首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterogeneity of lipoprotein particles in hepatic Golgi fractions   总被引:8,自引:4,他引:4       下载免费PDF全文
Newly synthesized phospholipids, labeled with either [14C]choline, [3H]myo-inositol, or [33P]phosphate, partioned preferentially (greater than 80% of total incorporated radioactivity) in a Golgi membrane subfraction, although the cognate content subfraction contained a relatively large amount of secretory lipoproteins. The labeling pattern was the same for all phospholipids tested in the two subfractions. An active exchange process of polar lipids between Golgi membranes and Golgi secretory lipoproteins is postulated as a plausible explanation for these findings. Less than half of all Golgi lipoprotein particles have the density of serum VLDLs and a similar, but not identical, biochemical composition. The remaining lipoprotein particles are characterized by a continuous spectrum of sizes, and (to the extent tested) by a lipid and protein composition different from that of serum VLDLs and HDLs. Results obtained in control experiments rule out the possibility that the heterogeneous population of Golgi lipoprotein particles is an artefact caused by our preparation procedures. It is assumed that these heterogeneous particles are immature precursors of both VLDLs and HDLs.  相似文献   

2.
Pooled adult normal rat plasma was used for the separation of lipoprotein fractions: VLDL, LDL and HDL, from which a total lipids extract was obtained. The presence of fragments with the MW of estrone and oleoyl-estrone in the lipoprotein fractions was analyzed by HPLC-MS. The results show that oleoyl-estrone is the major estrone component in lipoproteins; this molecular species was present in all three lipoprotein lipid extracts. The lipoprotein fractions were used for the analysis of protein and lipid classes: triacylglycerols, total and esterified cholesterol and phospholipids as well as acyl-estrone. About half of the total acyl-estrone was in the HDL fraction and only about 10% in the VLDL fraction. HDLs contained about one molecule in 50 particles, LDLs one molecule per particle and VLDLs 15 molecules per particle, i.e. given their size, the larger lipoproteins contained more oleoyl-estrone than the HDLs. The distribution of this hormone suggests that oleoyl-estrone is lost with other lipids as the lipoproteins shrink. The results presented show that oleoyl-estrone is a molecule found naturally in rat lipoproteins in low concentrations - the lowest in HDLs - that are consistent with its postulated role in the control of body weight.  相似文献   

3.
Plasma activity of secretory phospholipase A2 (sPLA2) increases in patients with cardiovascular disease. The present study investigated whether platelet-released sPLA2 induces low-density lipoprotein (LDL) and high-density lipoprotein (HDL) modifications that translate into changes in lipoprotein function. Activated but not resting platelets induced oxidative modifications of human native LDLs and HDLs, which render these particles dysfunctional. Platelet-incubated LDLs stimulated the incorporation of cholesterol oleate into macrophages, and modified HDLs lost their cholesterol efflux capacity and antioxidant properties. In vitro and ex vivo experiments showed that lysophophatidylcholine accumulated in the platelet-modified LDLs and HDLs of mice expressing sPLA2 (Balb/c and transgenic C57Bl/6 mice expressing human sPLA2) but not in the lipoproteins of naturally sPLA2-deficient mice (C57Bl/6). Unlike C57Bl/6 mice, Balb/c mice injected with leptin (67 μg/mouse, i.p.) as an in vivo prothrombotic agent displayed increased plasma sPLA2 activity, reduced clotting time, higher plasma levels of oxidation products, increased production of nonesterified fatty acids, and more substantial platelet-mediated modification of lipoproteins. These effects were blocked completely by injection of the platelet inhibitor ticlopidine (5 mg/kg, i.p.) or by a sPLA2 inhibitor (LY311727, 3 mg/kg, i.p.). These results demonstrate that stimulated platelets are major contributors to plasma sPLA2 activity in vivo and account to a large extent for the adverse modification of circulating lipoproteins.  相似文献   

