首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cerebellar granule cells cultured in the presence of a differentiating factor isolated from rabbit serum exhibit, at variance with those cultured in fetal calf serum, an almost complete resistance to excitatory aminoacid (EAA)-induced citotoxicity. We investigated the behaviour of protein kinase C (PKC), strongly implicated in EAA cytotoxicity, in the two types of culture. Phorbol esters, used to monitor the enzyme, enhanced the depolarization-evoked release ofd-[3H]aspartate, but less effectively in factor-conditioned cells. EAAs increased phorbol esters binding in both cultures, but the effect was briefly lasting in factor-conditioned cells. The different behaviour of PKC is postulated to be causally related to different response to EAA of the cultures.  相似文献   

2.
In primary cultured mouse epidermal cells, phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC), induced changes in the phosphorylation levels of 10 proteins, termed KP-1 to 10, in two-dimensional PAGE. Seven of these proteins were phosphorylated and three were dephosphorylated. Similar changes were induced by other PKC activators, but not by inactive phorbol ester. Among these substrate proteins, phosphorylation of three proteins, i.e. KP-1 (pI 4.7/23,000 Mr), KP-2 (pI 4.7/20,700 Mr) and KP-10 (pI 4.7/25,000 Mr was markedly enhanced by PMA and inhibited by a potent PKC inhibitor staurosporine. In vitro phosphorylation studies and phosphoamino acid analysis, using these proteins as substrate and PKC preparations obtained from epidermal cell lysate, revealed that KP-1 and -2 were directly phosphorylated by Ca2+-, phospholipid-dependent protein kinase (conventional-type PKC; cPKC), but not by Ca2+-independent, phospholipid-dependent protein kinase (novel-type PKC; nPKC). On the other hand, KP-10 was mainly phosphorylated by nPKC in intact epidermal cells. These results indicate that cPKC and nPKC in epidermal cells have different substrate specificity for endogenous proteins and may induce different signal transduction.  相似文献   

3.
In comparison to skin fibroblasts from normal subjects, those from patients with cystic fibrosis (CF): (1) bound [20-3H] phorbol 12,13-dibutyrate (PDBu) with a higher affinity (Kd=25.8 vs 12.8 nM respectively) but expressed a similar number of total phorbol ester binding sites (about 2.5 pmol PDBu bound/mg of protein); (2) exhibited a faster and higher response to 4-phorbol 12-myristate 13-acetate (PMA) for the stimulation of [35S]-labelled glycoconjutate release, but were equally sensitive to the synergistic effect of A23187 on this process; and (3) secreted glycoconjugates with similar [35S]-sulfate and [14C]-leucine to [14C]-glucosamine labelling ratios. Taken together, these results provide further evidence for abnormal protein kinase C (PKC) regulation of macromolecule secretion in CF disease.Abbreviations BSA Bovine serum albumin - DBcAMP Dibutyryl cyclic AMP - DMEM Dulbecco's modified Eagle's medium - DMSO Dimethylsulfoxide - LDH Lactate dehydrogenase - PBS Phosphate-buffered saline - PDBu 4-phorbol 12,13-dibutyrate - 4-PDD 4-phorbol 12,13-didecanoate - PMA 4-phorbol 12-myristate 13-acetate - TCA Trichloroacetic acid  相似文献   

4.
The activation of protein kinase C by daphnane, ingenane and tigliane diterpenoid eaters. In this review, the mechanism of action of phorbol esters and related diterpenes is described. These compounds have been shown to stimulate a Ca2 + and phospholipid dependent protein kinase, termed kinase C. Phorbol esters activate protein kinase C by substituting for the natural effector, the second messenger, diacylglycerol. The various known protein substrates of this enzyme are described. Many of these substrates are involved in regulation of protein synthesis, DNA expression, cell transformation etc. This provides the explanation for the tumour promotion effects of some phorbol esters. Evidence for the biochemical mechanisms of action of phorbol esters that have other biological effects are also described. Recent evidence from our laboratories indicates that phorbol esters with limited biological effects, e.g. inflammatory but not tumour promoting, also act through this protein kinase. These phorbol esters appear to stimulate the phosphorylation of a different range of substrate proteins in vivo.  相似文献   

