首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the capsular polysaccharide (S18A) elaborated by Streptococcus pneumoniae type 18A has been investigated by using methylation analysis and n.m.r. spectroscopy. It is concluded that the polysaccharide is composed of pentasaccharide repeating-units having the following structure. (formula; see text) In this structure, the absolute configuration of the glycerol 1-phosphate moiety has not been determined but is assumed to be D from biosynthesis considerations. The structure of S18A is, as expected, closely similar to those determined for S18F and S18C.  相似文献   

2.
The synthesis of periplasmic beta(1-2)glucan is required for crown gall tumor formation by Agrobacterium tumefaciens and for effective nodulation of alfalfa by Rhizobium meliloti. The exoC (pscA) gene is required for this synthesis by both bacteria as well as for the synthesis of capsular polysaccharide and normal lipopolysaccharide. We tested the possibility that the pleiotropic ExoC phenotype is due to a defect in the synthesis of an intermediate common to several polysaccharide biosynthetic pathways. Cytoplasmic extracts from wild-type A. tumefaciens and from exoC mutants of A. tumefaciens containing a cloned wild-type exoC gene synthesized in vitro UDP-glucose from glucose, glucose 1-phosphate, and glucose 6-phosphate. Extracts from exoC mutants synthesized UDP-glucose from glucose 1-phosphate but not from glucose or glucose 6-phosphate. Membranes from exoC mutant cells synthesized beta(1-2)glucan in vitro when exogenous UDP-glucose was added and contained the 235-kilodalton protein, which has been shown to carry out this synthesis in wild-type cells. We conclude that the inability of exoC mutants to synthesize beta(1-2)glucan is due to a deficiency in the activity of the enzyme phosphoglucomutase (EC 2.7.5.1), which in wild-type bacteria converts glucose 6-phosphate to glucose 1-phosphate, an intermediate in the synthesis of UDP-glucose. This interpretation can account for all of the deficiencies in polysaccharide synthesis which have been observed in these mutants.  相似文献   

3.
Anionic polymers of the cell surface of a thermophilic streptomycete were investigated. The cell wall of Streptomyces thermoviolaceus subsp. thermoviolaceus VKM Ac-1857(T) was found to contain polymers with different structure: teichoic acid--1,3-poly(glycerol phosphate), disaccharide-1-phosphate polymer with repeating unit -6)-alpha-Galp-(1-->6)-alpha-GlcpNAc-P-, and polysaccharide without phosphate with repeating unit -->6)-alpha-GalpNAc-(1-->3)-beta-GalpNAc-(1-->. Disaccharide-1-phosphate and polysaccharide without phosphate have not been described earlier in prokaryotic cell walls.  相似文献   

4.
The alkali-extractable and water-soluble fungal polysaccharide F1SS isolated from the cell wall of Acrospermum compressum has been studied by methylation analyses, reductive cleavage and 1D- and 2D-NMR spectroscopy. The polysaccharide consists of a regular disaccharide repeating unit with the structure: The mannan core was obtained by mild hydrolysis of the polysaccharide F1SS and its structure was deduced to be composed of a skeleton of α-(1→6)-mannopyranan, with around 1 out of 11 residues substituted at position 2 by short chains (one to six units) of 2-substituted mannopyranoses. DOSY experiments provided molecular sizes of 60 kDa and 2.5 kDa for the polysaccharide F1SS and the mannan core, respectively. This is the first report of a fungal mannofuranose-containing cell wall polysaccharide.  相似文献   

5.
The absolute configuration of the 2-substituted arabinitol 1-phosphate residue present in the repeating unit of the capsular polysaccharide (CPS) from Streptococcus pneumoniae Type 17F is confirmed as D, based on a comparison of proton and carbon chemical shifts in a synthetic oligosaccharide and in an oligosaccharide derived from the CPS by degradation.  相似文献   

