首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability of coral reefs to survive the projected increases in temperature due to global warming will depend largely on the ability of corals to adapt or acclimatize to increased temperature extremes over the next few decades. Many coral species are highly sensitive to temperature stress and the number of stress (bleaching) episodes has increased in recent decades. We investigated the acclimatization potential of Acropora millepora, a common and widespread Indo-Pacific hard coral species, through transplantation and experimental manipulation. We show that adult corals, at least in some circumstances, are capable of acquiring increased thermal tolerance and that the increased tolerance is a direct result of a change in the symbiont type dominating their tissues from Symbiodinium type C to D. Our data suggest that the change in symbiont type in our experiment was due to a shuffling of existing types already present in coral tissues, not through exogenous uptake from the environment. The level of increased tolerance gained by the corals changing their dominant symbiont type to D (the most thermally resistant type known) is around 1-1.5 degrees C. This is the first study to show that thermal acclimatization is causally related to symbiont type and provides new insight into the ecological advantage of corals harbouring mixed algal populations. While this increase is of huge ecological significance for many coral species, in the absence of other mechanisms of thermal acclimatization/adaptation, it may not be sufficient to survive climate change under predicted sea surface temperature scenarios over the next 100 years. However, it may be enough to 'buy time' while greenhouse reduction measures are put in place.  相似文献   

2.
The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential exists for this to translate into substantial thermal acclimatization of coral communities, to date there is no evidence to show that this takes place under natural conditions. In this study, we show field evidence of a dramatic change in the symbiont community of Acropora millepora, a common and widespread Indo-Pacific hard coral species, after a natural bleaching event in early 2006 in the Keppel Islands (Great Barrier Reef). Before bleaching, 93.5% (n=460) of the randomly sampled and tagged colonies predominantly harboured the thermally sensitive Symbiodinium type C2, while the remainder harboured a tolerant Symbiodinium type belonging to clade D or mixtures of C2 and D. After bleaching, 71% of the surviving tagged colonies that were initially C2 predominant changed to D or C1 predominance. Colonies that were originally C2 predominant suffered high mortality (37%) compared with D-predominant colonies (8%). We estimate that just over 18% of the original A. millepora population survived unchanged leaving 29% of the population C2 and 71% D or C1 predominant six months after the bleaching event. This change in the symbiont community structure, while it persists, is likely to have substantially increased the thermal tolerance of this coral population. Understanding the processes that underpin the temporal changes in symbiont communities is key to assessing the acclimatization potential of reef corals.  相似文献   

3.
Coral reefs are under extreme threat due to a number of stressors, but temperature increases due to changing climate are the most severe. Rising ocean temperatures coupled with local extremes lead to extensive bleaching, where the coral‐algal symbiosis breaks down and corals may die, compromising the structure and function of reefs. Although the symbiotic nature of the coral colony has historically been a focus of research on coral resilience, the host itself is a foundational component in the response to thermal stress. Fixed effects in the coral host set trait baselines through evolutionary processes, acting on many loci of small effect to create mosaics of thermal tolerance across latitudes and individual coral reefs. These genomic differences can be strongly heritable, producing wide variation among clones of different genotypes or families of a specific larval cross. Phenotypic plasticity is overlaid on these baselines and a growing body of knowledge demonstrates the potential for acclimatization of reef‐building corals through a variety of mechanisms that promote resilience and stress tolerance. The long‐term persistence of coral reefs will require many of these mechanisms to adjust to warmer temperatures within a generation, bridging the gap to reproductive events that allow recombination of standing diversity and adaptive change. Business‐as‐usual climate scenarios will probably lead to the loss of some coral populations or species in the future, so the interaction between intragenerational effects and evolutionary pressure is critical for the survival of reefs.  相似文献   

4.
5.
造礁石珊瑚与其共生藻(Symbiodinium)共生研究进展   总被引:1,自引:0,他引:1  
对造礁石珊瑚与其共生藻共生研究现状及其在全球变化下的适应能力进行较全面的综述.造礁石珊瑚与遗传和生理功能独特的共生藻组成内共生关系是成功演化的范例.近年来对珊瑚共生体的分子系统学研究表明共生藻遗传多样性极为丰富,当前认为共生藻属至少包括8个(A-H)各自包含亚系群的世系或系群.珊瑚-共生藻共生功能体对诸如全球变化引起的海水温度上升等环境变化十分敏感.由于珊瑚以及珊瑚礁面临气候变化的严峻挑战,对珊瑚与其共生藻共生关系和共生功体适应能力的研究将是未来重要的研究领域之一.  相似文献   