5.
The protein kinase C-(PKC) activating phorbol esters 12-O-tetradecanoylphorbol-13-acetate (TPA; 100 nmol/l) and phorbol 12, 13-dibutyrate (PDBU; 100 nmol/l) enhanced basal cyclin AMP accumulation in cultured neonatal mouse calvaria. The cyclic AMP response to parathyroid hormone (PTH; 10 nmol/l) and the adenylate cyclase activators forskolin (1–3 mol/l) and choleratoxin (0.1 mg/ml) was potentiated in a more than additive manner by TPA and PDBU. In contrast, phorbol 13-monoacetate (phorb-13; 100 nmol/l), a related compound but inactive on PKC, had no effect on basal or stimulated cyclic AMP accumulation. In the presence of indomethacin (1mol/l), TPA and PDBU had no effect on cyclic AMP accumulation in calvarial bones per se, but were still able to cause a significant enhancement of the response to PTH, forskolin and choleratoxin. PTH-, forskolin- and choleratoxin-stimulated cyclic AMP accumulation in rat osteosarcoma cells UMR 106-01 was synergistically potentiated by TPA and PDBU, but not by phorb.-13. These data indicate that PKC enhances cyclic AMP formation and that the level of interaction may be at, or distal to, adenylate cyclase.  相似文献   

6.
Several possible mechanisms for cysteine toxicity on rat cerebellar granule cells were studied and compared with the excitotoxic effect of glutamate. It was shown that the excitotoxic potency of both cysteine and glutamate increased in the presence of elevated concentrations, of bicarbonate or increased pH. Pharmacological studies showed that the cysteine toxicity was specifically coupled to the NMDA receptor, whereas the glutamate toxicity was mediated to a smaller extent also by non-NMDA receptors. Treatment of cerebellar granule cells with cysteine led to an increased extracellular level of glutamate. In addition, cysteine sensitized NMDA receptors by reducing disulfide bonds in the receptor to sulfhydryl groups. A mechanism for cysteine excitotoxicity may therefore be formation of cysteine-sensitized NMDA receptors that are stimulated either by cysteine and/or by endogenous glutamate. This mechanism may also be important for the effects observed during regulated physiological release of cysteine.  相似文献   

7.
Protein kinase C has recently attracted considerable attention because of its importance in the control of cell division, cell differentiation, and signal transduction across the cell membrane. The activity of this enzyme is altered by several lipids such as diacylglycerol, free fatty acids, lipoxins, gangliosides, and sulfatides. These lipids may interact with protein kinase C either directly or through calcium ions and produce their regulatory effect (activation or inhibition) on the activities of the enzymes phosphorylated by this kinase. These processes widen our perspective of the regulation of intercellular and intracelluular communication.Abbreviations used (PK-C) Protein kinase C - (cAMP-PK) cAMP dependent protein kinase - (DAG) diacylglycerol - (PtdSer) phosphatidylserine - (InsP 3) inositol 1,4,5-trisphosphate - (PtdIns 4,5-P2) inositol 4,5 bisphosphate - (FFA) free fatty acid - (MBP) myelin basic protein - (ATP) adenosine triphosphate - (GTP) guanine triphosphate - (TPA) 12-tetradecanoylphorbol-13-acetate - (EGF) epidermal growth factor - (PDGF) platelet derived growth factor - (NeuNAc) and N-acetylneuraminic acid  相似文献   

8.
Durgan J  Michael N  Totty N  Parker PJ 《FEBS letters》2007,581(18):3377-3381
Protein kinase C delta (PKCdelta) is a Ser/Thr kinase which regulates numerous cellular processes, including proliferation, differentiation, migration and apoptosis. Here, we demonstrate that PKCdelta undergoes in vitro autophosphorylation at three sites within its V3 region (S299, S302, S304), each of which is unique to this PKC isoform and evolutionarily conserved. We demonstrate that S299 and S304 can be phosphorylated in mammalian cells following phorbol ester stimulation and that S299-phosphorylated PKCdelta is localised to both the plasma and nuclear membranes. These data indicate that PKCdelta is phosphorylated upon activation and that phospho-S299 represents a useful marker of the activated enzyme.  相似文献   