4.
Pownall HJ 《Biochemistry》2005,44(28):9714-9722
Detergent perturbation, the treatment of total human plasma lipoproteins (TLP) with sodium cholate and its subsequent removal, has been used to study lipoprotein dynamics and stability. At physiological TLP concentrations, detergent perturbation converts low-density lipoproteins (LDL) and high-density lipoproteins (HDL) to higher-particle weight species with the concomitant release of apo A-I but not apo A-II as a lipid-poor species. Detergent perturbation of isolated HDL also releases lipid-poor apo A-I and forms larger HDL species, whereas detergent perturbation of an isolated LDL has no effect on its size. A model is presented in which detergent perturbation induces transfer of PC from metastable HDL and LDL to mixed micelles with sodium cholate. The remaining LDL and HDL are unstable because of the loss of their surface components, phospholipid and/or apo A-I, and fuse to give larger LDL and HDL particles. These effects on HDL, i.e., PC transfer, apo A-I dissociation, and particle fusion, emulate the activity of human plasma phospholipid transfer protein. Thus, detergent perturbation is a new and potentially powerful method for determining lipoprotein stability, studying the mechanisms for remodeling of plasma lipoproteins, and preparing new forms of HDL and LDL with unique interactions with lipoprotein transporters and receptors.  相似文献   

5.
Plasma phospholipid transfer protein (PLTP) plays an important role in lipoprotein metabolism. PLTP is an 80-kDa glycoprotein that is expressed/secreted by a wide variety of tissues including lung, liver, adipose tissue, brain, and muscle. PLTP mediates a net transfer of phospholipids between vesicles and plasma HDLs. It also generates from small HDL particles large fused HDL particles with a concomitant formation of small lipid-poor apolipoprotein (apo) A-I-containing particles which are thought to act as the primary acceptors of cell-derived cholesterol from peripheral tissue macrophages. Another important function of PLTP is connected to lipolysis. Its role in the transfer of surface remnants from triglyceride-rich particles, very-low-density lipoproteins, and chylomicrons, to HDL is of importance for the maintenance of HDL levels. Recent observations from our laboratory have demonstrated that in circulation two forms of PLTP are present, one catalytically active (high-activity form, HA-PLTP) and the other a low-activity form (LA-PLTP). In view of the likely relevancy of PLTP in human health and disease, reliable and accurate methods for measuring plasma/serum PLTP activity and concentration are required. In this chapter, two radiometric PLTP activity assays are described: (i) exogenous, lipoprotein-independent phospholipid transfer assay and (ii) endogenous, lipoprotein-dependent phospholipid transfer assay. In addition, an ELISA method for quantitation of serum/plasma total PLTP mass as well as HA-PLTP and LA-PLTP mass is reported in detail.  相似文献   

6.
A large number of studies indicate that oxidative modification of plasma lipoproteins, especially low-density lipoprotein (LDL), is a critical factor in initiation and progression of atherosclerosis. We have previously found that ibuprofen (IBP), a potential antioxidant drug to inhibit LDL oxidation, interacted with lipoproteins in intact human plasma. In the present study, we compare the binding affinities of IBP to LDL and HDL (high-density lipoprotein) by (1)H NMR spectroscopy. When IBP is added into the HDL and LDL samples, the - N(+)(CH(3))(3) moieties of phosphatidylcholine (PC) and sphingomyelin (SM) in lipoprotein particles experience the chemical shift up-field drift. Intermolecular cross-peaks observed in NOESY spectra imply that there are direct interactions between ibuprofen and lipoproteins at both hydrophobic and hydrophilic (ionic) regions. These interactions are likely to be important in the solubility of ibuprofen into lipoprotein particles. Ibuprofen has higher impact on the PC and SM head group ( - N(+)(CH(3))(3)) and - (CH(2))(n) - group in HDL than that in LDL. This could be explained by either IBP has higher binding affinity to HDL than to LDL, or IBP induces orientation of the phospholipid head group at the surface of the lipoprotein particles.  相似文献   

7.
HDLs have been proposed to have antiatherogenic properties because of their role in reverse cholesterol transport as lipid acceptors. To elucidate the phospholipid profile of these particles, we used electrospray ionization mass spectrometry to examine the phosphatidylcholine (PC) and sphingomyelin (SM) composition of HDLs purified from plasma and nascently generated in vitro from fibroblasts. We also quantitatively compared the phospholipids present in these lipoproteins between normal and Niemann-Pick disease type B (NPD-B) subjects characterized by sphingomyelinase (SMase) deficiency. We demonstrated that plasma HDLs from NPD-B were significantly enriched in SM by an average of 28%, particularly the palmitoyl SM (with an increase of 95%), which accounted for approximately 25-44% of total SM molecular species. Similarly, we observed an increase of approximately 63% in total SM levels in nascent HDLs prepared from NPD-B fibroblasts. Although PC levels in nascent HDLs were comparable between control and NPD-B cells, there was a 95% increase in total PC levels similar to that of SM in plasma HDLs extracted from NPD-B subjects. These data provide insight into the structure of HDLs and identify potential new roles for SMase in lipoprotein metabolism.  相似文献   

