首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of protein kinase C (PKC) is one of the biochemical pathways thought to be activated during activity-dependent synaptic plasticity in the brain, and long-term potentiation (LTP) and long-term depression (LTD) are two of the most extensively studied models of synaptic plasticity. Here we have examined changes in the in situ phosphorylation level of two major PKC substrates, myristoylated alanine-rich C kinase substrate (MARCKS) and growth-associated protein (GAP)-43/B-50, after pharmacological stimulation or induction of LTP or LTD in the CA1 field of the hippocampus. We find that direct PKC activation with phorbol esters, K+-induced depolarization, and activation of metabotropic glutamate receptors increase the in situ phosphorylation of both MARCKS and GAP-43/B-50. The induction of LTP increased the in situ phosphorylation of both MARCKS and GAP-43/B-50 at 10 min following high-frequency stimulation, but only GAP-43/B-50 phosphorylation remained elevated 60 min after LTP induction. Furthermore, blockade of LTP induction with the NMDA receptor antagonist D-2-amino-5-phosphonopentanoic acid prevented elevations in GAP-43/B-50 phosphorylation but did not prevent the elevation in MARCKS phosphorylation 10 min following LTP induction. The induction of LTD resulted in a reduction in GAP-43/B-50 phosphorylation but did not affect MARCKS phosphorylation. Together these findings show that activity-dependent synaptic plasticity elicits PKC-mediated phosphorylation of substrate proteins in a highly selective and coordinated manner and demonstrate the compartmentalization of PKC-substrate interactions. Key Words: Protein kinase C-Myristoylated alanine-rich C kinase substrate-Growth-associated protein-43-Long-term potentiation-Long-term depression-(RS)-alpha-Methyl-4-carboxyphenylglycine-D-2-Amino-5-ph osphonopentanoic acid-Glutamate.  相似文献   

2.
Long-term treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) down-regulates select protein kinase C (PKC) isozymes and may differentially affect PKC substrates. We investigated the role of PKC down-regulation on phosphorylation of two PKC substrates, the 43 kDa growth-associated protein (GAP-43) and the myristoylated alanine-rich C-kinase substrate (MARCKS) in SK-N-SH human neuroblastoma cells. Cells were treated with 70 nM TPA for 15 min, 17 or 72 h. Phosphorylation of MARCKS and GAP-43 was elevated throughout 72 h of TPA. The magnitude and peptidic sites of phosphorylation in GAP-43 and MARCKS were similar after all TPA treatments. GAP-43, but not MARCKS, content was increased after 17 and 72 h of TPA. The ratio of GAP-43 phosphorylation to content was elevated throughout 17 h but returned to control by 72 h as content increased. PKC epsilon and alpha isozyme content was greatly reduced after 72 h of TPA but membranes retained 23% of PKC activity. Only PKC epsilon translocated to membranes after 15 min TPA. GAP-43 content after 72 h of TPA was increased in subcellular fractions in which significant PKC epsilon isozyme concentration remained. These results demonstrate that continuous TPA differentially affected phosphorylation of PKC substrate proteins and regulation of PKC isozyme content in SK-N-SH cells.  相似文献   

3.
Bradykinin (BK) plays a major role in producing peripheral sensitization in response to peripheral inflammation and in pain transmission in the central nerve system (CNS). Because BK activates protein kinase C (PKC) through phospholipase C (PLC)-β and myristoylated alanine-rich C kinase substrate (MARCKS) has been found to be a substrate of PKC, we explored the possibility that BK could induce MARCKS phosphorylation and regulate its function. BK stimulation induced transient MARCKS phosphorylation on Ser159 with a peak at 1 min in human neuroblastoma SH-SY5Y cells. By contrast, PKC activation by the phorbol ester phorbol 12,13-dibutyrate (PDBu) elicited MARCKS phosphorylation which lasted more than 10 min. Western blotting analyses and glutathione S-transferase (GST) pull-down analyses showed that the phosphorylation by BK was the result of activation of the PKC-dependent RhoA/Rho-associated coiled-coil kinase (ROCK) pathway. Protein phosphatase (PP) 2A inhibitors calyculin A and fostriecin inhibited the dephosphorylation of MARCKS after BK-induced phosphorylation. Moreover, immunoprecipitation analyses showed that PP2A interacts with MARCKS. These results indicated that PP2A is the dominant PP of MARCKS after BK stimulation. We established SH-SY5Y cell lines expressing wild-type MARCKS and unphosphorylatable MARCKS, and cell morphology changes after cell stimulation were studied. PDBu induced lamellipodia formation on the neuroblastoma cell line SH-SY5Y and the morphology was sustained, whereas BK induced neurite outgrowth of the cells via lamellipodia-like actin accumulation that depended on transient MARCKS phosphorylation. Thus these findings show a novel BK signal cascade-that is, BK promotes neurite outgrowth through transient MARCKS phosphorylation involving the PKC-dependent RhoA/ROCK pathway and PP2A in a neuroblastoma cell line.  相似文献   

