fish species. Since climate change will affect species’ geographic range, larval duration, growth, reproduction, abundance, and distribution of key recruitment habitats, these guidelines may require further modifications to maintain ecosystem function in the future.  相似文献   

4.
Genetic diversity is crucial for species’ maintenance and persistence, yet is often overlooked in conservation studies. Species diversity is more often reported due to practical constraints, but it is unknown if these measures of diversity are correlated. In marine invertebrates, adults are often sessile or sedentary and populations exchange genes via dispersal of gametes and larvae. Species with a larval period are expected to have more connected populations than those without larval dispersal. We assessed the relationship between measures of species and genetic diversity, and between dispersal ability and connectivity. We compiled data on genetic patterns and life history traits in nine species across five phyla. Sampling sites spanned 600 km in the northwest Mediterranean Sea and focused on a 50‐km area near Marseilles, France. Comparative population genetic approaches yielded three main results. (i) Species without larvae showed higher levels of genetic structure than species with free‐living larvae, but the role of larval type (lecithotrophic or planktotrophic) was negligible. (ii) A narrow area around Marseilles, subject to offshore advection, limited genetic connectivity in most species. (iii) We identified sites with significant positive contributions to overall genetic diversity across all species, corresponding with areas near low human population densities. In contrast, high levels of human activity corresponded with a negative contribution to overall genetic diversity. Genetic diversity within species was positively and significantly linearly related to local species diversity. Our study suggests that local contribution to overall genetic diversity should be taken into account for future conservation strategies.  相似文献   

5.
There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25-40%), particularly, the best quality habitats (46-57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks.  相似文献   

6.
Connectivity, the demographic linking of local populations through the dispersal of individuals, is one of the most poorly understood processes in population dynamics, yet has profound implications for conservation and harvest strategies. For marine species with pelagic larvae, direct estimation of connectivity remains logistically challenging and has mostly been limited to single snapshots in time. Here, we document seasonal and interannual patterns of larval dispersal in a metapopulation of the coral reef fish Amphiprion polymnus. A 3‐year record of larval trajectories within and among nine discrete local populations from an area of approximately 35 km was established by determining the natal origin of settled juveniles through DNA parentage analysis. We found that spatial patterns of both self‐recruitment and connectivity were remarkably consistent over time, with a low level of self‐recruitment at the scale of individual sites. Connectivity among sites was common and multidirectional in all years and was not significantly influenced by seasonal variability of predominant surface current directions. However, approximately 75% of the sampled juveniles could not be assigned to parents within the study area, indicating high levels of immigrations from sources outside the study area. The data support predictions that the magnitude and temporal stability of larval connectivity decreases significantly with increasing distance between subpopulations, but increases with the size of subpopulations. Given the considerable effort needed to directly measure larval exchange, the consistent patterns suggest snapshot parentage analyses can provide useful dispersal estimates to inform spatial management decisions.  相似文献   

7.
Estimating the patterns of connectivity in marine taxa with planktonic dispersive stages is a challenging but crucial task because of its conservation implications. The red gorgonian Paramuricea clavata is a habitat forming species, characterized by short larval dispersal and high reproductive output, but low recruitment. In the recent past, the species was impacted by mass mortality events caused by increased water temperatures in summer. In the present study, we used 9 microsatellites to investigate the genetic structure and connectivity in the highly threatened populations from the Ligurian Sea (NW Mediterranean). No evidence for a recent bottleneck neither decreased genetic diversity in sites impacted by mass mortality events were found. Significant IBD pattern and high global FST confirmed low larval dispersal capability in the red gorgonian. The maximum dispersal distance was estimated at 20–60 km. Larval exchange between sites separated by hundreds of meters and between different depths was detected at each site, supporting the hypothesis that deeper subpopulations unaffected by surface warming peaks may provide larvae for shallower ones, enabling recovery after climatically induced mortality events.  相似文献   

