首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Trypanosoma cruzi is the causative agent of the life-threatening Chagas disease, in which increased platelet aggregation related to myocarditis is observed. Platelet-activating factor (PAF) is a potent intercellular lipid mediator and second messenger that exerts its activity through a PAF-specific receptor (PAFR). Previous data from our group suggested that T. cruzi synthesizes a phospholipid with PAF-like activity. The structure of T. cruzi PAF-like molecule, however, remains elusive.

Methodology/Principal findings

Here, we have purified and structurally characterized the putative T. cruzi PAF-like molecule by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Our ESI-MS/MS data demonstrated that the T. cruzi PAF-like molecule is actually a lysophosphatidylcholine (LPC), namely sn-1 C18:1(delta 9)-LPC. Similar to PAF, the platelet-aggregating activity of C18:1-LPC was abrogated by the PAFR antagonist, WEB 2086. Other major LPC species, i.e., C16:0-, C18:0-, and C18:2-LPC, were also characterized in all T. cruzi stages. These LPC species, however, failed to induce platelet aggregation. Quantification of T. cruzi LPC species by ESI-MS revealed that intracellular amastigote and trypomastigote forms have much higher levels of C18:1-LPC than epimastigote and metacyclic trypomastigote forms. C18:1-LPC was also found to be secreted by the parasite in extracellular vesicles (EV) and an EV-free fraction. A three-dimensional model of PAFR was constructed and a molecular docking study was performed to predict the interactions between the PAFR model and PAF, and each LPC species. Molecular docking data suggested that, contrary to other LPC species analyzed, C18:1-LPC is predicted to interact with the PAFR model in a fashion similar to PAF.

Conclusions/Significance

Taken together, our data indicate that T. cruzi synthesizes a bioactive C18:1-LPC, which aggregates platelets via PAFR. We propose that C18:1-LPC might be an important lipid mediator in the progression of Chagas disease and its biosynthesis could eventually be exploited as a potential target for new therapeutic interventions.  相似文献   

2.
Using mass spectrometry (MS), we examined the impact of endothelial lipase (EL) overexpression on the cellular phospholipid (PL) and triglyceride (TG) content of human aortic endothelial cells (HAEC) and of mouse plasma and liver tissue. In HAEC incubated with the major EL substrate, HDL, adenovirus (Ad)-mediated EL overexpression resulted in the generation of various lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) species in cell culture supernatants. While the cellular phosphatidylethanolamine (PE) content remained unaltered, cellular phosphatidylcholine (PC)-, LPC- and TG-contents were significantly increased upon EL overexpression. Importantly, cellular lipid composition was not altered when EL was overexpressed in the absence of HDL. [14C]-LPC accumulated in EL overexpressing, but not LacZ-control cells, incubated with [14C]-PC labeled HDL, indicating EL-mediated LPC supply. Exogenously added [14C]-LPC accumulated in HAEC as well. Its conversion to [14C]-PC was sensitive to a lysophospholipid acyltransferase (LPLAT) inhibitor, thimerosal. Incorporation of [3H]-Choline into cellular PC was 56% lower in EL compared with LacZ cells, indicating decreased endogenous PC synthesis. In mice, adenovirus mediated EL overexpression decreased plasma PC, PE and LPC and increased liver LPC, LPE and TG content. Based on our results, we conclude that EL not only supplies cells with FFA as found previously, but also with HDL-derived LPC and LPE species resulting in increased cellular TG and PC content as well as decreased endogenous PC synthesis.  相似文献   

3.
We have previously demonstrated that lysophosphatidic acid (LPA) production in the spinal cord following partial sciatic nerve injury (SCNI) and its signaling initiate neuropathic pain. In order to examine whether LPA production depends on the intense nociceptive signal, we have attempted to see suppression by pre-emptive treatment with centrally administered morphine, which mainly inhibits nociceptive signal at the level of spinal cord. In the present study, we developed a quantitative mass spectrometry assay to simultaneously analyze several species of lysophosphatidyl choline (LPC). The levels of 16:0-, 18:0- and 18:1-LPC in the spinal cord and dorsal root were maximally increased at 75 min after SCNI and then declined, as LPC is converted to LPA by autotaxin (ATX). In atx(+/-)-mice, on the other hand, these levels were similar to wild-type mice at 75 min, but maximal at 120 min, suggesting that this difference is partly due to the low conversion of LPC to LPA in atx(+/-)-mice. When morphine was centrally administered before SCNI, the injury-induced increase of LPC was completely abolished. These results suggest that LPC (or LPA) is produced by injury-induced nociceptive signal, which is effectively and pre-emptively suppressed by central morphine, possibly through known descending anti-nociceptive pathways.  相似文献   