6.
Symbiotic algae (Symbiodinium sp.) in scleractinian corals are important in understanding how coral reefs will respond to global climate change. The present paper reports on the diversity of Symbiodinium sp. in 48 scleractinian coral species from 25 genera and 10 families sampled from the Xisha Islands in the South China Sea, which were identified with the use of restriction fragment length polymorphism (RFLP) of the nuclear ribosomal DNA large subunit gene (rDNA). The results showed that: (i) Symbiodinium Clade C was the dominant zooxanthellae in scleractinian corals in the Xisha Islands; (ii) Symbiodinium Clade D was found in the corals Montipora aequituberculata, Galaxea fascicularis, and Plerogyra sinuosa; and (iii) both Symbiodinium Clades C and D were found simultaneously in Montipora digitata, Psammocora contigua, and Galaxeafascicularis. A poor capacity for symbiosis polymorphism, as uncovered by RFLP, in the Xisha Islands indicates that the scleractinian corals have low adaptability to environmental changes. Further studies are needed to investigate zooxanthellae diversity using other molecular markers.  相似文献   

7.
Studying the mechanisms that enable coral populations to inhabit spatially varying thermal environments can help evaluate how they will respond in time to the effects of global climate change and elucidate the evolutionary forces that enable or constrain adaptation. Inshore reefs in the Florida Keys experience higher temperatures than offshore reefs for prolonged periods during the summer. We conducted a common garden experiment with heat stress as our selective agent to test for local thermal adaptation in corals from inshore and offshore reefs. We show that inshore corals are more tolerant of a 6‐week temperature stress than offshore corals. Compared with inshore corals, offshore corals in the 31 °C treatment showed significantly elevated bleaching levels concomitant with a tendency towards reduced growth. In addition, dinoflagellate symbionts (Symbiodinium sp.) of offshore corals exhibited reduced photosynthetic efficiency. We did not detect differences in the frequencies of major (>5%) haplotypes comprising Symbiodinium communities hosted by inshore and offshore corals, nor did we observe frequency shifts (‘shuffling’) in response to thermal stress. Instead, coral host populations showed significant genetic divergence between inshore and offshore reefs, suggesting that in Porites astreoides, the coral host might play a prominent role in holobiont thermotolerance. Our results demonstrate that coral populations inhabiting reefs <10‐km apart can exhibit substantial differences in their physiological response to thermal stress, which could impact their population dynamics under climate change.  相似文献   

8.
The potential of corals to associate with more temperature-tolerant strains of algae (zooxanthellae, Symbiodinium) can have important implications for the future of coral reefs in an era of global climate change. In this study, the genetic identity and diversity of zooxanthellae was investigated at three reefs with contrasting histories of bleaching mortality, water temperature and shading, in the Republic of Palau (Micronesia). Single-stranded conformation polymorphism and sequence analysis of the ribosomal DNA internal transcribed spacer (ITS)1 region was used for genotyping. A chronically warm but partly shaded coral reef in a marine lake that is hydrographically well connected to the surrounding waters harboured only two single-stranded conformation polymorphism profiles (i.e. zooxanthella communities). It consisted only of Symbiodinium D in all 13 nonporitid species and two Porites species investigated, with the remaining five Porites harbouring C*. Despite the high temperature in this lake (> 0.5 degrees above ambient), this reef did not suffer coral mortality during the (1998) bleaching event, however, no bleaching-sensitive coral families and genera occur in the coral community. This setting contrasts strongly with two other reefs with generally lower temperatures, in which 10 and 12 zooxanthella communities with moderate to low proportions of clade D zooxanthellae were found. The data indicate that whole coral assemblages, when growing in elevated seawater temperatures and at reduced irradiance, can be composed of colonies associated with the more thermo-tolerant clade D zooxanthellae. Future increases in seawater temperature might, therefore, result in an increasing prevalence of Symbiodinium phylotype D in scleractinian corals, possibly associated with a loss of diversity in both zooxanthellae and corals.  相似文献   