8.
While movements of organisms have been studied across a myriad of environments, information is often lacking regarding spatio‐seasonal patterning in complex temperate coastal systems. Highly mobile fish form an integral part of marine food webs providing linkages within and among habitats, between patches of habitats, and at different life stages. We investigated how movement, activity, and connectivity patterns of Atlantic cod (Gadus morhua) are influenced by dynamic environmental conditions. Movement patterns of 39 juvenile and subadult Atlantic cod were assessed in two coastal sites in the Swedish Skagerrak for 5 months. We used passive acoustic telemetry and network analysis to assess seasonal and spatial movement patterns of cod and their relationships to different environmental factors, using statistical correlations, analysis of recurrent spatial motifs, and generalized linear mixed models. Temperature, in combination with physical barriers, precludes significant connectivity (complex motifs) within the system. Sea surface temperature had a strong influence on connectivity (node strength, degree, and motif frequency), where changes from warmer summer waters to colder winter waters significantly reduced movement activity of fish. As the seasons changed, movement of fish gradually decreased from large‐scale (km) linkages in the summer to more localized movement patterns in the winter (limited to 100s m). Certain localized areas, however, were identified as important for connectivity throughout the whole study period, likely due to these multiple‐habitat areas fulfilling functions required for foraging and shelter. This study provides new knowledge regarding inshore movement dynamics of juvenile and subadult Atlantic cod that use complex, coastal fjord systems. The findings show that connectivity, seasonal patterns in particular, should be carefully considered when selecting conservation areas to promote marine stewardship.  相似文献   

9.
Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well‐connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean‐warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph‐theoretical approach based on centrality (eigenvector and distance‐weighted fragmentation) of habitat patches can help design better‐connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation‐only reserve design is unlikely, particularly in regions with strong asymmetric patterns of dispersal connectivity. Our results support previous studies suggesting that, given potential reductions in PLD due to ocean warming, future marine reserve networks would require more and/or larger reserves in closer proximity to maintain larval connectivity.  相似文献   

10.
Summary Complex life cycles are ancient and widely distributed, particularly so in the marine environment. Generally, the marine biphasic life cycle consists of pre‐reproductive stages that exist in the plankton for various periods of time before settling and transforming into a benthic reproductive stage. Pre‐reproductive stages are frequently phenotypically distinct from the reproductive stage, and the life cycle transition (metamorphosis) linking the larval and juvenile stages varies in extent of change but is usually rapid. Selection of suitable adult sites apparently involves the capacity to retain the larval state after metamorphic competence is reached. Thus two perennial and related questions arise: How are environmentally dependent rapid transitions between two differentiated functional life history stages regulated (a physiological issue) and how does biphasy arise (a developmental issue)? Two species of solitary ascidian, a sea urchin and a gastropod, share a nitric oxide (NO)‐dependent signaling pathway as a repressive regulator of metamorphosis. NO also regulates life history transitions among several simple eukaryotes. We review the unique properties of inhibitory NO signaling and propose that (a) NO is an ancient and widely used regulator of biphasic life histories, (b) the evolution of biphasy in the metazoa involved repression of juvenile development, (c) functional reasons why NO‐based signaling is well suited as an inhibitory regulator of metamorphosis after competence is reached, and (d) signaling pathways that regulate metamorphosis of extant marine animals may have participated in the evolution of larvae.  相似文献   