4.
Lipid composition affects membrane function, cell proliferation and cell death and is changed in cancer tissues. Hepatocellular carcinoma (HCC) is an aggressive cancer and this study aimed at a comprehensive characterization of hepatic and serum lipids in human HCC. Cholesteryl ester were higher in tumorous tissues (TT) compared to adjacent non-tumorous tissues (NT). Free cholesterol exerting cytotoxic effects was not changed. Phosphatidylethanolamine, -serine (PS) and -inositol but not phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) were reduced in HCC tissues. Saturated species mostly increased and polyunsaturated species were diminished in all of these phospholipids. Ceramide (Cer) was markedly reduced in HCC tissues and higher levels of sphingomyelin suggest impaired sphingomyelinase activity as one of the underlying mechanisms. Importantly, ceramide in NT increased in HCC stage T3. Ceramide released from hepatocytes attracts immune cells and a positive association of the macrophage specific receptor CD163 with NT ceramide was identified. HCC associated lipid changes did not differ in patients suffering from type 2 diabetes. Protein levels of p53 were induced in TT and negatively correlated with Cer d18:1/16:0 and PS 36:1. Of the lipid species changed in HCC tissues only TT Cer d18:1/16:0, Cer d18:1/24:1, PC 38:6 and LPC 22:6 correlated with the respective serum levels. Our study demonstrates a considerably altered hepatic lipidome in HCC tissues. Ceramide was markedly reduced in HCC tissues, and therefore, raising ceramide levels specifically in the tumor represents a reasonable therapeutic approach for the treatment of this malignancy.  相似文献   

5.
The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models.  相似文献   

6.
In order to study the role of very low density lipoproteins (VLDL) and low density lipoproteins (LDL) in determining the molecular species composition of phosphatidylcholine (PC) and the specificity of lecithin:cholesterol acyltransferase (LCAT) in human plasma, we studied the PC species composition in plasma from abetalipoproteinemic (ABL) and control subjects before and after incubation at 37 degrees C. The ABL plasma contained significantly higher percentages of sn-2-18:1 species (16:0-18:1, 18:0-18:1, and 18:1-18:1) and lower percentages of sn-2-18:2 species (16:0-18:2, 18:0-18:2, and 18:1-18:2) as well as sn-2-20:4 species (16:0-20:4, 18:0-20:4, and 18:1-20:4). Similar abnormalities were found in the PC of ABL erythrocytes, while the PE of the erythrocytes was less affected. The relative contribution of various PC species towards LCAT reaction in ABL plasma was significantly different from that found in normal plasma. Thus, while 16:0-18:2 and 16:0-18:1 contributed, respectively, 43.8% and 15.9% of the total acyl groups used for cholesterol esterification in normal plasma, they contributed, respectively, 21.5% and 37.9% in ABL plasma. The relative contribution of 16:0-20:4 was also significantly lower in ABL plasma (4.7% vs. 9.0% in normal), while that of 16:0-16:0 was higher (6.4% vs. 0.5%). However, the selectivity factors of various species (percent contribution/percent concentration) were not significantly different between ABL and normal plasma, indicating that the substrate specificity of LCAT is not altered in the absence of VLDL and LDL. Incubation of ABL plasma in the presence of normal VLDL or LDL resulted in normalization of its molecular species composition and in the stimulation of its LCAT activity. Addition of LDL, but not VLDL, also resulted in the activation of lysolecithin acyltransferase (LAT) activity. The incorporation of [1-14C]palmitoyl lysoPC into various PC species in the presence of LDL was similar to that observed in normal plasma, with the 16:0-16:0 species having the highest specific activity. These results indicate that the absence of apoB-containing lipoproteins significantly affects the molecular species composition of plasma PC as well as its metabolism by LCAT and LAT reactions.  相似文献   