8.
Elevated plasma triglyceride (TG) and reduced high density lipoprotein (HDL) concentrations are prominent features of metabolic syndrome (MS) and type 2 diabetes (T2D). Individuals with Tangier disease also have elevated plasma TG concentrations and a near absence of HDL, resulting from mutations in ATP binding cassette transporter A1 (ABCA1), which facilitates the efflux of cellular phospholipid and free cholesterol to assemble with apolipoprotein A-I (apoA-I), forming nascent HDL particles. In this review, we summarize studies focused on the regulation of hepatic very low density lipoprotein (VLDL) TG production, with particular attention on recent evidence connecting hepatic ABCA1 expression to VLDL, LDL, and HDL metabolism. Silencing ABCA1 in McArdle rat hepatoma cells results in diminished assembly of large (>10nm) nascent HDL particles, diminished PI3 kinase activation, and increased secretion of large, TG-enriched VLDL1 particles. Hepatocyte-specific ABCA1 knockout (HSKO) mice have a similar plasma lipid phenotype as Tangier disease subjects, with a two-fold elevation of plasma VLDL TG, 50% lower LDL, and 80% reduction in HDL concentrations. This lipid phenotype arises from increased hepatic secretion of VLDL1 particles, increased hepatic uptake of plasma LDL by the LDL receptor, elimination of nascent HDL particle assembly by the liver, and hypercatabolism of apoA-I by the kidney. These studies highlight a novel role for hepatic ABCA1 in the metabolism of all three major classes of plasma lipoproteins and provide a metabolic link between elevated TG and reduced HDL levels that are a common feature of Tangier disease, MS, and T2D. This article is part of a Special Issue entitled: Triglyceride Metabolism and Disease.  相似文献   

9.
Choline is (95%) found largely in the biosphere as a component of phosphatidylcholine (PC) which is made from choline via the CDP-choline pathway. Animals obtain choline from both the diet and via endogenous biosynthesis that involves the conversion of phosphatidylethanolamine into PC by phosphatidylethanolamine N-methyltransferase (PEMT), followed by PC catabolism. We have uncovered a striking gender-specific conservation of choline in female mice that does not occur in male mice. Female Pemt(-/-) mice maintained hepatic PC/total choline levels during the first day of choline deprivation and escaped liver damage whereas male Pemt(-/-) mice did not. Plasma PC levels in high-density lipoproteins (HDLs) were higher in male Pemt(-/-) mice than those in females before choline deprivation. Interestingly, after choline deprivation for 1 day, female, but not male, Pemt(-/-) mice increased HDL-PC levels. Glybenclamide, an inhibitor of PC efflux mediated by ABC transporters, eliminated this response to choline deprivation in females. These data suggest that (i) increased PC efflux from extra-hepatic tissues to HDLs in the circulation provided sufficient choline for the liver and compensated for loss of hepatic PC during the initial stages of choline deprivation in female, but not male, Pemt(-/-) mice, and (ii) plasma HDL in female mice has an important function in maintenance of hepatic PC as an acute response to severe choline deprivation.  相似文献   

10.
Plasma phospholipid transfer protein (PLTP) has atherogenic properties in genetically modified mice. PLTP stimulates hepatic triglyceride secretion and reduces plasma levels of high density lipoproteins (HDL). The present study was performed to relate the increased atherosclerosis in PLTP transgenic mice to one of these atherogenic effects. A humanized mouse model was used which had decreased LDL receptor expression and was transgenic for human cholesterylester transfer protein (CETP) in order to obtain a better resemblance to the plasma lipoprotein profile present in humans. It is well known that female mice are more susceptible to atherosclerosis than male mice. Therefore, we compared male and female mice expressing human PLTP. The animals were fed an atherogenic diet and the effects on plasma lipids and lipoproteins, triglyceride secretion and the development of atherosclerosis were measured. The development of atherosclerosis was sex-dependent. This effect was stronger in PLTP transgenic mice, while PLTP activity levels were virtually identical. Also, the rates of hepatic secretion of triglycerides were similar. In contrast, plasma levels of HDL were about 2-fold lower in female mice than in male mice after feeding an atherogenic diet. We conclude that increased atherosclerosis caused by overexpression of PLTP is related to a decrease in HDL, rather than to elevated hepatic secretion of triglycerides.  相似文献   

