首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A G Clark  D J Begun 《Genetics》1998,149(3):1487-1493
Differential success of sperm is likely to be an important component of fitness. Extensive variation among male genotypes in competitive success of sperm in multiply mated females has been documented for Drosophila melanogaster. However, virtually all previous studies considered the female to be a passive vessel. Nevertheless, under certain conditions female fitness could be determined by her role in mediating use of sperm from multiple males. Here we ask whether females differ among genotypes in their tendency to exhibit last-male precedence. Competition of sperm from two tester male genotypes (bwD and B3-09, a third-chromosome isogenic line from Beltsville, MD) was quantified by doubly mating female lines that had been rendered homozygous for X, second, or third chromosomes isolated from natural populations. The composite sperm displacement parameter, P2'', was highly heterogeneous among lines, whether or not viability effects were compensated, implying the presence of polymorphic genes affecting access of sperm to eggs. Genetic variation of this type is completely neutral in the absence of pleiotropy or interaction between variation in the two sexes.  相似文献   

2.
Differential sperm usage from consecutive matings, or sperm precedence, is vital in determining male reproductive success and the outcome of sperm competition for many organisms. Sperm precedence also has significant consequences for mating system dynamics, including both male and female adaptations for increasing reproductive success and avoiding the costs of mating. Despite sexual selection being a strong driver of reproductive behaviour and morphology in cephalopods, surprisingly few studies have investigated sperm dynamics in this group. To redress this gap, we experimentally quantified sperm precedence patterns in the dumpling squid, Euprymna tasmanica, controlling for recent male mating history (first vs. second mating), mating position, and mating frequency. We found that the last male to mate gains an advantage in this system, with the second mating male siring up to 75% of offspring at the beginning of the laying period. The proportion of offspring attributable to the second mating male decreases to 54% by the end of the laying period, potentially as a result of changes in the velocity or number of sperm released from spermatangia over time. There is also significant variation among females in patterns of sperm precedence. This variation was not associated with whether it was the male's first or second mating, male mass, the duration of copulation or the number of pumps (sperm removal behaviour) by the second male. If widespread in cephalopods, last male sperm precedence could help to explain the evolution of mate guarding (or long copulation duration) and sperm removal behaviour in this group.  相似文献   

3.
Recent theoretical and empirical interest in postmating processes have generated a need for increasing our understanding of the sources of variance in fertilization success among males. Of particular importance is whether such postmating sexual selection merely reinforces the effects of premating sexual selection or whether other types of male traits are involved. In the current study, we document large intraspecific variation in last male sperm precedence in the water strider Gerris lateralis. Male relative paternity success was repeatable across replicate females, showing that males differ consistently in their ability to achieve fertilizations. By analyzing shape variation in male genital morphology, we were able to demonstrate that the shape of male intromittent genitalia was related to relative paternity success. This is the first direct experimental support for the suggestion that male genitalia evolve by postmating sexual selection. A detailed analysis revealed that different components of male genitalia had different effects, some affecting male ability to achieve sperm precedence and others affecting male ability to avoid sperm precedence by subsequent males. Further, the effects of the shape of the male genitalia on paternity success was in part dependent on female morphology, suggesting that selection on male genitalia will depend on the frequency distribution of female phenotypes. We failed to find any effects of other morphological traits, such as male body size or the degree of asymmetry in leg length, on fertilization success. Although males differed consistently in their copulatory behavior, copulation duration was the only behavioral trait that had any significant effect on paternity.  相似文献   

4.
K. A. Hughes 《Genetics》1997,145(1):139-151
To assess the genetic basis of sperm competition under conditions in which it occurs, I estimated additive, dominance, homozygous and environmental variance components, the effects of inbreeding, and the weighted average dominance of segregating alleles for two measures of sperm precedence in a large, outbred laboratory population. Both first and second male precedence show significant decline on inbreeding. Second male precedence demonstrates significant dominance variance and homozygous genetic variance, but the additive variance is low and not significantly different from zero. For first male precedence, the variance among homozygous lines is again significant, and dominance variance is larger than the additive variance, but is not statistically significant. In contrast, male mating success and other fitness components in Drosophila generally exhibit significant additive variance and little or no dominance variance. Other recent experiments have shown significant genotypic variation for sperm precedence and have associated it with allelic variants of accessory-gland proteins. The contrast between sperm precedence and other male fitness traits in the structure of quantitative genetic variation suggests that different mechanisms may be responsible for the maintenance of variation in these traits. The pattern of genetic variation and inbreeding decline shown in this experiment suggests that one or a few genes with major effects on sperm precedence may be segregating in this population.  相似文献   