7.
The molecular species of 1,2-diacyl-sn-glycerol (DAG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol 4,5-bisphosphate (PIP2) from brains of adult rats (weighing 150 g) were determined. The DAG, isolated from brain lipid extracts by TLC, was benzoylated, and the molecular species of the purified benzoylated derivatives were separated from each other by reverse-phase HPLC. The total amount and the concentration of each species were quantified by using 1,2-distearoyl-sn-glycerol (18:0-18:0) as an internal standard. About 30 different molecular species containing different fatty acids at the sn-1 and sn-2 positions of DAG were identified in rat brains (1 min postmortem), and the predominant ones were 18:0-20:4 (35%), 16:0-18:1 (15%), 16:0-16:0 (9%), and 16:0-20:4 (8%). The molecular species of PC, PE, PS, and PI were determined by hydrolyzing the lipids with phospholipase C to DAG, which was then benzoylated and subjected to reverse-phase HPLC. PIP and PIP2 were first dephosphorylated to PI with alkaline phosphatase before hydrolysis by phospholipase C. The molecular species composition of phosphoinositides showed predominantly the 18:0-20:4 species (50% in PI and approximately 65% in PIP and PIP2). PS contained mainly the 18:0-22:6 (42%) and 18:0-18:1 (24%) species. PE was mainly composed of the 18:0-20:4 (22%), 18:0-22:6 (18%), 16:0-18:1 (15%), and 18:0-18:1 (15%) species. In PC the main molecular species were 16:0-18:1 (36%), 16:0-16:0 (19%), and 18:0-18:1 (14%). Studies on postmortem brains (30 s to 30 min) showed a rapid increase in the total amount (from 40-50 nmol/g in 0 min to 210-290 nmol/g in 30 min) and in all the molecular species of DAG. Comparatively larger increases (seven- to 10-fold) were found for the 18:0-20:4 and 16:0-20:4 species. Comparison of DAG species with the molecular species of different glycerolipids indicated that the rapid postmortem increase in content of DAG was mainly due to the breakdown of phosphoinositides. However, a slow but continuous breakdown of PC to DAG was also observed.  相似文献   

8.
Adaptive changes in membrane physical properties in response to changing environmental temperature (e.g., inereased fluidity at low growth temperatures) are well known in poikilotherms; however, the timecourse of this response has received little attention. In this study the plasma membrane lipids of hepatocytes prepared from 20°C-acclimated trout were analyzed for phospholipid class and molecular species composition and metabolism after the cells were exposed to 5°C for 6 hours. Proportions of phosphatidylethanolamine and phosphatidylcholine were not altered by in vitro incubation at either 5 or 20°C. Molecular species analysis revealed that proportions of 18:1/20:5-phosphatidylcholine were significantly lower in plasma membranes of 5°C incubated cells, while decreases in 16:0/20:4-phosphatidylcholine, an unidentified phosphatidylcholine species, and 16:0/16:0-phosphatidylethanolamine as well as increases in 16:0/16:1-phosphatidylethanolamine as well as increases in 16:0/16:1-phosphatidylcholine bordered on significance. Exogenous radiolabeled molecular species of phosphatidylcholine (16:0/16:0-phosphatidylcholine and 16:0/18:1-phosphatidylcholine) were converted into other species at both temperatures, and the formation of some was influenced by incubation temperature. For example, cells exposed to 5°C convert significantly more 16:0/16:0-phosphatidylcholine into 16:0/20:4-phosphatidylcholine and 18:0/16:1-phosphatidylcholine and less into 18:1/18:1-phosphatidylcholine and 16:0/22:6-phosphatidylcholine than cells incubated at 20°C. In addition, cells at 5°C metabolized 16:0/18:1-phosphatidylcholine to a lesser extent than those at 20°C. The profile of conversion products indicates that deacylation/reacylation, elongation and desaturation reactions all participate in this early membrane restructuring. It is concluded that the plasma membrane of trout hepatocytes is a highly dynamic structure characterized by continuous lipid restructuring/turnover which can be rapidly altered upon acute cold exposure to adjust membrane phospholipid molecular species composition to the prevailing thermal environment.Abbreviations BHT butylated hydroxytoluene - BSA bovine serum albumin - HEPES N-(2-hydroxyethyl)piperazine-N-(2-ethanesnlphonic acid) - HELC high-performance liquid chromatography - HVA homeoviscous adaptation - MS molecular species - MS-222 2-aminobenzoic acid ethyl ester (methanesulphonate salt) - RRT relative reteption time - PC phosphatidylcholine - PE phosphatidylethanolamine - TLC thin-layer chromatography - TRIS tris(hydroxymethyl)aminoethane - T a ambient temperature  相似文献   