11.
Well‐designed and effectively managed networks of marine reserves can be effective tools for both fisheries management and biodiversity conservation. Connectivity, the demographic linking of local populations through the dispersal of individuals as larvae, juveniles or adults, is a key ecological factor to consider in marine reserve design, since it has important implications for the persistence of metapopulations and their recovery from disturbance. For marine reserves to protect biodiversity and enhance populations of species in fished areas, they must be able to sustain focal species (particularly fishery species) within their boundaries, and be spaced such that they can function as mutually replenishing networks whilst providing recruitment subsidies to fished areas. Thus the configuration (size, spacing and location) of individual reserves within a network should be informed by larval dispersal and movement patterns of the species for which protection is required. In the past, empirical data regarding larval dispersal and movement patterns of adults and juveniles of many tropical marine species have been unavailable or inaccessible to practitioners responsible for marine reserve design. Recent empirical studies using new technologies have also provided fresh insights into movement patterns of many species and redefined our understanding of connectivity among populations through larval dispersal. Our review of movement patterns of 34 families (210 species) of coral reef fishes demonstrates that movement patterns (home ranges, ontogenetic shifts and spawning migrations) vary among and within species, and are influenced by a range of factors (e.g. size, sex, behaviour, density, habitat characteristics, season, tide and time of day). Some species move <0.1–0.5 km (e.g. damselfishes, butterflyfishes and angelfishes), <0.5–3 km (e.g. most parrotfishes, goatfishes and surgeonfishes) or 3–10 km (e.g. large parrotfishes and wrasses), while others move tens to hundreds (e.g. some groupers, emperors, snappers and jacks) or thousands of kilometres (e.g. some sharks and tuna). Larval dispersal distances tend to be <5–15 km, and self‐recruitment is common. Synthesising this information allows us, for the first time, to provide species, specific advice on the size, spacing and location of marine reserves in tropical marine ecosystems to maximise benefits for conservation and fisheries management for a range of taxa. We recommend that: (i) marine reserves should be more than twice the size of the home range of focal species (in all directions), thus marine reserves of various sizes will be required depending on which species require protection, how far they move, and if other effective protection is in place outside reserves; (ii) reserve spacing should be <15 km, with smaller reserves spaced more closely; and (iii) marine reserves should include habitats that are critical to the life history of focal species (e.g. home ranges, nursery grounds, migration corridors and spawning aggregations), and be located to accommodate movement patterns among these. We also provide practical advice for practitioners on how to use this information to design, evaluate and monitor the effectiveness of marine reserve networks within broader ecological, socioeconomic and management contexts.  相似文献   

12.
A substantial shift toward use of marine protected areas (MPAs) for conservation and fisheries management is currently underway. This shift to explicit spatial management presents new challenges and uncertainties for ecologists and resource managers. In particular, the potential for MPAs to change population sustainability, fishery yield, and ecosystem properties depends on the poorly understood consequences of three critical forms of connectivity over space: larval dispersal, juvenile and adult swimming, and movement of fishermen. Conventional fishery management describes the dynamics and current status of fish populations, with increasing recent emphasis on sustainability, often through reference points that reflect individual replacement. These compare lifetime egg production (LEP) to a critical replacement threshold (CRT) whose value is uncertain. Sustainability of spatially distributed populations also depends on individual replacement, but through all possible paths created by larval dispersal and LEP at each location. Model calculations of spatial replacement considering larval connectivity alone indicate sustainability and yield depend on species dispersal distance and the distribution of LEP created by species habitat distribution and fishing mortality. Adding MPAs creates areas with high LEP, increasing sustainability, but not necessarily yield. Generally, short distance dispersers will persist in almost all MPAs, while sustainability of long distance dispersers requires a specific density of MPAs along the coast. The value of that density also depends on the uncertain CRT, as well as fishing rate. MPAs can increase yield in areas with previously low LEP but for short distance dispersers, high yields will require many small MPAs. The paucity of information on larval dispersal distances, especially in cases with strong advection, renders these projections uncertain. Adding juvenile and adult movement to these calculations reduces LEP near the edges in MPAs, if movement is within a home-range, but more broadly over space if movement is diffusive. Adding movement of fishermen shifts effort on the basis of anticipated revenues and fishing costs, leading to lower LEP near ports, for example. Our evolving understanding of connectivity in spatial management could form the basis for a new, spatially oriented replacement reference point for sustainability, with associated new uncertainties.  相似文献   

13.