9.
Activation of protein kinase C (PKC) bu phorbol esters (TPA) results in a modification of the cyclic AMP system leading to either attenuation or amplification of the cyclic AMP signal. In the non-neoplastic T51B rat live cell line, TPA, when added to intact cells, had no effect on the basal level of cyclic AMP synthesis but caused a 1.5 fold amplification of the stimulation induced by β-adrenergic agents, cholera toxin and forskolin. The effect appeared to be mediated by PKC since diacylglycerols caused the same amplification as did TPA while inactive phorbol esters were without effect. Phosphorylation of Gs or the catalytic subunit of adenylate cyclase by PKC is likely to be responsible for the enhancement of cyclic AMP synthesis. TPA also caused translocation of PKC; however, the time course of the translocation was loner than the time course of the enhancement of adenylate cyclase activity. Thus, the ability of TPA to amplify cyclic AMP synthesis is probably mediated by activation of PKC that is already present in the membrane.  相似文献   

10.
Many neurotransmitter transporters, including the GLT-1 and EAAC1 subtypes of the glutamate transporter, are regulated by protein kinase C (PKC) and these effects are associated with changes in cell surface expression. In the present study, the effects of PKC activation on the glutamate aspartate transporter (GLAST) subtype of glutamate transporter were examined in primary astrocyte cultures. Acute (30 min) exposure to the phorbol 12-myristate 13-acetate (PMA) increased (approximately 20%) transport activity but had the opposite effect on both total and cell surface immunoreactivity. Chronic treatment (6 or 24 h) with PMA had no effect on transport activity but caused an even larger decrease in total and cell surface immunoreactivity. This loss of immunoreactivity was observed using antibodies directed against three different cytoplasmic epitopes, and was blocked by the PKC antagonist, bisindolylmaleimide II. We provide biochemical and pharmacological evidence that the activity observed after treatment with PMA is mediated by GLAST. Two different flag-tagged variants of the human homolog of GLAST were introduced into astrocytes using lentiviral vectors. Although treatment with PMA caused a loss of transporter immunoreactivity, flag immunoreactivity did not change in amount or size. Together, these studies suggest that activation of PKC acutely up-regulates GLAST activity, but also results in modification of several different intracellular epitopes so that they are no longer recognized by anti-GLAST antibodies. We found that exposure of primary cultures of neurons/astrocytes to transient hypoxia/glucose deprivation also caused a loss of GLAST immunoreactivity that was attenuated by the PKC antagonist, bisindolylmaleimide II, suggesting that some acute insults previously thought to cause a loss of GLAST protein may mimic the phenomenon observed in the present study.  相似文献   

11.
Estrogen activates protein kinase C in neurons: role in neuroprotection   总被引:10,自引:0,他引:10  
It has been previously demonstrated that estrogen can protect neurons from a variety of insults, including beta-amyloid (Abeta). Recent studies have shown that estrogen can rapidly modulate intracellular signaling pathways involved in cell survival. In particular, estrogen activates protein kinase C (PKC) in a variety of cell types. This enzyme plays a key role in many cellular events, including regulation of apoptosis. In this study, we show that 17beta-estradiol (E2) rapidly increases PKC activity in primary cultures of rat cerebrocortical neurons. A 1 h pre-treatment with E2 or phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, protects neurons against Abeta toxicity. Protection afforded by both PMA and E2 is blocked by pharmacological inhibitors of PKC. Further, depletion of PKC levels resulting from prolonged PMA exposure prevents subsequent E2 or PMA protection. Our results indicate that E2 activates PKC in neurons, and that PKC activation is an important step in estrogen protection against Abeta. These data provide new understanding into the mechanism(s) underlying estrogen neuroprotection, an action with therapeutic relevance to Alzheimer's disease and other age-related neurodegenerative disorders.  相似文献   

12.
The properties of protein kinase C (PKC) activity have been studied in cytosolic and membrane fractions from rat and human prostate. Ion exchange chromatography indicated the existence of different PKC isoforms, PKC from rat ventral prostate behaved as a classical Ca2+- and phospholipid-dependent enzyme and was activated by 1,2-diacylglycerol as well as by high concentrations of arachidonic acid. PKC activity in the cytosolic fraction was higher and presented different cofactor requirements than that in the membrane fraction. PKC from human benign hyperplastic prostate was also phospholipid dependent, activated by tumor-promotong phorbol esters, and appeared to belong to the group of PKC isozymes which lack Ca2+ sensitivity. Human prostatic PKC activity appeared to be of similar nature in both membrane and cytosolic fractions but the specific activity was higher in the particulate preparation which could be related to the stage of endogenous activation of the enzyme. These results extend previous observations in rat ventral prostate and present evidences on the human counterpart. Forthcoming experiments are needed to establish the exact nature of PKC isozymes and their physiological and pathophysiological role in this gland.  相似文献   