11.
Human plasma phospholipid transfer protein (PLTP) plays an important role in lipoprotein metabolism. In this study, we investigated the effects of lipoproteins on the secretion of PLTP in cultured BeWo choriocarcinoma cells. Low-density lipoproteins (LDLs) decreased PLTP secretion in a dose- and time-dependent manner, whereas very low density lipoproteins and high-density lipoproteins (HDLs) had little effect. LDL suppression of PLTP secretion was not altered by the inhibition of both LDL receptor and LDL receptor-related protein with receptor-associated protein. Mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, U0126, could abolish the LDL-mediated inhibition of PLTP secretion. Furthermore, LDL, but not HDL, could stimulate the expression of MAPK phosphatase-1 (MKP-1) in BeWo cells that resulted in the inactivation of p44/p42 extracellular signal-regulated kinase (ERK) 1 and 2, the family members of MAPKs. These results support the conclusion that LDL-mediated suppression of PLTP secretion in BeWo cells is through a LDL receptor-independent MAPK signaling pathway.  相似文献   

12.
Dyslipoproteinaemia is a cardinal feature of the metabolic syndrome that accelerates atherosclerosis. It is usually characterised by high plasma concentrations of triglyceride-rich and apolipoprotein (apo) B-containing lipoproteins, with depressed concentrations of high-density lipoprotein (HDL). Dysregulation of lipoprotein metabolism in these subjects may be due to a combination of overproduction of very-low-density lipoprotein (VLDL) apoB-100, decreased catabolism of apoB-containing particles, and increased catabolism of HDL apoA-I particles. These abnormalities may be consequent on a global metabolic effect of insulin resistance that increases the flux of fatty acids from adipose tissue to the liver, the accumulation of fat in the liver, the increased hepatic secretion of VLDL-triglycerides and the remodelling of both low-density lipoprotein (LDL) and HDL particles in the circulation; perturbations in lipolytic enzymes and lipid transfer proteins contribute to the dyslipidaemia. Our in vivo understanding of the kinetic defects in lipoprotein metabolism in the metabolic syndrome has been chiefly achieved by ongoing developments in the use of stable isotope tracers and mathematical modelling. Knowledge of the pathophysiology of lipoprotein metabolism in the metabolic syndrome is well complemented by extensive cell biological data. Nutritional modifications and increased physical exercise may favourably alter lipoprotein transport in the metabolic syndrome by collectively decreasing the hepatic secretion of VLDL-apoB and the catabolism of HDL apoA-I, as well as by increasing the clearance of LDL-apoB. Pharmacological treatments, such as statins, fibrates or fish oils, can also correct the dyslipidaemia by several mechanisms of action including decreased secretion and increased catabolism of apoB, as well as increased secretion and decreased catabolism of apoA-I. The complementary mechanisms of action of lifestyle and drug therapies support the use of combination regimens to treat dyslipidaemia in the metabolic syndrome.  相似文献   

13.
High-density, low-density and very-low-density lipoproteins (HDLs, LDLs and VLDLs) were purified from human serum by the combined use of counter-current chromatography (CCC) and hydroxyapatite chromatography. Polymer-phase CCC of human serum using the cross-axis coil planet centrifuge yielded two lipoprotein fractions, one containing HDLs and LDLs and the other VLDLs and serum proteins. Each fraction was concentrated and subjected to hydroxyapatite chromatography to obtain three lipoprotein fractions, all free from serum proteins. Each lipoprotein was confirmed by agarose gel electrophoresis.  相似文献   

14.
Phosphatidylethanolamine N-methyltransferase (PEMT) catalyzes the conversion of phosphatidylethanolamine to phosphatidylcholine (PC). We investigated whether there was diminished secretion of lipoproteins from hepatocytes derived from mice that lacked PEMT (Pemt(-/-)) compared with Pemt(+/+) mice. Hepatocytes were incubated with 0.75 mm oleate, the media were harvested, and triacylglycerol (TG), PC, apolipoprotein (apo) B100, and apoB48 were isolated and quantified. Compared with hepatocytes from Pemt(+/+) mice, hepatocytes from Pemt(-/-) mice secreted 50% less TG, whereas secretion of PC was unaffected. Fractionation of the secreted lipoproteins on density gradients demonstrated that the decrease in TG was in the very low density lipoprotein (VLDL)/low density lipoprotein fractions. The secretion of apoB100 was decreased by approximately 70% in VLDLs/low density lipoproteins, whereas there was no significant decrease in apoB48 secretion in any fraction. Transfection of McArdle hepatoma cells (that lack PEMT) with PEMT cDNA enhanced secretion of TG in the VLDLs. Because the levels of PC in the hepatocytes and hepatoma cells were unaffected by the lack of PEMT expression, there appears to be an unexpected requirement for PEMT in the secretion of apoB100-containing VLDLs.  相似文献   