9.
Conservation genetics and the resilience of reef-building corals   总被引:1,自引:0,他引:1  
Coral reefs have suffered long-term decline due to a range of anthropogenic disturbances and are now also under threat from climate change. For appropriate management of these vulnerable and valuable ecosystems it is important to understand the factors and processes that determine their resilience and that of the organisms inhabiting them, as well as those that have led to existing patterns of coral reef biodiversity. The scleractinian (stony) corals deposit the structural framework that supports and promotes the maintenance of biological diversity and complexity of coral reefs, and as such, are major components of these ecosystems. The success of reef-building corals is related to their obligate symbiotic association with dinoflagellates of the genus Symbiodinium. These one-celled algal symbionts (zooxanthellae) live in the endodermal tissues of their coral host, provide most of the host's energy budget and promote rapid calcification. Furthermore, zooxanthellae are the main primary producers on coral reefs due to the oligotrophic nature of the surrounding waters. In this review paper, we summarize and critically evaluate studies that have employed genetics and/or molecular biology in examining questions relating to the evolution and ecology of reef-building corals and their algal endosymbionts, and that bear relevance to coral reef conservation. We discuss how these studies can focus future efforts, and examine how these approaches enhance our understanding of the resilience of reef-building corals.  相似文献   

10.
Elevated ocean temperatures can cause coral bleaching, the loss of colour from reef‐building corals because of a breakdown of the symbiosis with the dinoflagellate Symbiodinium. Recent studies have warned that global climate change could increase the frequency of coral bleaching and threaten the long‐term viability of coral reefs. These assertions are based on projecting the coarse output from atmosphere–ocean general circulation models (GCMs) to the local conditions around representative coral reefs. Here, we conduct the first comprehensive global assessment of coral bleaching under climate change by adapting the NOAA Coral Reef Watch bleaching prediction method to the output of a low‐ and high‐climate sensitivity GCM. First, we develop and test algorithms for predicting mass coral bleaching with GCM‐resolution sea surface temperatures for thousands of coral reefs, using a global coral reef map and 1985–2002 bleaching prediction data. We then use the algorithms to determine the frequency of coral bleaching and required thermal adaptation by corals and their endosymbionts under two different emissions scenarios. The results indicate that bleaching could become an annual or biannual event for the vast majority of the world's coral reefs in the next 30–50 years without an increase in thermal tolerance of 0.2–1.0°C per decade. The geographic variability in required thermal adaptation found in each model and emissions scenario suggests that coral reefs in some regions, like Micronesia and western Polynesia, may be particularly vulnerable to climate change. Advances in modelling and monitoring will refine the forecast for individual reefs, but this assessment concludes that the global prognosis is unlikely to change without an accelerated effort to stabilize atmospheric greenhouse gas concentrations.  相似文献   

11.
The detrimental effect of climate change induced bleaching on Caribbean coral reefs has been widely documented in recent decades. Several studies have suggested that increases in the abundance of thermally tolerant endosymbionts may ameliorate the effect of climate change on reefs. Symbionts that confer tolerance to temperature also reduce the growth rate of their coral host. Here, we show, using a spatial ecosystem model, that an increment in the abundance of a thermally tolerant endosymbiont (D1a) is unlikely to ensure the persistence of Caribbean reefs, or to reduce their rate of decline, due to the concomitant reduction in growth rate under current thermal stress predictive scenarios. Furthermore, our results suggest that given the documented vital rates of D1a‐dominated corals, increasing dominance of D1a in coral hosts may have a detrimental effect by reducing the resilience of Caribbean reefs, and preventing their long‐term recovery. This is because Caribbean ecosystems appear to be highly sensitive to changes in the somatic growth rate of corals. Alternative outcomes might be expected in systems with different community‐level dynamics such as reefs in the Indo‐Pacific, where the ecological costs of reduced growth rate might be far smaller.  相似文献   

12.
Coral bleaching events threaten coral reef habitats globally and cause severe declines of local biodiversity and productivity. Related to high sea surface temperatures (SST), bleaching events are expected to increase as a consequence of future global warming. However, response to climate change is still uncertain as future low‐latitude climatic conditions have no present‐day analogue. Sea surface temperatures during the Eocene epoch were warmer than forecasted changes for the coming century, and distributions of corals during the Eocene may help to inform models forecasting the future of coral reefs. We coupled contemporary and Eocene coral occurrences with information on their respective climatic conditions to model the thermal niche of coral reefs and its potential response to projected climate change. We found that under the RCP8.5 climate change scenario, the global suitability for coral reefs may increase up to 16% by 2100, mostly due to improved suitability of higher latitudes. In contrast, in its current range, coral reef suitability may decrease up to 46% by 2100. Reduction in thermal suitability will be most severe in biodiversity hotspots, especially in the Indo‐Australian Archipelago. Our results suggest that many contemporary hotspots for coral reefs, including those that have been refugia in the past, spatially mismatch with future suitable areas for coral reefs posing challenges to conservation actions under climate change.  相似文献   