9.
Summary Molecular species profiles were determined for both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of mitochondrial and microsomal membrane fractions from liver tissue of thermally-acclimated rainbow trout,Salmo gairdneri. The predominant molecular species of PC were 16:0/22:6, 16:0/18:1, 16:0/20:3 and 16:0/22:5, whereas predominant molecular species of PE were 18:1/20:4, 14:0/16:0, 18:0/22:6 and 18:1/22:6. PE possessed short chain saturates (primarily 14:0/16:0) and monoenes (primarily 14:0/16:1) not present in PC and larger proportions of polyunsaturated (18:0/22:6, 18:0/22:5 and 18:1/22:6. and diunsaturated molecular species than PC. Differences between membrane fractions were most evident in warm (20°C)-acclimated trout. Mitochondria contained higher proportions of long-chain, polyunsaturated molecular species of PE, but less of the corresponding species of PC than other membrane fractions. Rankings based on unsaturation index were accordingly: mitochondria heavy microsomes>light microsomes for PE, but heavy microsomes>light microsomes>-mitochondria for PC. Mitochondria were notable for high proportions of diunsaturated molecular species of both phosphatides. Growth at cold temperatures (5°C) was generally associated with a replacement of shorter chain mono- and dienoic molecular species (16:0/18:1, 16:1/18:1, 14:0/16:2 and 18:1/18:1 in the case of PC and 14:0/16:1, 14:0/16:2 and 16:1/18:1 for PE), and occasionally saturates, with long-chain, polyunsaturated molecular species (for PC, C36–38: 16:0/22:6, 16:1/22:6, 16:0/20:3 and 16:0/20:5; for PE, C38–40: 18:1/20:4, 16:1/22:6, 18:0/20:5, 18:2/20:4, 18:0/22:5 and 18:0/22:6). However, compositions of mitochondrial PE and PC from heavy microsomes were not significantly influenced by acclimation temperature. The role of phospholipase A2, in addition to other metabolic processes, in mediating these changes is discussed.Abbreviations ACL average chain length - UI unsaturation index  相似文献   

10.
The specificity of human plasma lecithin-cholesterol acyltransferase for molecular species of phosphatidylcholine (PC) was studied by determining the molecular species composition of whole plasma before and after incubation at 37 degrees C. Since the disappearance of PC under the conditions employed is entirely due to the activity of lecithin-cholesterol acyltransferase, its specificity can be determined from the decrease in the concentration of each species after the reaction. The selectivity factor for each species was calculated by dividing its observed contribution by its concentration at zero time. The major species contributing to cholesterol esterification in whole plasma were 16:0-18:2 (46%), 18:0-18:2 (16%), 16:0-18:1 (15%), 16:0-20:4 (10%), 18:0-20:4 (5%) and 18:1-18:2 (5%). The specificity, as determined from the selectivity factors for whole plasma, was in the order: 16:0-18:2 greater than 18:1-18:2 greater than 16:0-18:1 greater than 18:0-18:2 greater than 16:0-22:6 greater than 18:0-20:4 greater than 16:0-20:4. The high-density lipoproteins (HDL) contained a significantly higher percentage of 16:0-20:4 and 18:0-20:4 and a lower percentage of 16:0-18:1 and 18:0-18:1 compared to the very-low and low-density lipoproteins. These differences disappeared after incubation of the plasma for 24 h. Using selectivity factors for HDL PCs only, the specificity of the enzyme was found to be in the order: 16:0-18:2 greater than 18:1-18:2 greater than 18:1-18:1 greater than 16:0-22:6 greater than 18:0-18:2 greater than 16:0-18:1 greater than 16:0-20:4. These results indicate that in native plasma, lecithin-cholesterol acyltransferase prefers 16:0 greater than 18:1 greater than 18:0 at the 1-position and 18:2 greater than 18:1 greater than 22:6 greater than 20:4 at the 2-position of PC.  相似文献   