5.
In the last decades, many insect species have been studied in terms of sperm competition. Patterns of sperm use are often inferred from the mean species value of P(2), defined as the mean proportion of offspring sired by the second male in double-mating trials. In Panorpa germanica (Mecoptera, Panorpidae), P(2) largely depends on relative copulation durations of both males, but with the second male on average having some advantage over the first male. Estimating the presence of fertile sperm inside the female's reproductive tract in relation to time after copulation we conclude this partial last male sperm precedence not to be caused by natural death, loss, or depletion of first male sperm. Estimating sperm transfer rates of both mates of a female we, furthermore, found that the high intraspecific variance in P(2) that can be observed cannot solely be explained by variances in sperm transfer rates among P. germanica males. Other factors possibly causing the observed patterns of paternity success are discussed.  相似文献   

6.
Fiumera AC  Dumont BL  Clark AG 《Genetics》2007,176(2):1245-1260
We applied association analysis to elucidate the genetic basis for variation in phenotypes affecting postcopulatory sexual selection in a natural population of Drosophila melanogaster. We scored 96 third chromosome substitution lines for nine phenotypes affecting sperm competitive ability and genotyped them at 72 polymorphisms in 13 male reproductive genes. Significant heterogeneity among lines (P < 0.01) was detected for all phenotypes except male-induced refractoriness (P = 0.053). We identified 24 associations (8 single-marker associations, 12 three-marker haplotype associations, and 4 cases of epistasis revealed by single-marker interactions). Fewer than 9 of these associations are likely to be false positives. Several associations were consistent with previous findings [Acp70A with the male's influence on the female's refractoriness to remating (refractory), Esterase-6 with a male's remating probability (remating) and a measure of female offspring production (fecundity)], but many are novel associations with uncharacterized seminal fluid proteins. Four genes showed evidence for pleiotropic effects [CG6168 with a measure of sperm competition (P2') and refractory, CG14560 with a defensive measure of sperm competition (P1') and a measure of female fecundity, Acp62F with P2' and a measure of female fecundity, and Esterase-6 with remating and a measure of female fecundity]. Our findings provide evidence that pleiotropy and epistasis are important factors in the genetic architecture of male reproductive success and show that haplotype analyses can identify associations missed in the single-marker approach.  相似文献   

7.
In polyandrous mating systems, events occurring during copulation can alter the fate of the mating male's sperm. These events may exert selective pressures resulting in the evolution of diverse reproductive behaviours, morphologies and physiologies. This study investigates the role of male and female copulatory behaviours on sperm fate in the red flour beetle, Tribolium castaneum. I describe and quantify copulatory behaviours for mating pairs, and examine sperm fate by quantifying sperm transfer, sperm storage and second male sperm precedence. Whereas female quiescence during copulation and male leg rubbing during copulation together account for significant variation (26%) in sperm precedence, female copulatory quiescence alone provides information about the timing and numbers of sperm transferred. These experiments show that a female copulatory behaviour predicts sperm fate, and emphasize the value of studying variation in both male and female copulatory behaviours for understanding factors affecting sperm use.  相似文献   

8.
In animals having internal fertilization, both sexes can potentially influence the post-copulatory processes of sperm transfer, sperm storage and sperm use for fertilization. In this experiment, we investigated whether Tribolium castaneum females can influence male paternity success following consecutive matings with two different males. We compared second male paternity success (P2) between females exposed to carbon dioxide (CO2) and control females kept in air, in both cases for 30 min between two matings. CO2 exposure inhibits muscular activity and has previously been shown to decrease sperm storage by T. castaneum females. Females exposed to CO2 after their first mating showed significantly higher P2 than control females during the later portion of a one-month oviposition period. These results are consistent with reduced storage of first male sperm by CO2-exposed females. Also, T. castaneum females showed considerable variation in spermathecal morphology, and P2 decreased with increasing spermathecal tubule volume. These results demonstrate that T. castaneum females can influence male paternity success, and suggest that differential sperm storage may be an important mechanism of post-copulatory female choice.  相似文献   