4.
We visualized the translocation of myristoylated alanine-rich protein kinase C substrate (MARCKS) in living Chinese hamster ovary-K1 cells using MARCKS tagged to green fluorescent protein (MARCKS-GFP). MARCKS-GFP was rapidly translocated from the plasma membrane to the cytoplasm after the treatment with phorbol ester, which translocates protein kinase C (PKC) to the plasma membrane. In contrast, PKC activation by hydrogen peroxide, which was not accompanied by PKC translocation, did not alter the intracellular localization of MARCKS-GFP. Non-myristoylated mutant of MARCKS-GFP was distributed throughout the cytoplasm, including the nucleoplasm, and was not translocated by phorbol ester or by hydrogen peroxide. Phosphorylation of wild-type MARCKS-GFP was observed in cells treated with phorbol ester but not with hydrogen peroxide, whereas non-myristoylated mutant of MARCKS-GFP was phosphorylated in cells treated with hydrogen peroxide but not with phorbol ester. Phosphorylation of both MARCKS-GFPs reduced the amount of F-actin. These findings revealed that PKC targeting to the plasma membrane is required for the phosphorylation of membrane-associated MARCKS and that a mutant MARCKS existing in the cytoplasm can be phosphorylated by PKC activated in the cytoplasm without translocation but not by PKC targeted to the membrane.  相似文献   

5.
It is well recognized that phorbol 12,13-dibutyrate (PDBu)-activated PKC directly phosphorylates myristoylated alanine-rich C kinase substrate (MARCKS), whose phosphorylation is used as a marker of PKC activation. However, in SH-SY5Y neuroblastoma cells, Western blotting analyses revealed that Rho-associated coiled-coil kinase (ROCK)-specific inhibitor H-1152 inhibited PDBu-induced phosphorylation, and that a small G-protein inhibitor, toxin B, also inhibited MARCKS phosphorylation. Furthermore, in GST pull-down assays, PDBu induced RhoA activation in SH-SY5Y cells, and this activation was inhibited by PKC inhibitor Ro-31-8220. Finally, we showed that the transfection of a dominant negative form of RhoA inhibited PDBu-induced MARCKS phosphorylation in immunocytochemistries. These findings suggest that some PDBu-induced MARCKS phosphorylation includes the RhoA/ROCK pathway in SH-SY5Y cells.  相似文献   

6.
Protein kinase C (PKC) and the actin cytoskeleton are criticaleffectors of membrane trafficking in mammalian cells. In polarized epithelia, the role of these factors in endocytic events at either theapical or basolateral membrane is poorly defined. In the present study,phorbol 12-myristate 13-acetate (PMA) and other activators of PKCselectively enhanced basolateral but not apical fluid-phase endocytosisin human T84 intestinal epithelia. Stimulation of basolateralendocytosis was blocked by the conventional and novel PKC inhibitorGö-6850, but not the conventional PKC inhibitor Gö-6976,and correlated with translocation of the novel PKC isoform PKC-. PMAtreatment induced remodeling of basolateral F-actin. The actindisassembler cytochalasin D stimulated basolateral endocytosis andenhanced stimulation of endocytosis by PMA, whereas PMA-stimulated endocytosis was blocked by the F-actin stabilizers phalloidin andjasplakinolide. PMA induced membrane-to-cytosol redistribution of theF-actin cross-linking protein myristoylated alanine-rich C kinasesubstrate (MARCKS). Cytochalasin D also induced MARCKS translocationand enhanced PMA-stimulated translocation of MARCKS. A myristoylatedpeptide corresponding to the phosphorylation site domain of MARCKSinhibited both MARCKS translocation and PMA stimulation of endocytosis.MARCKS translocation was inhibited by Gö-6850 but notGö-6976. The results suggest that a novel PKC isoform, likelyPKC-, stimulates basolateral endocytosis in model epithelia by amechanism that involves F-actin and MARCKS.