11.
Cystic fibrosis (CF) is associated with abnormal lipid metabolism. We have recently shown variations in plasma levels of several phosphatidylcholine (PC) and lysophopshatidylcholine (LPC) species related to disease severity in CF patients. Here our goal was to search for blood plasma lipid signatures characteristic of CF patients bearing the same mutation (F508del) and different phenotypes, and to study their correlation with forced expiratory volume in 1 s (FEV1) and Pseudomonas aeruginosa chronic infection, evaluated at the time of testing (t = 0) and three years later (t = 3). Samples from 44 F508del homozygotes were subjected to a lipidomic approach based on LC-ESI-MS. Twelve free fatty acids were positively correlated with FEV1 at t = 0 (n = 29). Four of them (C20:3n-9, C20:5n-3, C22:5n-3, and C22:6n-3) were also positively correlated with FEV1 three years later, along with PC(32:2) and PC(36:4) (n = 31). Oleoylethanolamide (OEA) was negatively correlated with FEV1 progression (n = 17). Chronically infected patients at t = 0 showed lower PC(32:2), PC(38:5), and C18:3n-3 and higher cholesterol, cholesterol esters, and triacylglycerols (TAG). Chronically infected patients at t = 3 showed significantly lower levels of LPC(18:0). These results suggest a potential prognostic value for some lipid signatures in, to our knowledge, the first longitudinal study aimed at identifying lipid biomarkers for CF.  相似文献   

12.
We studied the molecular species composition of plasma phosphatidylcholine (PC) in three patients with familial deficiency of lecithin-cholesterol acyltransferase in order to determine whether certain species are increased in the absence of this enzyme activity. Compared to normal plasma, the deficient plasma contained significantly higher percentages of 16:0-18:2 and 18:0-18:2 species and lower percentages of 16:0-20:4 and 18:0-20:4 species. The bulk of the total plasma PC as well as the abnormal composition of molecular species were found in the very-low-density and low-density lipoprotein (VLDL + LDL) fractions. When the deficient plasma was incubated with partially purified enzyme from normal human plasma, there was a significant reduction in the amounts of most major species, mainly in the VLDL + LDL fraction. When the selectivity factors were calculated by dividing the percentage contribution of each species for cholesterol esterification by its percentage concentration, the highest selectivity factors were found for 16:0-18:2, 18:1-18:1 and 18:1-18:2. The order of selectivity of the enzyme for various species was very similar to that obtained earlier using normal HDL as substrate. These results show that lecithin-cholesterol acyltransferase has significant effects on the molecular species composition of plasma PC and the deficiency of the enzyme results in accumulation of certain PC species normally used by the enzyme, as well as in abnormal distribution of these species among the lipoproteins.  相似文献   