9.
Length of the sperm flagellum and of the female's primary sperm-storage organ, the seminal receptacle (SR), exhibit a pattern of rapid correlated evolution in Drosophila and other lineages. Experimental evolution studies with Drosophila melanogaster indicate that these traits have coevolved through sexual selection, with length of the SR representing the proximal basis of female sire discrimination, biasing paternity according to sperm length. Here, we examine the impact of experimentally varying the developmental environment, including larval density and larval and adult nutrition, on sperm length, SR length and on the pattern of sperm precedence. Expression of SR length was far more sensitive to variation among developmental environments than was sperm length. Nevertheless, there was striking co-variation in sperm and SR length. The developmental environment of both females and second males, but not first males, significantly contributed to variation in male competitive fertilization success.  相似文献   

10.
Manipulation of ejaculates is believed to be an important avenue of female choice throughout the animal kingdom, but evidence of its importance to sexual selection remains scarce. In crickets, such manipulation is manifest in the premature removal of the externally attached spermatophore, which may afford females an important means of postcopulatory mate choice. We tested the hypothesis that premature spermatophore removal contributes significantly to intraspecific variation in sperm precedence by (1) experimentally manipulating spermatophore attachment durations of competing male Gryllodes sigillatus and (2) employing protein electrophoresis to determine the paternity of doubly mated females. The relative spermatophore attachment durations of competing males had a significant influence on male paternity, but the pattern of sperm precedence deviated significantly from the predictions of an ideal lottery. Instead, paternity data and morphological evidence accorded best with a model of partial sperm displacement derived here. Our model is similar to a displacement model of Parker et al. in that sperm of the second male mixes instantaneously with that of the first throughout the displacement process, but the novel feature of our model is that the number of sperm displaced is only a fraction of the number of sperm transferred by the second male. Regardless of the underlying mechanism, female G. sigillatus can clearly alter the paternity of their offspring through their spermatophore-removal behavior, and employ such cryptic choice in favoring larger males and those providing larger courtship food gifts. We discuss how female control of sperm transfer and intraspecific variation in sperm precedence may be important precursors to the evolution of gift giving in insects.  相似文献   

11.
If we are to understand fully the factors influencing fertilization success, it is essential to untangle male and female effects on sperm use. In many species, differences in fertilizing ability have been found between males or male genotypes, but the impact of female effects is less clear and may vary between taxa. Here, we examine sperm use in the mallard (Anas platyrhynchos), a species of bird in which forced copulation forms a major component of the mating system, to investigate whether there is any evidence for post-insemination female choice or rejection of particular sperm genotypes. Current models of sperm use in birds suggest observed patterns of paternity are a result of passive sperm loss from the reproductive tract and the relative timing of inseminations. Although this type of model successfully predicted average values of last male precedence observed in this species, there was considerable variation between females in their pattern of sperm use, with a tendency for females to use sperm of a single genotype. However, females did not consistently prefer one genotype over another in repeated inseminations with identical sperm mixtures, suggesting that post-insemination female preference based on sperm genotype did not account for this variation.  相似文献   

12.
Understanding the selection pressures shaping components of male reproductive success is essential for assessing the role of sexual selection on phenotypic evolution. A male's competitive reproductive success is often measured in sequential mating tests by recording P1 (first mating male) and P2 (second mating male) paternity scores. How each of these scores relates to a male's overall fitness, for example, lifetime reproductive success is, however, not known. This information is needed to determine whether males benefit from maximizing both P1 and P2 or by trading off P1 against P2 ability. We measured P1, P2, and an index of lifetime reproductive success (LRSi, a male's competitive reproductive success measured over 12 days) for individual male Drosophila melanogaster. We found no evidence for phenotypic correlations between P1 and P2. In addition, whereas both P1 and P2 were associated with relative LRSi, only P2 predicted absolute LRSi. The results suggest that P2 was most closely linked to LRSi in the wild‐type population studied, a finding which may be common to species with strong second male sperm precedence. The study illustrates how P1 and P2 can have differing relationships with a male's overall reproductive success, and highlights the importance of understanding commonly used measures of sperm competition in the currency of fitness.  相似文献   

13.
Sperm precedence patterns are typically highly variable within (and between) species. Intraspecific variation in sperm precedence (measured as P2, the proportion of progeny fathered by the last male to mate' is frequently seen as a candidate for adaptive interpretation through either male effects (e.g. body size), female effects (e.g. cryptic female choice) or an interaction between the two. Here we show, using computer simulation, that if ejaculates divide into a number of 'packets' and packets from two males mix randomly, then a variety of patterns of sperm precedence may result. We term this process 'sloppy' mixing. If ejaculates break into a small number of packets, bimodal P2 distributions are predicted. As the number of packets is increased, then a complex series of changes through multimodal and flat to unimodal distributions results. Sloppy mixing can thus result in many of the observed P2 distributions. Sloppy mixing is unlikely to change the predictions of adaptive models of sperm competition.  相似文献   