6.
6-Phosphoryl-beta-D-glucopyranosyl:6-phosphoglucohydrolase (P-beta-glucosidase, EC 3.2.1.86) has been purified from Fusobacterium mortiferum. Assays for enzyme activity and results from Western immunoblots showed that P-beta-glucosidase (Mr, 53,000; pI, 4.5) was induced by growth of F. mortiferum on beta-glucosides. The novel chromogenic and fluorogenic substrates, p-nitrophenyl-beta-D-glucopyranoside-6-phosphate (pNPbetaGlc6P) and 4-methylumbelliferyl-beta-D-glucopyranoside-6-phosphate (4MUbetaGlc6P), respectively, were used for the assay of P-beta-glucosidase activity. The enzyme hydrolyzed several P-beta-glucosides, including the isomeric disaccharide phosphates cellobiose-6-phosphate, gentiobiose-6-phosphate, sophorose-6-phosphate, and laminaribiose-6-phosphate, to yield glucose-6-phosphate and appropriate aglycons. The kinetic parameters for each substrate are reported. P-beta-glucosidase from F. mortiferum was inactivated by 6-phosphoglucono-delta-lactone (P-glucono-delta-lactone) derived via oxidation of glucose 6-phosphate. The pbgA gene that encodes P-beta-glucosidase from F. mortiferum has been cloned and sequenced. The first 42 residues deduced from the nucleotide sequence matched those determined for the N terminus by automated Edman degradation of the purified enzyme. From the predicted sequence of 466 amino acids, two catalytically important glutamyl residues have been identified. Comparative alignment of the amino acid sequences of P-beta-glucosidase from Escherichia coli and F. mortiferum indicates potential binding sites for the inhibitory P-glucono-delta-lactone to the enzyme from F. mortiferum.  相似文献   

7.
Sphingosine-1-phosphate (S1P) receptors play major roles in cardiovascular, immunological and neurological diseases. The recent approval of the sphingolipid drug Fingolimod (Gilenya®), a sphingosine-1-phosphate agonist for relapsing multiple sclerosis, in 2010 exemplifies the potential for targeting sphingolipids for the treatment of human disorders. Moreover, non-invasive in vivo imaging of S1P receptors that are not available till now would contribute to the understanding of their role in specific pathologies and is therefore of preclinical interest. Based on fluorinated analogues of the S1P1 receptor antagonist W146 showing practically equal in vitro potency as the lead structure, the first S1P receptor antagonist [18F]-radiotracer has been synthesized and tested for in vivo imaging of the S1P1 receptor using positron emission tomography (PET). Though the tracer is serum stable, initial in vivo images show fast metabolism and subsequent accumulation of free [18F]fluoride in the bones.  相似文献   

8.
The alkali-extractable water-soluble polysaccharide (F1SS) isolated from the cell wall of Apodus deciduus has been studied by methylation analysis and NMR spectroscopy, and its structure established as:where n approximately 130+/-10.  相似文献   

9.
The modified flavin coenzyme F(420) is found in a restricted number of microorganisms. It is widely distributed in mycobacteria, however, where it is important in energy metabolism, and in Mycobacterium tuberculosis (Mtb) is implicated in redox processes related to non-replicating persistence. In Mtb, the F(420)-dependent glucose-6-phosphate dehydrogenase FGD1 provides reduced F(420) for the in vivo activation of the nitroimidazopyran prodrug PA-824, currently being developed for anti-tuberculosis therapy against both replicating and persistent bacteria. The structure of M. tuberculosis FGD1 has been determined by x-ray crystallography both in its apo state and in complex with F(420) and citrate at resolutions of 1.90 and 1.95 A(,) respectively. The structure reveals a highly specific F(420) binding mode, which is shared with several other F(420)-dependent enzymes. Citrate occupies the substrate binding pocket adjacent to F(420) and is shown to be a competitive inhibitor (IC(50) 43 microm). Modeling of the binding of the glucose 6-phosphate (G6P) substrate identifies a positively charged phosphate binding pocket and shows that G6P, like citrate, packs against the isoalloxazine moiety of F(420) and helps promote a butterfly bend conformation that facilitates F(420) reduction and catalysis.  相似文献   