13.
The effects of phorbol ester and forskolin on the net phosphorylation and turnover of P0 phosphate groups was studied in normal and exprimentally diabetic rats. In sciatic nerve segments isolated from normal rats and incubated with [32P]-inorganic phosphate, phosphorylation of the major peripheral myelin protein, P0, was increased 2–5 fold in a time and dose-dependent manner by phorbol 12,13 dibutyrate (PDB). This increase was blocked by the protein kinase inhibitors, H-7 and staurosporine. Both the basal and PDB-stimulated phosphorylation of P0 were significantly greater in segments of sciatic nerve from streptozotocin-induced diabetic rats. Prolonged exposure of nerve segments to PDB abolished the stimulated phosphorylation of P0 and immunoblots of nerve proteins revealed a decrease in the content of the protein kinase C -isoform. The adenylate cyclase activator, forskolin, had no affect on the PDB-stimulated phosphorylation of P0 in normal nerve but decreased phosphorylation in diabetic nerve. To measure turnover of P0 phosphate groups, nerves were incubated with32P and incorporated label was then chased in radioactivity-free medium for up to 4 hours. P0 from normal nerve prelabeled under basal conditions lost 25% of its radioactivity during this time. In contrast, nearly all of the additional phosphate groups prelabeled in the presence of PDB disappeared after 2 hours of chase. P0 phosphate groups from diabetic nerve displayed similar turnover kinetics. When forskolin was added to the chase medium, the turnover of P0 phosphate moieties was accelerated in normal, but not in diabetic nerve. These findings clearly establish a prominent role for protein kinase C in P0 phosphorylation, provide evidence for heterogeneous turnover of P0 phosphate groups and suggest that cyclic AMP-mediated processes may modulate P0 phosphorylation. Further, these results indicate that the metabolism of P0 phosphate moieties is perturbed in nerve from diabetic animals.Special issue dedicated to Dr. Marjoris B. Lees.  相似文献   

14.
15.
Investigations with protein kinase C (PKC) isoform-specific antisera, revealed distinct profiles of PKC isoform content amongst pituitary tissues. Western analysis revealed the and isoforms of PKC are present in rat anterior and posterior pituitary tissue as well as in the GH3 somatomammotrophic cell line. AtT-20/D16-V corticotrophic and T3-1 gonadotrophic murine cell lines contained no PKC-. The or isoforms were undetected in any pituitary tissue. PKC activity measurements revealed Ca2+-independent PKCs in T3-1 and GH3 cells which were more sensitive to activation by phorbol-dibutyrate (PDBu) than the corresponding PKC activity found in COS cells. However, Ca2+-dependent PKC activities were of similar sensitivity to PDBu in GH3, T3-1 and COS cells, indicating that functional differences observed in PDBu-sensitivity in these cells may be due to differential activation of Ca2+-independent PKC isoforms. Moreover, substrate-specificity of these PKCs were also compared indicating that the amount of Ca2+-dependency of the observed PKC activity from the same pituitary tissue is dependent upon the substrate utilized by the PKC isotypes present. These findings explain differential sensitivities of PKC-mediated actions that have previously been observed in a range of pituitary cells. (Mol Cell Biochem 000-000, 1999)  相似文献   

16.
The expression of GABAA receptors in rat cerebellar granules in culture has been studied by β2/3 subunit immunocytochemistry and fluorescence confocal microscopy. These cells show labeling all over the cell bodies' plasma membrane and dendrites. Treatment with the protein tyrosine kinase (PTK) inhibitor genistein results in a decrease of the labeling associated with the β2/3 subunit in both cell bodies and dendrites. No effect was found with an inactive genistein analogue, daidzein. A similar effect was found with a protein kinase C (PKC) activator, phorbol myristate acetate (PMA). The effects of genistein and PMA are additive.The interpretation of the results is that PTK inhibition blocks exocytotic deposit of newly synthesized GABAA receptors onto the neuronal plasma membrane. On the other hand, PKC activation speeds up endocytotic removal of GABAA receptors.  相似文献   