15.
The increased prevalence of obesity and diabetes in human populations can induce the deposition of fat (triacylglycerol) in the liver (steatosis). The current view is that most hepatic triacylglycerols are derived from fatty acids released from adipose tissue. In this study, we show that phosphatidylcholine (PC), an important structural component of cell membranes and plasma lipoproteins, can be a precursor of ~65% of the triacylglycerols in liver. Mice were injected with [(3)H]PC-labeled high density lipoproteins (HDLs). Hepatic uptake of HDL-PC was ~10 μmol/day, similar to the rate of hepatic de novo PC synthesis. Consistent with this finding, measurement of the specific radioactivity of PC in plasma and liver indicated that 50% of hepatic PC is derived from the circulation. Moreover, one-third of HDL-derived PC was converted into triacylglycerols. Importantly, ~65% of the total hepatic pool of triacylglycerol appears to be derived from hepatic PC, half of which is derived from HDL. Thus, lipoprotein-associated PC should be considered a quantitatively significant source of triacylglycerol for the etiology of hepatic steatosis.  相似文献   

16.
The structure and motion of phospholipids in human plasma lipoproteins have been studied by using 31P NMR. Lateral diffusion coefficients, DT, obtained from the viscosity dependence of the 31P NMR line widths, were obtained for very low density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoproteins (HDL2, HDL3), and egg PC/TO microemulsions at 25 degrees C, for VLDL at 40 degrees C, and for LDL at 45 degrees C. At 25 degrees C, the rate of lateral diffusion in LDL (DT = 1.4 x 10(-9) cm2/s) is an order of magnitude slower than in the HDLs (DT = 2 x 10(-8) cm2/s). At 45 degrees C, DT for LDL increases to 1.1 x 10(-8) cm2/s. In contrast, DT for VLDL increases only slightly going from 25 to 40 degrees C. The large increase in diffusion rate observed in LDL occurs over the same temperature range as the smectic to disordered phase transition of the core cholesteryl esters, and provides evidence for direct interactions between the monolayer and core. In order to prove the orientation and/or order of the phospholipid head-group, estimates of the residual chemical shift anistropy, delta sigma, have been obtained for all the lipoproteins and the microemulsions from the viscosity and field dependence of the 31P NMR line widths. For VLDL and LDL, the anisotropy is 47-50 ppm at 25 degrees C, in agreement with data from phospholipid bilayers. For the HDLs, however, significantly larger values of 69-75 ppm (HDL2) and greater than 120 ppm (HDL3) were obtained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Pluronic L-81 (L-81), a non-ionic hydrophobic surfactant, is a powerful inhibitor of the secretion of lipid-transporting chylomicrons from intestinal epithelial cells to lymph. Since the other major organ that secretes lipoproteins into the circulation is the liver, whose principal lipid secretory product is very low density lipoprotein (VLDL), we tested the hypothesis that L-81 will also inhibit hepatic lipid secretion. Rats were fasted so that they had little lipid input from the intestine. We then administered Triton WR-1339 (tyloxapol) intravenously to block peripheral utilization of VLDL, causing plasma lipids to rise rapidly. Some animals were also given L-81 intravenously to test whether the L-81 would retard the tyloxapol-induced rise in plasma lipids. Administration of tyloxapol alone (250 mg/kg) increased plasma triglyceride, phospholipid and cholesterol concentrations considerably. Simultaneous administration of a small dose of L-81 (6 mg/kg) markedly reduced the rise in plasma triglyceride, particularly in the first hour (by 45%). L-81 also diminished the rise in plasma phospholipid and cholesterol, but to a lesser extent (30%). In the fasting rat, most of the plasma triglyceride is in VLDL; therefore, L-81 probably acts by decreasing the secretion of hepatic VLDL. Thus, Pluronic L-81 may be a useful tool for examining the secretion and metabolism of hepatic lipoproteins, in particular, VLDL.  相似文献   