The Western Indian Ocean harbors one of the world’s most diverse marine biota yet is threatened by exploitation with few conservation measures in place. Primary candidates for conservation in the region are the Scattered Islands (Îles Éparses), a group of relatively pristine and uninhabited islands in the Mozambique Channel. However, while optimal conservation strategies depend on the degree of population connectivity among spatially isolated habitats, very few studies have been conducted in the area. Here, we use highly variable microsatellite markers from two damselfishes (Amphiprion akallopisos and Dascyllus trimaculatus) with differing life history traits [pelagic larval duration (PLD), adult habitat] to compare genetic structure and connectivity among these islands using classic population structure indices as well as Bayesian clustering methods. All classical fixation indexes F ST, R ST, GST, and Jost’s D show stronger genetic differentiation among islands for A. akallopisos compared to D. trimaculatus, consistent with the former species’ shorter PLD and stronger adult site attachment, which may restrict larval dispersal potential. In agreement with these results, the Bayesian analysis revealed clear genetic differentiation among the islands in A. akallopisos, separating the southern group (Bassas da India and Europa) from the center (Juan de Nova) and northern (Îles Glorieuses) islands, but not for D. trimaculatus. Local oceanographic patterns such as eddies that occur along the Mozambique Channel appear to parallel the results reported for A. akallopisos, but such features seem to have little effect on the genetic differentiation of D. trimaculatus. The contrasting patterns of genetic differentiation between species within the same family highlight the importance of accounting for diverse life history traits when assessing community-wide connectivity, an increasingly common consideration in conservation planning.

  相似文献   

14.
Identifying which factors shape the distribution of intraspecific genetic diversity is central in evolutionary and conservation biology. In the marine realm, the absence of obvious barriers to dispersal can make this task more difficult. Nevertheless, recent studies have provided valuable insights into which factors may be shaping genetic structure in the world's oceans. These studies were, however, generally conducted on marine organisms with larval dispersal. Here, using a seascape genetics approach, we show that marine productivity and sea surface temperature are correlated with genetic structure in a highly mobile, widely distributed marine mammal species, the short-beaked common dolphin. Isolation by distance also appears to influence population divergence over larger geographical scales (i.e. across different ocean basins). We suggest that the relationship between environmental variables and population structure may be caused by prey behaviour, which is believed to determine common dolphins' movement patterns and preferred associations with certain oceanographic conditions. Our study highlights the role of oceanography in shaping genetic structure of a highly mobile and widely distributed top marine predator. Thus, seascape genetic studies can potentially track the biological effects of ongoing climate-change at oceanographic interfaces and also inform marine reserve design in relation to the distribution and genetic connectivity of charismatic and ecologically important megafauna.  相似文献   

15.
Knowledge of the population biology, life-history ecology and scales of pre and post-settlement movement of marine species are needed to inform effective conservation management strategies, particularly when spatial information is required for management purposes such as zoning in Marine Protected Areas. This review provides the most current summary from primary and grey literature on the biology and ecology of several coastal fishes of economic and ecological significance in south-east Australia; identifies key knowledge gaps which may impede the development of effective spatial management; and recommends future research directions and methods. Reviewed species are luderick (Girella tricuspidata), eastern rock blackfish (Girella elevata), yellowfin bream (Acanthopagrus australis), tarwhine (Rhabdosargus sarba), snapper (Pagrus auratus), red morwong (Cheilodactylus fuscus) and eastern blue grouper (Achoerodus viridis). The species have a diverse range of life-histories and population traits, and selected parameters were well studied in several species, such as growth (blue groper, luderick, yellowfin bream, tarwhine, snapper), post-settlement movement (red morwong), and larval ecology (yellowfin bream). However, empirical data on levels of pre- and post-settlement connectivity and real-time movements are not available for most species, and this represents a significant gap for improved spatial management. A multidisciplinary approach incorporating a range of methods including acoustic tracking and telemetry, otolith chemistry, intergenerational markers, and biophysical modelling will provide a more comprehensive understanding of life history parameters, movement and connectivity at scales relevant to MPA planning and monitoring.  相似文献   

16.
The last two decades have seen a rapid increase in barrier removals on rivers of the Northern Hemisphere, often for the explicit purpose of expanding the abundance, spatial distribution, and life history diversity of migratory fishes. However, differences in life history such as seasonal timing of migration and reproduction, iteroparity versus semelparity, and the extent of natal homing are likely to affect the capacity for expansion and re-colonization by taxa such as alosines, lamprey, and salmonids. We first review some basic life history traits that may affect re-colonization by migratory fishes, and then present selected examples from Atlantic and Pacific basins to illustrate these patterns and their implications for the success of barrier removal as a measure to advance the goal of fish conservation. We conclude that diadromous fishes have the capacity to rapidly re-colonize newly available habitats, though the life history patterns of each species, the proximity to source populations in the same or nearby river systems, and the diversity of habitats available may control the patterns and rates of re-colonization.  相似文献   