13.
Studies involving pharmacologic inhibition or transient reduction of Group VIA phospholipase A2 (iPLA2beta) expression have suggested that it is a housekeeping enzyme that regulates cell 2-lysophosphatidylcholine (LPC) levels, rates of arachidonate incorporation into phospholipids, and degradation of excess phosphatidylcholine (PC). In insulin-secreting islet beta-cells and some other cells, in contrast, iPLA2beta signaling functions have been proposed. Using retroviral vectors, we prepared clonal INS-1 beta-cell lines in which iPLA2beta expression is stably suppressed by small interfering RNA. Two such iPLA2beta knockdown (iPLA2beta-KD) cell lines express less than 20% of the iPLA2beta of control INS-1 cell lines. The iPLA2beta-KD INS-1 cells exhibit impaired insulin secretory responses and reduced proliferation rates. Electrospray ionization mass spectrometric analyses of PC and LPC species that accumulate in INS-1 cells cultured with arachidonic acid suggest that 18:0/20:4-glycerophosphocholine (GPC) synthesis involves sn-2 remodeling to yield 16:0/20:4-GPC and then sn-1 remodeling via a 1-lyso/20:4-GPC intermediate. Electrospray ionization mass spectrometric analyses also indicate that the PC and LPC content and composition of iPLA2beta-KD and control INS-1 cells are nearly identical, as are the rates of arachidonate incorporation into PC and the composition and remodeling of other phospholipid classes. These findings indicate that iPLA2beta plays signaling or effector roles in beta-cell secretion and proliferation but that stable suppression of its expression does not affect beta-cell GPC lipid content or composition even under conditions in which LPC is being actively consumed by conversion to PC. This calls into question the generality of proposed housekeeping functions for iPLA2beta in PC homeostasis and remodeling.  相似文献   

14.
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of the myelin membrane exhibit heterogeneity with respect to metabolic turnover rate (Miller, S. L., Benjamins, J. A., and Morell, P. (1977) J. Biol. Chem. 252, 4025-4037). To test the hypothesis that this is due to differential turnover of individual molecular species (which differ in acyl chain composition), we have examined the relative turnover of individual molecular species of myelin PC and PE. Phospholipids were labeled by injection of [2-3H]glycerol into the brains of young rats. Myelin was isolated at 1, 15, and 30 days post-injection, lipids were extracted, and phospholipid classes were separated by thin-layer chromatography. The PC and PE fractions were hydrolyzed with phospholipase C, and the resulting diacylglycerols were dinitrobenzoylated and fractionated by reverse-phase high performance liquid chromatography. The distribution of radioactivity among individual molecular species was determined. The labeled molecular species of myelin PC were 16:0-16:0, 16:0-18:0, 16:0-18:1, and 18:0-18:1, with most of the label present in 16:0-18:1 and 18:0-18:1. Changes in distribution of label with time after injection indicated that 16:0-18:1 turned over more rapidly than 18:0-18:1. The labeled molecular species of myelin PE were 18:0-20:4, 18:1-18:1, 16:0-18:1, 18:0-18:2, and 18:0-18:1. As with myelin PC, 16:0-18:1 (and 18:1-18:1) turned over more rapidly than 18:0-18:1. The relative turnover of individual molecular species of PC in the microsomal fraction from forebrain was also examined. The molecular species profile was different from myelin PC, but again, 16:0-18:1 turned over more rapidly than the other molecular species. Thus, within the same membrane, individual molecular species of a phospholipid class are metabolized at different rates. Comparison of our results with previous studies of turnover of molecular classes of phospholipids indicates that in addition to polar head group composition (Miller et al., 1977), fatty acid composition is very important in determining the metabolic fate of a phospholipid.  相似文献   

15.
The pem1/cho2 pem2/opi3 double mutant of Saccharomyces cerevisiae, which is auxotrophic for choline because of the deficiency in methylation activities of phosphatidylethanolamine, grew in the presence of 0.1 mM dioctanoyl-phosphatidylcholine (diC(8)PC). Analysis of the metabolism of methyl-(13)C-labeled diC(8)PC ((methyl-(13)C)(3)-diC(8)PC) by electrospray ionization tandem mass spectrometry (ESI-MS/MS) revealed that it was rapidly converted to (methyl-(13)C)(3)-PCs containing C16 or C18 acyl chains. (Methyl-(13)C)(3)-8:0-lyso-PC, (methyl-(13)C)(3)-8:0-16:0-PC and (methyl-(13)C)(3)-8:0-16:1-PC, which are the probable intermediate molecular species of acyl chain remodeling, appeared immediately after 5 min of pulse-labeling and decreased during the subsequent chase period. These results indicate that diC(8)PC was taken up by the pem1 pem2 double mutant and that the acyl chains of diC(8)PC were exchanged with longer yeast fatty acids. The temporary appearance of (methyl-(13)C)(3)-8:0-lyso-PC suggests that the remodeling reaction may consist of deacylation and reacylation by phospholipase activities and acyltransferase activities, respectively. The detailed analyses of the structures of (methyl-(13)C)(3)-8:0-16:0-PC and (methyl-(13)C)(3)-8:0-16:1-PC by MS/MS and MS(3) strongly suggest that most (methyl-(13)C)(3)-8:0-16:0-PCs have a C16:0 acyl chain at sn-1 position, whereas (methyl-(13)C)(3)-8:0-16:1-PCs have a C16:1 acyl chain at either sn-1 or sn-2 position in a similar frequency, implying that the initial C16:0 acyl chain substitution prefers the sn-1 position; however, the C16:1 acyl chain substitution starts at both sn-1 and sn-2 positions. The current study provides a pivotal insight into the acyl chain remodeling of phospholipids in yeast.  相似文献   