17.
Previously, we reported that apoptosis of cerebellar granular neurons induced by low‐K+ and serum‐free (LK‐S) was associated with an increase in the A‐type K+ channel current (IA), and an elevated expression of main α‐subunit of the IA channel, which is known as Kv4.2 and Kv4.3. Here, we show, as assessed by quantitative RT‐PCR and whole‐cell recording, that besides Kv4.2 and Kv4.3, Kv1.1 is very important for IA channel. The expression of Kv1.1 was elevated in the apoptotic neurons, while silencing Kv1.1 expression by siRNA reduced the IA amplitude of the apoptotic neuron, and increased neuron viability. Inhibiting Kv1.1 current by dendrotoxin‐K evoked a similar effect of reduction of IA amplitude and protection of neurons. Applying a protein kinase C (PKC) activator, phorbol ester acetate A (PMA) mimicked the LK‐S‐induced neuronal apoptotic effect, enhanced the IA amplitude and reduced the granule cell viability. The PKC inhibitor, bisindolylmaleimide I and Gö6976 protected the cell against apoptosis induced by LK‐S. After silencing the Kv1.1 gene, the effect of PMA on the residual K+ current was reduced significantly. Quantitative RT‐PCR and Western immunoblot techniques revealed that LK‐S treatment and PMA increased the level of the expression of Kv1.1, in contrast, bisindolylmaleimide I inhibited Kv1.1 expression. In addition, the activation of the PKC isoform was identified in apoptotic neurons. We thus conclude that in the rat cerebellar granule cell, the IA channel associated with apoptotic neurons is encoded mainly by the Kv1.1 gene, and that the PKC pathway promotes neuronal apoptosis by a brief modulation of the IA amplitude and a permanent increase in the levels of expression of the Kv1.1 α‐subunit.  相似文献   

18.
Bistratene A, a polyether toxin isolated from the colonial ascidian Lissoclinum bistratum, causes incomplete differentiation of human leukemia (HL-60) cells apparently through a mechanism not involving protein kinase C. In view of the importance of phosphorylation/dephosphorylation in cellular growth and differentiation we have investigated protein phosphorylation in these cells following exposure to bistratene A, using two-dimensional polyacrylamide gel electrophoresis. Marked increases in the phosphorylation of a protein of 20 kDa, pl 6.7, and a basic protein of 25 kDa were observed after incubation with bistratene A. A comparison was made with cells treated with 12-O-tetradecanoylphorbol 13-acetate and bryostatin 5. While changes in phosphorylation patterns were observed with these two compounds, the 20 kDa and 25 kDa proteins did not undergo phosphorylation changes. The 20 kDa protein was induced rapidly by very low concentrations of bistratene A reaching near maximal levels with 10 nM at 15 min exposure. This protein was found to be localised to the cytoplasm. Phosphoaminoacid analysis demonstrated that the majority of 32P was present in serine and tyrosine residues. The increased phosphorylation of the 20 kDa protein appeared to be due to hyperphosphorylation of existing protein although there was some increase in the amount of the protein. These results suggest that bistratene A will be a useful tool with which to investigate cellular differentiation mechanisms.  相似文献   

19.
20.
The viral src protein kinase, pp60v-src, is a powerful intracellular mitogen which can initiate and maintain the proliferation of quiescent cells in the absence of any exogenous growth factors. In an attempt to understand how pp60v-src induces proliferation, we examined the early events in the G0 to G1 transition caused by the activation of a thermolabile v-src protein in quiescent, serum-starved tsRSV-transformed NRK cells. The reactivation of pp60v-src, in the presence of exogenous growth factors, triggered a rapid biphasic surge of membrane-associated protein kinase C (PKC) activity. Unlike TPA-stimulated PKC activity, the pp60v-src-induced increase in PKC was readily extracted from membranes by EGTA. The down-regulation of PKC activity in these quiescent cells by prolonged exposure to TPA strongly inhibited the ability of the reactivated v-src protein to stimulate DNA replication in serum-deficient medium, suggesting that PKC plays a role in the initial signal by which the viral enzyme induces the G0 to G1 transition in NRK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号