13.
Many ecosystems around the world are rapidly deteriorating due to both local and global pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs through maintenance (e.g., marine‐protected areas, catchment management to improve water quality), restoration, as well as global and national governmental agreements to reduce greenhouse gas emissions (e.g., the 2015 Paris Agreement) is critical for the persistence of coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly declining and other solutions will soon be required. We have recently discussed options for using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or epigenetic programming, and the manipulation of the coral microbiome) as a means to enhance environmental stress tolerance of corals and the success of coral reef restoration efforts. The 2014–2016 global coral bleaching event has sharpened the focus on such interventionist approaches. We highlight the necessity for consideration of alternative (e.g., hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and propose a decision tree for incorporating assisted evolution into restoration initiatives to enhance climate resilience of coral reefs.  相似文献   

14.
One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef‐building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamics of the reef architecture is therefore important to envision the ability of corals to maintain functional habitats in an era of climate change. Here, we develop a mechanistic model of reef topographical complexity for contemporary Caribbean reefs. The model describes the dynamics of corals and other benthic taxa under climate‐driven disturbances (hurricanes and coral bleaching). Corals have a simplified shape with explicit diameter and height, allowing species‐specific calculation of their colony surface and volume. Growth and the mechanical (hurricanes) and biological erosion (parrotfish) of carbonate skeletons are important in driving the pace of extension/reduction in the upper reef surface, the net outcome being quantified by a simple surface roughness index (reef rugosity). The model accurately simulated the decadal changes of coral cover observed in Cozumel (Mexico) between 1984 and 2008, and provided a realistic hindcast of coral colony‐scale (1–10 m) changing rugosity over the same period. We then projected future changes of Caribbean reef rugosity in response to global warming. Under severe and frequent thermal stress, the model predicted a dramatic loss of rugosity over the next two or three decades. Critically, reefs with managed parrotfish populations were able to delay the general loss of architectural complexity, as the benefits of grazing in maintaining living coral outweighed the bioerosion of dead coral skeletons. Overall, this model provides the first explicit projections of reef rugosity in a warming climate, and highlights the need of combining local (protecting and restoring high grazing) to global (mitigation of greenhouse gas emissions) interventions for the persistence of functional reef habitats.  相似文献   

15.
16.
Coral reefs worldwide are threatened by thermal stress caused by climate change. Especially devastating periods of coral loss frequently occur during El Niño‐Southern Oscillation (ENSO) events originating in the Eastern Tropical Pacific (ETP). El Niño‐induced thermal stress is considered the primary threat to ETP coral reefs. An increase in the frequency and intensity of ENSO events predicted in the coming decades threatens a pan‐tropical collapse of coral reefs. During the 1982–1983 El Niño, most reefs in the Galapagos Islands collapsed, and many more in the region were decimated by massive coral bleaching and mortality. However, after repeated thermal stress disturbances, such as those caused by the 1997–1998 El Niño, ETP corals reefs have demonstrated regional persistence and resiliency. Using a 44 year dataset (1970–2014) of live coral cover from the ETP, we assess whether ETP reefs exhibit the same decline as seen globally for other reefs. Also, we compare the ETP live coral cover rate of change with data from the maximum Degree Heating Weeks experienced by these reefs to assess the role of thermal stress on coral reef survival. We find that during the period 1970–2014, ETP coral cover exhibited temporary reductions following major ENSO events, but no overall decline. Further, we find that ETP reef recovery patterns allow coral to persist under these El Niño‐stressed conditions, often recovering from these events in 10–15 years. Accumulative heat stress explains 31% of the overall annual rate of change of living coral cover in the ETP. This suggests that ETP coral reefs have adapted to thermal extremes to date, and may have the ability to adapt to near‐term future climate‐change thermal anomalies. These findings for ETP reef resilience may provide general insights for the future of coral reef survival and recovery elsewhere under intensifying El Niño scenarios.  相似文献   