10.
Capsule polysaccharide (CPS) plays an important role in the virulence of Streptococcus pneumoniae and is usually used as the pneumococcal vaccine target. Glycerol-2-phosphate is found in the CPS of S. pneumoniae types 15A and 23F and is rarely found in the polysaccharides of other bacteria. The biosynthetic pathway of the nucleotide-activated form of glycerol-2-phosphate (NDP-2-glycerol) has never been identified. In this study, three genes (gtp1, gtp2, and gtp3) from S. pneumoniae 23F that have been proposed to be involved in the synthesis of NDP-2-glycerol were cloned and the enzyme products were expressed, purified, and assayed for their respective activities. Capillary electrophoresis was used to detect novel products from the enzyme-substrate reactions, and the structure of the product was elucidated using electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. Gtp1 was identified as a reductase that catalyzes the conversion of 1,3-dihydroxyacetone to glycerol, Gtp3 was identified as a glycerol-2-phosphotransferase that catalyzes the conversion of glycerol to glycerol-2-phosphate, and Gtp2 was identified as a cytidylyltransferase that transfers CTP to glycerol-2-phosphate to form CDP-2-glycerol as the final product. The kinetic parameters of Gtp1 and Gtp2 were characterized in depth, and the effects of temperature, pH, and cations on these two enzymes were analyzed. This is the first time that the biosynthetic pathway of CDP-2-glycerol has been identified biochemically; this pathway provides a method to enzymatically synthesize this compound.Capsule polysaccharide (CPS) of Gram-positive bacteria, external to the cell wall, provides resistance to phagocytosis. CPS in Streptococcus pneumoniae is the most important virulence factor and the target of pneumococcal vaccines (2). Ninety individual CPS serotypes have been recognized so far by immunological and chemical techniques (9). Each has a structurally distinct CPS, composed of repeating oligosaccharide units joined by glycosidic linkages. The components of the repeat units are transferred from nucleoside diphosphate (NDP) derivatives. Among the 54 identified CPS structures, several sugars and related compounds have been found. Seven NDP-monosaccharide precursors (glucopyranose, N-acetylglucosamine, galactopyranose, N-acetylgalactosamine, 2-acetamido-4-amino-2,4,6-trideoxy-d-galactopyranose, ribitol-phosphate, and phosphorylcholine) are available from housekeeping metabolic pathways, and the biosynthetic genes for 14 NDP-monosaccharide precursors were found in the pneumococcal cps loci. Among the 14 components, the pathways of five (NDP-d-mannitol, NDP-d-arabinitol, NDP-ribofuranose [Rib], CDP-glycerol [CDP-Gro], and NDP-2-glycerol) are putative and have not yet been identified (1, 4).Glycerol-2-phosphate is rarely present in bacteria and has been found in S. pneumoniae types 15A and 23F. The NDP-2-glycerol biosynthetic pathway has been proposed to include three enzymes: Gtp1, Gtp2, and Gtp3. Gtp3 has been proposed to be a glyceraldehyde-2-phosphotransferase and to be involved in the synthesis of glyceraldehyde-2-phosphate from glyceraldehyde. Gtp1, a putative dehydrogenase, has been proposed to be responsible for the conversion of glyceraldehyde-2-phosphate to glycerol-2-phosphate. The last step of the synthesis of CDP-2-glycerol is catalyzed by the putative glycerol-2-phosphate cytidyltransferase Gtp2 (14). The three genes, gtp1, gtp2, and gtp3, have also been found to be present in the cps loci of S. pneumoniae serotypes 15B, 15C, 15F, 23A, 23B, 28A, and 28F (4). However, the biosynthetic pathway for NDP-2-glycerol has never been identified by molecular and biochemical methods.In this study, we found that the enzymes were not reactive by the previously proposed CDP-2-glycerol biosynthetic pathway. Therefore, a new pathway was proposed, and the three enzymes, Gtp1, Gtp2, and Gtp3, were identified and confirmed biochemically as 1,3-dihydroxyacetone/glyceraldehyde reductase, glycerol-2-phosphate cytidylyltransferase, and glycerol-2-phosphotransferase, respectively. This is the first report on the characterization of the CDP-2-glycerol biosynthetic pathway.  相似文献   