16.
Previously we identified palmitoyl-lysophosphatidylcholine (16:0 LPC), linoleoyl-LPC (18:2 LPC), arachidonoyl-LPC (20:4 LPC), and oleoyl-LPC (18:1 LPC) as the most prominent LPC species generated by the action of endothelial lipase (EL) on high-density lipoprotein. In the present study, the impact of those LPC on prostacyclin (PGI2) production was examined in vitro in primary human aortic endothelial cells (HAEC) and in vivo in mice. Although 18:2 LPC was inactive, 16:0, 18:1, and 20:4 LPC induced PGI2 production in HAEC by 1.4-, 3-, and 8.3-fold, respectively. LPC-elicited 6-keto PGF1α formation depended on both cyclooxygenase (COX)-1 and COX-2 and on the activity of cytosolic phospholipase type IVA (cPLA2). The LPC-induced, cPLA2-dependent 14C-arachidonic acid (AA) release was increased 4.5-fold with 16:0, 2-fold with 18:1, and 2.7-fold with 20:4 LPC, respectively, and related to the ability of LPC to increase cytosolic Ca2+ concentration. In vivo, LPC increased 6-keto PGF concentration in mouse plasma with a similar order of potency as found in HAEC. Our results indicate that the tested LPC species are capable of eliciting production of PGI2, whereby the efficacy and the relative contribution of underlying mechanisms are strongly related to acyl-chain length and degree of saturation.  相似文献   

17.
The use of HPLC coupled on-line with a mass spectrometer is a very powerful tool in order to analyze intact PLs molecular species (PMS) without the need of derivatization, thus decreasing the risk of artifacts formation. A normal-phase HPLC-ESI-MS-MS method has been developed in order to study the human blood mononuclear cell PMS composition. This method was applied to characterize PMS from seven CF subjects and from seven age-matched healthy subjects. More than 140 phospholipid molecular species from phosphatidylethanolamine (PE), plasmalogen phosphatidylethanolamine (pPE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylcholine (PC) and sphingomyelin (Sph) were identified and compared. Differences between the two groups were found in pPE (p16:0/22:6), pPE (p18:0/22:6), PE (16:0/20:4) and PC (16:0/18:2) which were significantly lower in CF subjects and in PC (16:0/16:1) which was significantly higher in CF subjects.  相似文献   

18.
A new liquid chromatography mass spectrometry (LC/MS) method has been developed for the qualitative and quantitative analyses of phosphatidylcholine hydroperoxides (PC-OOH) in human plasma using a synthetic hydroperoxide (1-stearoyl-2-erucoyl-PC monohydroperoxide, PC 18:0/22:1-OOH) as an internal standard. 1-Stearoyl-2-linoleoyl-PC monohydroperoxide (PC 18:0/18:2-OOH) was identified in plasma by LC/MS by comparison with an authentic standard. The calibration curves obtained for 1-palmitoyl-2-linoleoyl-PC monohydroperoxide, PC 16:0/18:2-OOH and PC 18:0/18:2-OOH were linear throughout the calibration range (0.1–1.0 pmol). The limit of detection (LOD) (S/N = 3:1) was 0.01 pmol, and the limit of quantification (LOQ) (S/N = 6:1) was 0.1 pmol for both PC 16:0/18:2-OOH and PC 18:0/18:2-OOH. Plasma concentrations of PC 16:0/18:2-OOH and PC 18:0/18:2-OOH were 89 and 32 nM, respectively, in a healthy volunteer.  相似文献   