17.
珊瑚及共生藻在白化过程中的适应机制研究进展   总被引:1,自引:0,他引:1  
珊瑚礁生态系统具有非常重要的生态学功能。但是随着全球气候变暖和CO2浓度的升高,珊瑚白化事件越来越频繁,珊瑚礁生态系统面临严重的危机。影响珊瑚白化的重要因子主要有海水温度的异常(过高或过低),太阳辐射与紫外线辐射,海水盐度的偏离,珊瑚疾病,海洋污染,长棘海星的爆发,人类的过度捕鱼和全球CO2浓度升高等。其中,海洋表面水体温度(SST)的异常升高为珊瑚白化的主要因素。珊瑚主要是通过珊瑚与共生藻的生理适应机制以及更换共生藻基因型机制两种方式来适应环境胁迫的。生理适应机制主要通过叶黄素循环、珊瑚色素荧光(热)、活性氧清除系统(自由基)、分泌紫外线吸收物质MAAs(紫外光)、产生热休克蛋白HspS(热)来实现的。珊瑚共生藻基因型更换适应机制是指珊瑚的适应性白化假说。珊瑚的适应性白化假说还有很多争议,还需要更多的实验证据提供支持。未来的研究重点将在珊瑚白化过程中共生藻-珊瑚共生功能体作为整体性的研究,尤其是珊瑚宿主在白化过程中对共生功能体作出贡献的研究。  相似文献   

18.

Background  

Worldwide, coral reefs are in decline due to a range of anthropogenic disturbances, and are now also under threat from global climate change. Virtually nothing is currently known about the genetic factors that might determine whether corals adapt to the changing climate or continue to decline. Quantitative genetics studies aiming to identify the adaptively important genomic loci will require a high-resolution genetic linkage map. The phylogenetic position of corals also suggests important applications for a coral genetic map in studies of ancestral metazoan genome architecture.  相似文献   

19.
Warming ocean temperatures are considered to be an important cause of the degradation of the world's coral reefs. Marine protected areas (MPAs) have been proposed as one tool to increase coral reef ecosystem resistance and resilience (i.e. recovery) to the negative effects of climate change, yet few studies have evaluated their efficacy in achieving these goals. We used a high resolution 4 km global temperature anomaly database from 1985–2005 and 8040 live coral cover surveys on protected and unprotected reefs to determine whether or not MPAs have been effective in mitigating temperature‐driven coral loss. Generally, protection in MPAs did not reduce the effect of warm temperature anomalies on coral cover declines. Shortcomings in MPA design, including size and placement, may have contributed to the lack of an MPA effect. Empirical studies suggest that corals that have been previously exposed to moderate levels of thermal stress have greater adaptive capacity and resistance to future thermal stress events. Existing MPAs protect relatively fewer reefs with moderate anomaly frequencies, potentially reducing their effectiveness. However, our results also suggest that the benefits from MPAs may not be great enough to offset the magnitude of losses from acute thermal stress events. Although MPAs are important conservation tools, their limitations in mitigating coral loss from acute thermal stress events suggest that they need to be complemented with policies aimed at reducing the activities responsible for climate change.  相似文献   

20.
Some reef-building corals have been shown to respond to environmental change by shifting the composition of their algal symbiont (genus Symbiodinium) communities. These shifts have been proposed as a potential mechanism by which corals might survive climate stressors, such as increased temperatures. Conventional molecular methods suggest this adaptive capacity may not be widespread because few (~25%) coral species have been found to associate with multiple Symbiodinium clades. However, these methods can fail to detect low abundance symbionts (typically less than 10-20% of the total algal symbiont community). To determine whether additional Symbiodinium clades are present, but are not detected using conventional techniques, we applied a high-resolution, real-time PCR assay to survey Symbiodinium (in clades A-D) from 39 species of phylogenetically and geographically diverse scleractinian corals. This survey included 26 coral species thought to be restricted to hosting a single Symbiodinium clade ('symbiotic specialists'). We detected at least two Symbiodinium clades (C and D) in at least one sample of all 39 coral species tested; all four Symbiodinium clades were detected in over half (54%) of the 26 symbiotic specialist coral species. Furthermore, on average, 68 per cent of all sampled colonies within a given coral species hosted two or more symbiont clades. We conclude that the ability to associate with multiple symbiont clades is common in scleractinian (stony) corals, and that, in coral-algal symbiosis, 'specificity' and 'flexibility' are relative terms: specificity is rarely absolute. The potential for reef corals to adapt or acclimatize to environmental change via symbiont community shifts may therefore be more phylogenetically widespread than has previously been assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号