  相似文献   

7.
We studied the role of protein kinase C (PKC) in the lysosomal processing of endocytosed proteins in isolated rat hepatocytes. We used [14C]sucrose-labeled horseradish peroxidase ([14C]S-HRP) to simultaneously evaluate endocytosis and lysosomal proteolysis. The PKC activator phorbol 12-myristate 13-acetate (PMA) inhibited the lysosomal degradation of [14C]S-HRP (1 microM PMA: 40% inhibition, P<.05), without affecting either the endocytic uptake or the delivery to lysosomes. However, PMA was not able to affect the lysosomal processing of the beta-galactosidase substrate dextran galactosyl umbelliferone. The PKC inhibitors, chelerytrine (Che), staurosporine (St) and G? 6976, prevented PMA inhibitory effect on lysosomal proteolysis. Nevertheless, purified PKC failed to alter proteolysis in [14C]S-HRP-loaded isolated lysosomes, suggesting that intracellular intermediates are required. PMA induced phosphorylation and hepatocyte membrane-to-lysosome redistribution of the myristoylated alanine-rich C kinase substrate (MARCKS) protein, raising the possibility that MARCKS mediates the PKC-induced inhibition of lysosomal proteolysis.  相似文献   

8.
The serotonin transporter (SERT) mediates the re-uptake of released serotonin into presynaptic nerve terminals. Its activity is regulated by different mechanisms including protein kinase C (PKC) triggered internalization. Here, we used yeast 2-hybrid screening and cotransfection into 293 cells to identify a homologue of the myristoylated alanine-rich C kinase substrate (MARCKS), MacMARCKS, as a C-terminally interacting protein of SERT. Upon cotransfection with SERT, MacMARCKS caused a reduction in the maximal rate of [(3)H]serotonin uptake and reduced its down-regulation elicited by activation of PKC. Our data are consistent with MARCKS proteins regulating the plasma membrane dynamics of neurotransmitter transporters.  相似文献   

9.
Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP) have been implicated in membrane-cytoskeletal events underlying cell adhesion, migration, secretion, and phagocytosis. In BV-2 microglial cells, lipopolysaccharide (LPS) elicited a dose-dependent increase in mRNA of both MRP (sixfold) and MARCKS (threefold) with corresponding increases in [3H]myristoylated and immunoreactive protein levels. LPS also produced significant increases in protein kinase C (PKC)-beta twofold and PKC-epsilon (1.5-fold). Pro-inflammatory cytokines produced by activated microglia (IL-1beta, IL-6, TNF-alpha) did not mimic LPS effects on MARCKS or MRP expression when added individually or in combination. LPS and IFN-gamma produced a synergistic induction of iNOS but not MARCKS or MRP. Induction of MARCKS and MRP by LPS was completely blocked by inhibitors of NF-kappaB (PDTC) and protein tyrosine kinases (herbimycin A), partially blocked by the p38 kinase inhibitor SB203580, and unaffected by the MEK inhibitor PD98059. LPS induction of iNOS was considerably more sensitive to all these inhibitors. The Src kinase inhibitor PP2 had no effect, while the closely related inhibitor PP1 actually increased LPS induction of MARCKS and MRP. Our results suggest that MARCKS and MRP may play an important role in LPS-activated microglia, but are not part of the neuroinflammatory response produced by cytokines.  相似文献   

10.
Abstract : In this study we have used the presynaptic-rich rat cerebrocortical synaptosomal preparation to investigate the proteolytic cleavage of the amyloid precursor protein (AβPP) by the α-secretase pathway within the βA4 domain to generate a soluble secreted N-terminal fragment (AβPPs). AβPP was detected in crude cortical synaptosomal membranes, although at a lower density than that observed in whole-tissue homogenates. Protein kinase C (PKC) activation induced a translocation of the conventional PKC isoform β1 and novel PKCε from cytosol to membrane fractions, but there was no alteration in the proportion of AβPP associated with the Tritonsoluble and -insoluble fractions. AβPPs was constitutively secreted from cortical synaptosomes, with this secretion being enhanced significantly by the direct activation of PKC with phorbol ester. The PKC-induced secretion of AβPPs was only partially blocked by the PKC inhibitor GF109203X (2.5 μ M ), whereas the phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein was significantly inhibited by GF109203X. The differential sensitivities of the MARCKS phosphorylation and AβPPs secretion to GF109203X may imply that different PKC isoforms are involved in these two events in the synaptosomal system. These findings strongly suggest that the α-secretase activity leading to the secretion of AβPPs can occur at the level of the presynaptic terminal.  相似文献   