14.
To understand fully the significance of cryptic female choice, we need to focus on each of those postmating processes in females which create variance in fitness among males. Earlier studies have focused almost exclusively on the proportion of a female's eggs fertilized by different males (sperm precedence). Yet, variance in male postmating reproductive success may also arise from differences in ability to stimulate female oviposition and to delay female remating. Here, we present a series of reciprocal mating experiments among genetically differentiated wild-type strains of the housefly Musca domestica. We compared the effects of male and female genotype on oviposition and remating by females. The genotype of each sex affected both female oviposition and remating rates, demonstrating that the signal-receptor system involved has indeed diverged among these strains. Further, there was a significant interaction between the effects of male and female genotype on oviposition rate. We discuss ways in which the pattern of such interactions provides insights into the coevolutionary mechanism involved. Females in our experiments generally exhibited the weakest, rather than the strongest, response to males with which they are coevolved. These results support the hypothesis that coevolution of male seminal signals and female receptors is sexually antagonistic.  相似文献   

15.
Competition between different males'' sperm for the fertilization of ova has led to the evolution of a diversity of characters in male reproductive behaviour, physiology and morphology. Males may increase sperm competition success either by enhancing the success of their own sperm or by negating or eliminating the success of rival sperm. Here, we find that in the flour beetle Tribolium castaneum, the second male to mate gains fertilization precedence over previous males'' sperm and fertilizes approximately two-thirds of the eggs. It is not known what mechanism underlies this pattern of last-male sperm precedence; however, the elongate tubules of the female sperm storage organ may encourage a ''last-in, first-out'' sperm use sequence. Here we present an additional or alternative mechanism of sperm precedence whereby previously deposited sperm are removed from the female tract by the mating male''s genitalia. In addition to providing evidence for sperm removal in T. castaneum, we also show that removed, non-self sperm may be translocated back into the reproductive tracts of new, previously unmated females, where the translocated sperm go on to gain significant fertilization success. We found that, in 45 out of 204 crosses, sperm translocation occurred and in these 45 crosses over half of the offspring were sired by spermatozoa which had been translocated between females on the male genitalia. In the natural environment of stored food, reproductively active T. castaneum adults aggregate in dense mating populations where copulation is frequent (we show in three naturally occurring population densities that copula duration and intermating intervals across three subsequent matings average 1 to 2 min). Selection upon males to remove rival sperm may have resulted in counter-selection upon spermatozoa to survive removal and be translocated into new females where they go on to fertilize in significant numbers.  相似文献   

16.
In promiscuous species, sexual selection generates two opposing male traits: offense (acquiring new mates and supplanting stored sperm) and defense (enforcing fidelity on one's mates and preventing sperm displacement when this fails). Coevolution between these traits requires both additive genetic variation and associated natural selection. Previous work with Drosophila melanogaster found autosomal genetic variation for these traits among inbred lines from a mixture of populations, but only nonheritable genetic variation was found within a single outbred population. These results do not support ongoing antagonistic coevolution between offense and defense, nor between either of these male traits and female reproductive characters. Here we use a new method (hemiclonal analysis) to study genomewide genetic variation in a large outbred laboratory population of D. melanogaster. Hemiclonal analysis estimates the additive genetic variation among random, genomewide haplotypes taken from a large, outbred, locally adapted laboratory population and determines the direction of the selection gradient on this variation. In contrast to earlier studies, we found low but biologically significant heritable variation for defensive and offensive offspring production as well as all their components (P1, fidelity, P2, and remating). Genetic correlations between these traits were substantially different from those reported for inbred lines. A positive genetic correlation was found between defense and offense, demonstrating that some shared genes influence both traits. In addition to this common variation, evidence for unique genetic variation for each trait was also found, supporting an ongoing coevolutionary arms race between defense and offense. Reproductive conflict between males can strongly influence female fitness. Correspondingly, we found genetic variation in both defense and offense that affected female fitness. No evidence was found for intersexual conflict in the context of male defense, but we found substantial intersexual conflict in the context of male offensive sperm competitive ability. These results indicate that conflict between competing males also promotes an associated arms race between the sexes.  相似文献   