19.
Studies were performed to determine to what extent phosphatidylcholines (PCs) of different composition influence the turnover of lipoprotein cholesterol. Lipoprotein recombinants with the composition and structure of spherical high density lipoproteins (HDL-R) were prepared with apoproteins, 14C-labeled unesterified cholesterol (UC), a [3H]cholesteryl ester (CE), and one of four single molecular species of PC. PCs were selected to include relatively hydrophilic species (16:1-16:1 and 16:0-18:2 PCs) and relatively hydrophobic species (18:0-18:2 and 20:1-20:1 PCs). PCs were also selected to include molecules with novel acyl group pairs (16:1-16:1 and 20:1-20:1 PCs) that would permit the whole molecule to be traced during its clearance from the serum. Rats were injected with HDL-R as an intravenous bolus, and serum, liver, and bile samples were obtained for up to 2 h. The clearance from the serum of each PC was monoexponential with the two most hydrophilic species much more rapidly cleared than either of the two less hydrophilic species. Clearance of specific PCs was not accompanied by PC remodeling (i.e. transacylations), and in the main could not be attributed to the action of lecithin-cholesterol acyltransferase (LCAT). In incubations designed to simulate in vivo conditions, no more than 15% of the disappearance of 16:1-16:1 PC, one of the most rapidly cleared PCs, was due to the action of LCAT. With 20:1-20:1 PC, one of the least rapidly cleared PCs, no LCAT activity could be detected. The clearance of radiolabeled UC was multiexponential and closely corresponded to the rate of disappearance of each PC. The clearance of radiolabeled CE was linear and, in contrast to UC, was the same with the administration of different PCs. Uptake of radiolabeled UC by the liver and excretion of radiolabeled UC into bile took place in parallel and corresponded to the rapidity of turnover of UC (and PCs) in the serum. With administration of 16:1-16:1 PC, complete equilibration of serum, liver, and bile UC was achieved by about 90 min, whereas with 20:1-20:1 PC, serum UC had not equilibrated by the end of the study. These findings demonstrate that, in the live animal, the kinetic pattern of transport of different lipids from an HDL recombinant is highly disparate, the rate of PC clearance is more rapid with molecular species of greater hydrophilic strength, and the rates of PC and UC clearance are closely coordinated and largely independent of the clearance of CE.  相似文献   

20.
The molecular species composition of membrane phospholipids influences the activities of integral proteins and cell signalling pathways. We determined the effect of increasing gestational age on fetal guinea pig liver phosphatidylcholine (PC) and phosphatidylethanolamine (PE), and plasma PC molecular species composition. The livers were collected from fetuses (n = 5/time point) at 5 day intervals between 40 and 65 days of gestation, and at term (68 days). Hepatic PC and PE molecular species composition was determined by electrospray ionisation mass spectrometry. An increasing gestational age was accompanied by selective changes in individual molecular species. The proportion of the sn-1 18:0 species increased relative to the sn-1 16:0 species in liver PC, but not PE, with an increasing gestational age. 1-O-alkyl-2-acyl PC species concentrations decreased significantly between 40 and 45 days of gestation (40%), and 65 and 68 days (54%). Total 1-O-alkenyl-2-acyl PE species concentration increased between days 60 and 65, due to a rise in 1-O-16:0 alkyl/20:4 content, and then decreased until term. Between day 40 and term, PC and PE sn-2 18:2n-6 species concentrations increased 3-fold. PC16:0/18:2 increased gradually throughout gestation, while PC18:0/18:2 content only increased after day 65. The overall increase in PE18:2n-6 content was due to PE18:0/18:2 alone. The composition of plasma PC essentially reflected hepatic PC. Overall, these data suggest differential regulation of hepatic PC and PE molecular species composition during development which is essentially independent of the maternal fatty acid supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号