11.
Abstract: The aim of this study was to investigate the mechanism by which short-term pretreatment with the phorbol ester 12- O -tetradecanoylphorbol 13-acetate (TPA; 100 n M ) enhances noradrenaline (NA) release from the human neuroblastoma cell line SH-SY5Y. Subcellular fractionation and immunocytochemical studies demonstrated that an 8-min TPA treatment caused translocation of the α-subtype of protein kinase C (PKC) from the cytosol to the plasma membrane. In contrast, TPA altered the distribution of PKC-ε from cytosolic and membrane-associated to cytoskeleton- and membrane-associated TPA had no effect on the cytosolic location of PKC-ζ. Subcellular fractionation studies also showed that the myristoylated alanine-rich C-kinase substrate (MARCKS), a major neuronal PKC substrate that has been implicated in the mechanism of neurotransmitter release, translocated from membranes to cytosol in response to an 8-min TPA treatment. Under these conditions the level of phosphorylation of MARCKS increased threefold. The ability of TPA to enhance NA release and to cause the translocation and phosphorylation of MARCKS was inhibited by the PKC inhibitor Ro 31-8220 (10 µ M ). Selective down-regulation of PKC subtypes by prolonged exposure to phorbol 12,13-dibutyrate (100 n M ) attenuated the TPA-induced enhancement of NA release and the translocation of MARCKS over an interval similar to that of down-regulation of PKC-α (but not -ε or -ζ). Thus, we have demonstrated a strong correlation between the translocation of MARCKS and the enhancement of NA release from SH-SY5Y cells due to the TPA-induced activation of PKC-α.  相似文献   

12.
13.
14.
A polyclonal antiserum raised against an oligopeptide with an amino acid sequence corresponding to a sequence of the myristoylated alanine-rich C-kinase substrate (MARCKS) from mouse macrophages and rat brain recognizes the 80-kDa C-kinase substrate from Swiss 3T3 fibroblasts. Using this antiserum for quantitative determination of the 80-kDa MARCKS-related protein, we found that the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induces a rapid down-regulation of this protein in the fibroblasts. In accordance with earlier reports, TPA causes phosphorylation of the 80-kDa protein which can be inhibited by staurosporine. Staurosporine also suppresses the TPA-induced down-regulation, possibly indicating that the down-regulation of the MARCKS-related protein is dependent on its phosphorylation by protein kinase C.  相似文献   

15.
16.
Stable overexpression of myristoylated alanine-rich C-kinase substrate (MARCKS) is known to enhance phorbol ester stimulation of phospholipase D (PLD) activity and protein kinase Cα (PKCα) levels in SK–N–MC neuroblastoma cells. In contrast, expression of MARCKS mutants (S152A or S156A) lacking key PKC phosphorylation sites within the central basic effector domain (ED) had no significant effect on PLD activity or PKCα levels relative to vector control cells. Like control cells, those expressing wild type MARCKS were elongated and possessed longitudinally oriented stress fibers, although these cells were more prone to detach from the substratum and undergo cell death upon phorbol ester treatment. However, cells expressing MARCKS ED mutants were irregularly shaped and stress fibers were either shorter or less abundant, and cell adhesion and viability were not affected. These results suggest that intact phosphorylation sites within the MARCKS ED are required for PLD activation and influence both membrane-cytoskeletal organization and cell viability.  相似文献   

17.
Protein kinase C β (PKCβ) participates in antigen-stimulated mast cell degranulation mediated by the high-affinity receptor for immunoglobulin E, FcεRI, but the molecular basis is unclear. We investigated the hypothesis that the polybasic effector domain (ED) of the abundant intracellular substrate for protein kinase C known as myristoylated alanine-rich protein kinase C substrate (MARCKS) sequesters phosphoinositides at the inner leaflet of the plasma membrane until MARCKS dissociates after phosphorylation by activated PKC. Real-time fluorescence imaging confirms synchronization between stimulated oscillations of intracellular Ca(2+) concentrations and oscillatory association of PKCβ-enhanced green fluorescent protein with the plasma membrane. Similarly, MARCKS-ED tagged with monomeric red fluorescent protein undergoes antigen-stimulated oscillatory dissociation and rebinding to the plasma membrane with a time course that is synchronized with reversible plasma membrane association of PKCβ. We find that MARCKS-ED dissociation is prevented by mutation of four serine residues that are potential sites of phosphorylation by PKC. Cells expressing this mutated MARCKS-ED SA4 show delayed onset of antigen-stimulated Ca(2+) mobilization and substantial inhibition of granule exocytosis. Stimulation of degranulation by thapsigargin, which bypasses inositol 1,4,5-trisphosphate production, is also substantially reduced in the presence of MARCKS-ED SA4, but store-operated Ca(2+) entry is not inhibited. These results show the capacity of MARCKS-ED to regulate granule exocytosis in a PKC-dependent manner, consistent with regulated sequestration of phosphoinositides that mediate granule fusion at the plasma membrane.  相似文献   