11.
The kinetic mechanism of phosphofructokinase has been determined at pH 8 for native enzyme and pH 6.8 for an enzyme desensitized to allosteric modulation by diethylpyrocarbonate modification. In both cases, the mechanism is predominantly steady state ordered with MgATP binding first in the direction of fructose 6-phosphate (F6P) phosphorylation and rapid equilibrium random in the direction of MgADP phosphorylation. This is a unique kinetic mechanism for a phosphofructokinase. Product inhibition by MgADP is competitive versus MgATP and noncompetitive versus F6P while fructose 1,6-bisphosphate (FBP) is competitive versus fructose 6-phosphate and uncompetitive versus MgATP. The uncompetitive pattern obtained versus F6P is indicative of a dead-end E.MgATP.FBP complex. Fructose 6-phosphate is noncompetitive versus either FBP or MgADP. Dead-end inhibition by arabinose 5-phosphate or 2,5-anhydro-D-mannitol 6-phosphate is uncompetitive versus MgATP corroborating the ordered addition of MgATP prior to F6P. In the direction of MgADP phosphorylation, inhibition by anhydromannitol 1,6-bisphosphate is noncompetitive versus MgADP, while Mg-adenosine 5'(beta, gamma-methylene)triphosphate is noncompetitive versus FBP. Anhydromannitol 6-phosphate is a slow substrate, while anhydroglucitol 6-phosphate is not. This suggests that the enzyme exhibits beta-anomeric specificity.  相似文献   

12.
Phosphoryl-oxygen-labelled alpha-D-glucopyranose-1-phosphate (Glc1P) has been prepared by the hydrolysis in 18O-enriched water of alpha-D-glucopyranose-1,2-cyclic phosphate catalyzed by extracts of Saccharomyces fragilis. Ester-oxygen-labelled alpha-D-galactopyranose-1-phosphate has been prepared by galactokinase-(EC 2.7.1.6)-catalyzed phosphorylation of D-[1-18O]-galactose by ATP, and it has been isomerized to ester-oxygen-labelled Glc1P using galactose-1-phosphate uridyltransferase (EC2.7.7.12) and UDPgalactose 4-epimerase (EC 5.1.3.2). These labelled glucose phosphates are for use in oxygen-exchange experiments.  相似文献   

13.
A polysaccharide-peptidoglycan complex containing different phosphorylated sugars from Micrococcus lysodeikticus cell wall has been isolated and purified. The peptidoglycan contained muramic acid 6-phosphate and N-acetylglucosamine 6-phosphate as phosphorylated sugars in addition to other sugar residues. Mild acid hydrolysis of the peptidoglycan and subsequent reduction of the released polysaccharide showed therein the presence of glucose and N-acetyl-glucosamine in the linkage of the external polysaccharide residues to the peptidoglycan through phosphodiester linkage. These data suggest the presence of polysaccharide chains linked to a peptidoglycan core through two phosphorylated sugars via two different terminal carbohydrate residues of the external polysaccharide chains in a same polymer.  相似文献   