17.
Life‐history traits of exotic species are important to understand the process involved in their settlement and their potential impact on native biodiversity. In this context, the seasonal density, the population structure and the reproductive patterns of exotic and native peracarid species of two natural marine environments of Southwestern Atlantic were studied in order to determine the traits that favour the invasion success of exotic species. Five samples, consisted of algal patches (0.20 × 0.20 m quadrants), were collected seasonally from 2016 to 2017 in two intertidal environments (La Estafeta and Cerro Avanzado). Both environments presented high richness of cryptogenic and exotic species (Tanais dulongii, Monocorophium insidiosum, Ampithoe valida, Melita palmata and Jassa marmorata), and only two native species were recorded (Apohyale grandicornis and Exosphaeroma lanceolatum). The comparison of life‐history traits suggested that the distribution, dominance and the highest densities of some exotic species are closely related to their continuous reproductive and recruitment periods, their capability to adapt their life‐history strategies to different environmental conditions and to a more efficient distribution of resources during reproduction; however, in native species, only A. grandicornis registered similar life‐history traits than exotic populations, suggesting that their distribution could be limited by a latitudinal gradient. We expect that these results provide essential information to understand the invasion pattern of exotic species and their potential impact on native biodiversity in Southwestern Atlantic.  相似文献   

18.
We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008–2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future.  相似文献   

19.
Acceptance of marine protected areas (MPAs) as fishery and conservation tools has been hampered by lack of direct evidence that MPAs successfully seed unprotected areas with larvae of targeted species. For the first time, we present direct evidence of large-scale population connectivity within an existing and effective network of MPAs. A new parentage analysis identified four parent-offspring pairs from a large, exploited population of the coral-reef fish Zebrasoma flavescens in Hawai'i, revealing larval dispersal distances ranging from 15 to 184 km. In two cases, successful dispersal was from an MPA to unprotected sites. Given high adult abundances, the documentation of any parent-offspring pairs demonstrates that ecologically-relevant larval connectivity between reefs is substantial. All offspring settled at sites to the north of where they were spawned. Satellite altimetry and oceanographic models from relevant time periods indicated a cyclonic eddy that created prevailing northward currents between sites where parents and offspring were found. These findings empirically demonstrate the effectiveness of MPAs as useful conservation and management tools and further highlight the importance of coupling oceanographic, genetic, and ecological data to predict, validate and quantify larval connectivity among marine populations.  相似文献   

20.
Scombrids (tunas, bonitos, Spanish mackerels and mackerels) support important fisheries in tropical, subtropical and temperate waters around the world, being one of the most economically- and socially-important marine species globally. Their sustainable exploitation, management and conservation depend on accurate life history information for the development of quantitative fisheries stock assessments, and in the fishery data-poor situations for the identification of vulnerable species. Here, we assemble life history traits (maximum size, growth, longevity, maturity, fecundity, spawning duration and spawning interval) for the 51 species of scombrids globally. We identify major biological gaps in knowledge and prioritize life history research needs in scombrids based on their biological gaps in knowledge, the importance of their fisheries and their current conservation status according to the International Union for Conservation of Nature Red List. We find that the growth and reproductive biology of tunas and mackerel species have been more extensively studied than for Spanish mackerels and bonitos, although there are notable exceptions in all groups. We also reveal that reproductive biology of species, particular fecundity, is the least studied biological aspect in scombrids. We identify two priority groups, including 32 species of scombrids, and several populations of principal market tunas, for which life history research should be prioritized following the species-specific life history gaps identified in this study in the coming decades. By highlighting the important gaps in biological knowledge and providing a priority setting for life history research in scombrid species this study provides guidance for management and conservation and serves as a guide for biologists and resource managers interested in the biology, ecology, and management of scombrid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号