17.
F(1) backcrosses involving the DDK and C57BL/6 inbred mouse strains show transmission ratio distortion at loci on two different chromosomes, 11 and X. Transmission ratio distortion on chromosome X is restricted to female offspring while that on chromosome 11 is present in offspring of both sexes. In this article we investigate whether the inheritance of alleles at loci on one chromosome is independent of inheritance of alleles on the other. A strong nonrandom association between the inheritance of alleles at loci on both chromosomes is found among male offspring, while independent assortment occurs among female offspring. We also provide evidence that the mechanism by which this phenomenon occurs involves preferential cosegregation of nonparental chromatids of both chromosomes at the second meiotic division, after the ova has been fertilized by a C57BL/6 sperm bearing a Y chromosome. These observations confirm the influence of the sperm in the segregation of chromatids during female meiosis, and indicate that a locus or loci on the Y chromosome are involved in this instance of meiotic drive.  相似文献   

18.
Genes that influence mating and/or fertilization success may be targets for strong natural selection. If females remate frequently relative to the duration of sperm storage and rate of sperm use, sperm displacement may be an important component of male reproductive success. Although it has long been known that mutant laboratory stocks of Drosophila differ in sperm displacement, the magnitude of the naturally occurring genetic variation in this character has not been systematically quantified. Here we report the results of a screen for variation in sperm displacement among 152 lines of Drosophilia melanogaster that were made homozygous for second and/or third chromosomes recovered from natural populations. Sperm displacement was assayed by scoring the progeny of cn;bw females that had been mated sequentially to cn;bw and tested males in either order. Highly significant differences were seen in both the ability to displace sperm that is resident in the female's reproductive tract and in the ability to resist displacement by subsequent sperm. Most lines exhibited nearly complete displacement, having nearly all progeny sired by the second male, but several lines had as few as half the progeny fathered by the second male. Lines that were identified in the screen for naturally occurring variation in sperm displacement were also characterized for single-strand conformation polymorphisms (SSCP) at seven accessory gland protein (Acp) genes, Glucose dehydrogenase (Gld), and Esterase-6 (Est-6). Acp genes encode proteins that are in some cases known to be transmitted to the female in the seminal fluid and are likely candidates for genes that might mediate the phenomenon of sperm displacement. Significant associations were found between particular Acp alleles at four different loci (Acp26Aa/Ab, Acp29B, Acp36DE and Acp53E) and the ability of males to resist displacement by subsequent sperm. There was no correlation between the ability to displace resident sperm and the ability to resist being displaced by subsequent sperm. This lack of correlation, and the association of Acp alleles with resisting subsequent sperm only, suggests that different mechanisms mediate the two components of sperm displacement.  相似文献   

19.
We describe the patterns of paternity success from laboratory mating experiments conducted in Antechinus agilis, a small size dimorphic carnivorous marsupial (males are larger than females). A previous study found last‐male sperm precedence in this species, but they were unable to sample complete litters, and did not take male size and relatedness into account. We tested whether last‐male sperm precedence regardless of male size still holds for complete litters. We explored the relationship between male mating order, male size, timing of mating and relatedness on paternity success. Females were mated with two males of different size with either the large or the small male first, with 1 day rest between the matings. Matings continued for 6 h. In these controlled conditions male size did not have a strong effect on paternity success, but mating order did. Males mating second sired 69.5% of the offspring. Within first mated males, males that mated closer to ovulation sired more offspring. To a lesser degree, variation appeared also to be caused by differences in genetic compatibility of the female and the male, where high levels of allele‐sharing resulted in lower paternity success.  相似文献   

20.
1. Females of the noctuid moth Heliothis virescens F. mate more than once. Thus, sperm from two or more males normally compete for fertilisations within the female reproductive tract. The eggs are typically fertilised by sperm from only one male, either the female's last mate or an earlier mate. Twice‐mated females store only one ejaculate's worth of fertilising sperm (eupyrene) but nearly two ejaculates' worth of a nonfertilising sperm morph (apyrene), which is thought to play a role in sperm competition. 2. The mechanism of sperm use in H. virescens was investigated by examining factors that vary with paternity, which was assigned based on allozyme variation. The factors included male and female body masses and ages, male genital characters, the size of the sperm package, and the number of sperm stored by the female. 3. One male typically gained sperm precedence; this was nearly twice as likely to be the second male as it was to be the first. Two factors were found to vary significantly with paternity: female mass and male age. The second male to mate was more likely to gain sperm precedence if the female was larger and if the male was older than the female's first mate. 4. The significance of male age and female mass to several hypothetical models of the mechanism of sperm use is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号