14.
Phosphoglucose isomerase (PGI) is an enzyme of glycolysis that interconverts glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P) but, outside the cell, is a multifunctional cytokine. High-resolution crystal structures of the enzyme from mouse have been determined in native form and in complex with the inhibitor erythrose 4-phosphate, and with the substrate glucose 6-phosphate. In the substrate-bound structure, the glucose sugar is observed in both straight-chain and ring forms. This structure supports a specific role for Lys518 in enzyme-catalyzed ring opening and we present a "push-pull" mechanism in which His388 breaks the O5-C1 bond by donating a proton to the ring oxygen atom and, simultaneously, Lys518 abstracts a proton from the C1 hydroxyl group. The reverse occurs in ring closure. The transition from ring form to straight-chain substrate is achieved through rotation of the C3-C4 bond, which brings the C1-C2 region into close proximity to Glu357, the base catalyst for the isomerization step. The structure with G6P also explains the specificity of PGI for glucose 6-phosphate over mannose 6-isomerase (M6P). To isomerize M6P to F6P requires a rotation of its C2-C3 bond but in PGI this is sterically blocked by Gln511.  相似文献   

15.
The structure of the capsular polysaccharide (S-XIX) of Pneumococcus Type XIX, which contains residues of d-glucose, l-rhamnose, 2-acetamido-2-deoxy- d-mannose, and phosphate, has been investigated by acid hydrolysis, treatment with acid phosphatase, mass spectrometry, and 13C-n.m.r. spectroscopy. Phosphoric esters in S-XIX were largely resistant to hydrolysis (4M HCl, 100°, 3 h). With M or 2M HCl at 100° for 3 h, 4-O-(2-amino-2-deoxy-β-d-mannopyranosyl)-d-glucose 4′-phosphate was liberated. More-drastic hydrolysis of S-XIX gave 2-amino-2-deoxy-d-mannose 3-, 4-, and 6-phosphates, and 4-O-(2-amino-2-deoxy-d-mannopyranosyl)-d-glucose and its 4′-phosphate.  相似文献   

16.
The alkali-extractable water-soluble polysaccharides F1SS isolated from the cell wall of four species of Discula destructiva have been studied by methylation analysis and NMR spectroscopy, and their idealized structures established as [structure: see text] where n approximately 2 for strains CBS 109771 and CBS 133.91, n approximately 1 for CBS 132.91, and it has an intermediate value in strain CBS 130.91. The mannan core was obtained by mild hydrolysis of the F1SS polysaccharide and its structure consisted of a skeleton of alpha-(1-->6)-mannopyranan, with around one out of eleven residues substituted at C-2 by short chains (one to six units) of 2-substituted mannopyranoses.  相似文献   

17.
A method for meningococcal X (MenX) polysaccharide quantification by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC–PAD) is described. The polysaccharide is hydrolyzed by strong acidic treatment, and the peak of glucosamine-4-phosphate (4P-GlcN) is detected and measured after chromatography. In the selected conditions of hydrolysis, 4P-GlcN is the prevalent species formed, with GlcN detected for less than 5% in moles. As standard for the analysis, the monomeric unit of MenX polysaccharide, N-acetylglucosamine-4-phosphate (4P-GlcNAc), was used. This method for MenX quantification is highly selective and sensitive, and it constitutes an important analytical tool for the development of a conjugate vaccine against MenX.  相似文献   