18.
Lipid classes and their fatty acids were studied in the major lipoprotein fractions from canine, in comparison with human, plasma. In dogs, high-density-lipoprotein (HDL), the main carrier of plasma phospholipid (PL), cholesterol ester (CE) and free cholesterol, was the most abundant lipoprotein, followed by low and very-low density lipoproteins (LDL and VLDL). Notably, LDL and VLDL contributed similarly to the total dog plasma triacylglycerol (TG). The PL composition was similar in all three lipoproteins, dominated by phosphatidylcholine (PC). Even though the content and composition of lipids within and among lipoproteins differed markedly between dog and man, the total amount of circulating lipid was similar. All canine lipoproteins were relatively richer than those from humans in long-chain (C20-C22) n-6 and n-3 polyunsaturated fatty acids (PUFA) but had comparable proportions of total saturated and monoenoic fatty acids, with 18:2n-6 being the main PUFA in both mammals. The fatty acid profile of canine and human lipoproteins differed because they had distinct proportions of their major lipids. There were more n-3 and n-6 long-chain PUFA in canine than in human plasma, because dogs had more HDL, their HDL had more PC and CE, and both these lipids were richer in such PUFA.  相似文献   

19.
Hepatic lipase deficiency produces significant distortion in the plasma lipoprotein profile. Particles with reduced electrophoretic mobility appear in very low density lipoprotein (VLDL). Intermediate density lipoprotein (IDL) increases markedly in the circulation and plasma low density lipoprotein (LDL) levels fall. At the same time there is a mass redistribution within the high density lipoprotein (HDL) spectrum leading to dominance in the less dense HDL2 subfraction. The present study examines apolipoprotein B turnover in a patient with hepatic lipase deficiency. The metabolism of large and small very low density lipoproteins was determined in four control subjects and compared to the pattern seen in the patient. Absence of the enzyme did not affect the rate at which large very low density lipoproteins were converted to smaller particles within this density interval (i.e., of VLDL). However, subsequent transfer of small very low density lipoproteins to intermediate density particles was retarded by 50%, explaining the abnormal accumulation of VLDL in the patient's plasma. Despite this, intermediate density particles accumulated to a level 2.4-times normal because their subsequent conversion to low density lipoprotein has been almost totally inhibited. Consequently, the plasma concentration of low density lipoprotein was only 10% of normal. On the basis of these observations, hepatic lipase appears to be essential for the conversion of small very low density and intermediate density particles to low density lipoproteins. The pathways of direct plasma catabolism of these species were not affected by the enzyme defect. In vitro studies were performed by adding purified hepatic lipase to the patient's plasma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
To explore the interactions of triacylglycerol and phospholipid hydrolysis in lipoprotein conversions and remodeling, we compared the activities of lipoprotein and hepatic lipases on human VLDL, IDL, LDL, and HDL2. Triacylglycerol and phospholipid hydrolysis by each enzyme were measured concomitantly in each lipoprotein class by measuring hydrolysis of [14C]triolein and [3H]dipalmitoylphosphatidylcholine incorporated into each lipoprotein by lipid transfer processes. Hepatic lipase was 2-3 times more efficient than lipoprotein lipase at hydrolyzing phospholipid both in absolute terms and in relation to triacylglycerol hydrolysis in all lipoproteins. The relationship between phospholipid hydrolysis and triacylglycerol hydrolysis was generally linear until half of particle triacylglycerol was hydrolyzed. For either enzyme acting on a single lipoprotein fraction, the degree of phosphohydrolysis closely correlated with triacylglycerol hydrolysis and was largely independent of the kinetics of hydrolysis, suggesting that triacylglycerol removed from a lipoprotein core is an important determinant of phospholipid removal via hydrolysis by the lipase. Phospholipid hydrolysis relative to triacylglycerol hydrolysis was most efficient in VLDL followed in descending order by IDL, HDL, and LDL. Even with hepatic lipase, phospholipid hydrolysis could not deplete VLDL and IDL of sufficient phospholipid molecules to account for the loss of surface phospholipid that accompanies triacylglycerol hydrolysis and decreasing core volume as LDL is formed (or for conversion of HDL2 to HDL3). Thus, shedding of whole phospholipid molecules, presumably in liposomal-like particles, must be a major mechanism for losing excess surface lipid as large lipoprotein particles are converted to smaller particles. Also, this shedding phenomenon, like phospholipid hydrolysis, is closely related to the hydrolysis of lipoprotein triacylglycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号