首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Members of the YABBY gene family specify abaxial cell fate in Arabidopsis.   总被引:15,自引:0,他引:15  
Lateral organs produced by shoot apical and flower meristems exhibit a fundamental abaxial-adaxial asymmetry. We describe three members of the YABBY gene family, FILAMENTOUS FLOWER, YABBY2 and YABBY3, isolated on the basis of homology to CRABS CLAW. Each of these genes is expressed in a polar manner in all lateral organ primordia produced from the apical and flower meristems. The expression of these genes is precisely correlated with abaxial cell fate in mutants in which abaxial cell fates are found ectopically, reduced or eliminated. Ectopic expression of either FILAMENTOUS FLOWER or YABBY3 is sufficient to specify the development of ectopic abaxial tissues in lateral organs. Conversely, loss of polar expression of these two genes results in a loss of polar differentiation of tissues in lateral organs. Taken together, these observations indicate that members of this gene family are responsible for the specification of abaxial cell fate in lateral organs of Arabidopsis. Furthermore, ectopic expression studies suggest that ubiquitous abaxial cell fate and maintenance of a functional apical meristem are incompatible.  相似文献   

3.
4.
5.
Distinct mechanisms promote polarity establishment in carpels of Arabidopsis.   总被引:19,自引:0,他引:19  
Y Eshed  S F Baum  J L Bowman 《Cell》1999,99(2):199-209
  相似文献   

6.
7.
小麦TaCRC基因的克隆及表达分析   总被引:2,自引:1,他引:1  
以小麦心皮为材料,利用RT-PCR方法分离出一个新的YABBY基因TaCRC,并利用Northern杂交对TaCRC在不同组织中的表达模式进行分析.结果显示:该基因全长1 105 bp,编码199个氨基酸.TaCRC具有YABBY家族典型的结构域,即N端含有C2C2锌指结构域,C端含有YABBY结构域.其氨基酸序列与水稻的 DROOPING LEAF(DL)、拟南芥的CRABS CLAW(CRC)和金鱼草的AmCRC的氨基酸具有较高的一致性.TaCRC在心皮中特异表达,类似于拟南芥的CRC的表达模式.研究表明,TaCRC是小麦中的CRC同源基因.  相似文献   

8.
9.
10.
11.
12.
13.
14.
INNER NO OUTER (INO) expression is limited to the abaxial cell layer of the incipient and developing outer integument in Arabidopsis ovules. Using deletion analysis of the previously defined INO promoter (P-INO), at least three distinct regions that contribute to the endogenous INO expression pattern were identified. One such positive element, designated POS9, which comprises at least three distinct subelements, was found to include sufficient information to duplicate the INO expression pattern when four or more copies were used in conjunction with a heterologous minimal promoter. While known regulators of INO, including INO, SUPERMAN, BELL1, and AINTEGUMENTA, did not detectably interact with POS9 in yeast one-hybrid assays, two groups of proteins that interact specifically with POS9 were identified in one-hybrid library screens. Members of one group include C2H2 zinc finger motifs. Members of the second group contain a novel, conserved DNA-binding region and were designated the BASIC PENTACYSTEINE (BPC) proteins on the basis of conserved features of this region. The BPC proteins are nuclear localized and specifically bind in vitro to GA dinucleotide repeats located within POS9. The widespread expression patterns of the BPCs and the large number of GA repeat potential target sequences in the Arabidopsis genome indicate that BPC proteins may affect expression of genes involved in a variety of plant processes.  相似文献   

15.
16.
Watanabe K  Okada K 《The Plant cell》2003,15(11):2592-2602
Our previous studies showed that a member of the YABBY gene family, FILAMENTOUS FLOWER (FIL), plays a role in specifying the abaxial side tissues in the development of lateral organs such as cotyledons, leaves, young flower buds, and flower organs. We examined the expression pattern of FIL and found a temporal change of expression domains in the developmental process of the floral meristem. We also examined the cis control regions by constructing a series of transgenic plants that carry green fluorescent protein under the control of the FIL promoter with several types of deletions, base changes, and tandem repeats and showed that the unique expression pattern is dependent on at least two cis-acting elements in the 5' regulatory region. One element proximal to the FIL gene would be responsible for the expression of both the abaxial and adaxial sides, and the other element of the 12-bp sequence would work to repress expression on the adaxial side.  相似文献   

17.
18.
In this article, we report that carpel specification in the Oryza sativa (rice) flower is regulated by the floral homeotic gene DROOPING LEAF (DL) that is distinct from the well-known ABC genes. Severe loss-of-function mutations of DL cause complete homeotic transformation of carpels into stamens. Molecular cloning reveals that DL is a member of the YABBY gene family and is closely related to the CRABS CLAW (CRC) gene of Arabidopsis thaliana. DL is expressed in the presumptive region (carpel anlagen), where carpel primordia would initiate, and in carpel primordia. These results suggest that carpel specification is regulated by DL in rice flower development. Whereas CRC plays only a partial role in carpel identity, DL may have been recruited to have the more essential function of specifying carpels during the evolution of rice. We also show that DL interacts antagonistically with class B genes and controls floral meristem determinacy. In addition, severe and weak dl alleles fail to form a midrib in the leaf. The phenotypic analysis of dl mutants, together with analyses of the spatial expression patterns and ectopic expression of DL, demonstrate that DL regulates midrib formation by promoting cell proliferation in the central region of the rice leaf.  相似文献   

19.
20.
To help understand the process of carpel morphogenesis, the roles of three carpel development genes have been partitioned genetically. Mutants of CRABS CLAW cause the gynoecium to develop into a wider but shorter structure, and the two carpels are unfused at the apex. Mutants of a second gene, SPATULA, show reduced growth of the style, stigma, and septum, and the transmitting tract is absent. Double mutants of crabs claw and spatula with homeotic mutants that develop ectopic carpels demonstrate that CRABS CLAW and SPATULA are necessary for, and inseparable from, carpel development, and that their action is negatively regulated by A and B organ identity genes. The third carpel gene studied, AGAMOUS, encodes C function that has been proposed to fully specify carpel identity. When AGAMOUS function is removed together with the A class gene APETALA2, however, the organs retain many carpelloid properties, suggesting that other genes are also involved. We show here that further mutant disruption of both CRABS CLAW and SPATULA function removes remaining carpelloid properties, revealing that the three genes together are necessary to generate the mature gynoecium. In particular, AGAMOUS is required to specify the identity of the carpel wall and to promote the stylar outgrowth at the apex, CRABS CLAW suppresses radial growth of the developing gynoecium but promotes its longitudinal growth, and SPATULA supports development of the carpel margins and tissues derived from them. The three genes mostly act independently, although there is genetic evidence that CRABS CLAW enhances AGAMOUS and SPATULA function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号