18.
Zolli M  Kobric DJ  Brown ED 《Biochemistry》2001,40(16):5041-5048
CDP-ribitol synthase is a bifunctional reductase and cytidylyltransferase that catalyzes the transformation of D-ribulose 5-phosphate, NADPH, and CTP to CDP-ribitol, a repeating unit present in the virulence-associated polysaccharide capsules of Haemophilus influenzae types a and b [Follens, A., et al. (1999) J. Bacteriol. 181, 2001]. In the work described here, we investigated the order of the reactions catalyzed by CDP-ribitol synthase and conducted experiments to resolve the question of substrate channeling in this bifunctional enzyme. It was determined that the synthase first catalyzed the reduction of D-ribulose 5-phosphate followed by cytidylyl transfer to D-ribitol 5-phosphate. Steady state kinetic measurements revealed a 650-fold kinetic preference for cytidylyl transfer to D-ribitol 5-phosphate over D-ribulose 5-phosphate. Rapid mixing studies indicated quick reduction of D-ribulose 5-phosphate with a lag in the cytidylyl transfer reaction, consistent with a requirement for the accumulation of K(m) quantities of D-ribitol 5-phosphate. Signature motifs in the C-terminal and N-terminal sequences of the enzyme (short chain dehydrogenase/reductase and nucleotidyltransferase motifs, respectively) were targeted with site-directed mutagenesis to generate variants that were impaired for only one of the two activities (K386A and R18A impaired for reduction and cytidylyl transfer, respectively). Release and free diffusion of the metabolic intermediate D-ribitol 5-phosphate was indicated by the finding that equimolar mixtures of K386A and R18A variants were efficient for bifunctional catalysis. Taken together, these findings suggest that bifunctional turnover occurs in distinct active sites of CDP-ribitol synthase with reduction of D-ribulose 5-phosphate and release and free diffusion of the metabolic intermediate D-ribitol 5-phosphate followed by cytidylyl transfer.  相似文献   

19.
BACKGROUND: Glycerol-3-phosphate (1)-acyltransferase(G3PAT) catalyzes the incorporation of an acyl group from either acyl-acyl carrier proteins (acylACPs) or acyl-CoAs into the sn-1 position of glycerol 3-phosphate to yield 1-acylglycerol-3-phosphate. G3PATs can either be selective, preferentially using the unsaturated fatty acid, oleate (C18:1), as the acyl donor, or nonselective, using either oleate or the saturated fatty acid, palmitate (C16:0), at comparable rates. The differential substrate specificity for saturated versus unsaturated fatty acids seen within this enzyme family has been implicated in the sensitivity of plants to chilling temperatures. RESULTS: The three-dimensional structure of recombinant G3PAT from squash chloroplast has been determined to 1.9 A resolution by X-ray crystallography using the technique of multiple isomorphous replacement and provides the first representative structure of an enzyme of this class. CONCLUSIONS: The tertiary structure of G3PAT comprises two domains, the larger of which, domain II, features an extensive cleft lined by hydrophobic residues and contains at one end a cluster of positively charged residues flanked by a H(X)(4)D motif, which is conserved amongst many glycerolipid acyltransferases. We predict that these hydrophobic and positively charged residues represent the binding sites for the fatty acyl substrate and the phosphate moiety of the glycerol 3-phosphate, respectively, and that the H(X)(4)D motif is a critical component of the enzyme's catalytic machinery.  相似文献   

20.
The major immunostimulatory principle in the hot aqueous extract of Chlorella pyrenoidosa has been isolated by a sequence of ethanol precipitation, precipitation with a cationic surfactant (CTAB), size exclusion chromatography, and anion exchange chromatography. A series of phosphorylated polysaccharides were obtained having different molecular masses but with similar structures. The higher molecular mass fractions showed considerable activity in the stimulation of mouse peritoneal macrophages to synthesize nitric oxide. The structure of the major polysaccharide was established by sugar analysis, configurational analysis, and 1D and 2D NMR experiments at 500 and 800 MHz on the parent polysaccharide, the de-O-acetylated polysaccharide, and on the components obtained after hydrolysis of the phosphate diesters. It had a β-d-Galp-(1→3)-β-d-Galp-(1→3)-backbone with half of the Galp units substituted at O-6 by terminal β-d-Glcp units. The remaining Galp units were substituted on O-6 by about equal amounts of α-d-Manp-1-phosphate and 3-O-Me-α-Manp-1-phosphate diesters. The substituents were not located in a regularly alternating fashion on the backbone. The O-acetyl groups were largely located on O-2 and O-4 of Galp and 35% of the Galp residues were O-acetylated. This is the second observation of a phosphorylated polysaccharide in an alga and the first where it is present to a significant extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号