18.
The large majority of chromaffin vesicles are excluded from the plasma membrane by a cortical F-actin network. Treatment of chromaffin cells with phorbol 12-myristate 13-acetate produces disassembly of cortical F-actin, increasing the number of vesicles at release sites (Vitale, M. L., Seward, E. P., and Trifaró, J. M. (1995) Neuron 14, 353-363). Here, we provide evidence for involvement of myristoylated alanine-rich protein kinase C substrate (MARCKS), a protein kinase C substrate, in chromaffin cell secretion. MARCKS binds and cross-links F-actin, the latter is inhibited by protein kinase C-induced MARCKS phosphorylation. MARCKS was found in chromaffin cells by immunoblotting. MARCKS was also detected by immunoprecipitation. In intact or permeabilized cells MARCKS phosphorylation increased upon stimulation with 10(-7) m phorbol 12-myristate 13-acetate. This was accompanied by cortical F-actin disassembly and potentiation of secretion. MARCKS phosphorylation, cortical F-actin disassembly, and potentiation of Ca(2+)-evoked secretion were inhibited by a peptide (MARCKS phosphorylation site domain sequence (MPSD)) with amino acid sequence corresponding to MARCKS phosphorylation site. MPSD was phosphorylated in the process. A similar peptide (alanine-substituted phosphorylated site domain) with four serine residues of MPSD substituted by alanines was ineffective. These results provide the first evidence for MARCKS involvement in chromaffin cell secretion and suggest that regulation of cortical F-actin cross-linking might be involved in this process.  相似文献   

19.
Abstract: Previous studies in our laboratory have demonstrated that exposure of rats to chronic lithium results in a significant reduction in the hippocampus of levels of the protein kinase C (PKC) phosphoprotein substrate MARCKS (myristoylated alanine-rich C kinase substrate), which persists after withdrawal and is not observed following acute administration. In an immortalized hippocampal cell line (HN33), we have determined that phorbol esters rapidly down-regulate PKC activity and lead to a subsequent PKC-dependent reduction in content of MARCKS protein. We now report that chronic exposure of HN33 cells to LiCl (1–10 m M ) produces a dose- and time-dependent down-regulation of MARCKS protein. The lithium-induced reduction in MARCKS is dependent on the concentration of inositol present in the medium and is reversed and prevented in the presence of elevated inositol concentrations. When HN33 cells were exposed to lithium at clinically relevant concentrations (1 m M ) under limiting inositol conditions, activation of muscarinic receptor-coupled phosphoinositide signaling significantly potentiated the lithium-induced down-regulation of MARCKS protein. It has been suggested that a major action of lithium in the brain is linked to its inositol monophosphatase inhibitory activity in receptor-mediated signaling through the inositol trisphosphate/diacylglycerol pathway, resulting in a relative inositol depletion. Our data provide evidence that this initial action of lithium may translate into a PKC-dependent long-term down-regulation of MARCKS protein expression in the hippocampus.  相似文献   

20.
Abstract: An 80-kDa protein labeled with [3H]myristic acid in C6 glioma and N1E-115 neuroblastoma cells has been identified as the myristoylated alanine-rich C kinase substrate (MARCKS protein) on the basis of its calmodulin-binding, acidic nature, heat stability, and immunochemical properties. When C6 cells preincubated with [3H]myristate were treated with 200 n M 4β-12- O -tetradecanoylphorbol 13-acetate (β-TPA), labeled MARCKS was rapidly increased in the soluble digitonin fraction (maximal, fivefold at 10 min) with a concomitant decrease in the Triton X-100–soluble membrane fraction. However, phosphorylation of this protein was increased in the presence of β-TPA to a similar extent in both fractions (maximal, fourfold at 30 min). In contrast, β-TPA–stimulated phosphorylation of MARCKS in N1E-115 cells was confined to the membrane fraction only and no change in the distribution of the myristoylated protein was noted relative to α-TPA controls. These results indicate that although phosphorylation of MARCKS by protein kinase C occurs in both cell lines, it is not directly associated with translocation from membrane to cytosol, which occurs in C6 cells only. The cell-specific translocation of MARCKS appears to correlate with previously demonstrated differential effects of phorbol esters on stimulation of phosphatidylcholine turnover in these two cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号