首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that is known to modulate various aspects of endothelial cell (EC) biology. Retinal pigment epithelium (RPE) is important for regulating angiogenesis of choriocapillaris and one of the main cell sources of TGF-β secretion, particularly TGF-β2. However, it is largely unclear whether and how TGF-β2 affects angiogenic responses of ECs. In the current study, we demonstrated that TGF-β2 reduces vascular endothelial growth factor receptor-2 (VEGFR-2) expression in ECs and thereby inhibits vascular endothelial growth factor (VEGF) signaling and VEGF-induced angiogenic responses such as EC migration and tube formation. We also demonstrated that the reduction of VEGFR-2 expression by TGF-β2 is due to the suppression of JNK signaling. In coculture of RPE cells and ECs, RPE cells decreased VEGFR-2 levels in ECs and EC migration. In addition, we showed that TGF-β2 derived from RPE cells is involved in the reduction of VEGFR-2 expression and inhibition of EC migration. These results suggest that TGF-β2 plays an important role in inhibiting the angiogenic responses of ECs during the interaction between RPE cells and ECs and that angiogenic responses of ECs may be amplified by a decrease in TGF-β2 expression in RPE cells under pathologic conditions.  相似文献   

2.
Mechanotransduction in endothelial cell migration   总被引:3,自引:0,他引:3  
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. EC migration can be regulated by different mechanisms such as chemotaxis, haptotaxis, and mechanotaxis. This review will focus on fluid shear stress-induced mechanotransduction during EC migration. EC migration and mechanotransduction can be modulated by cytoskeleton, cell surface receptors such as integrins and proteoglycans, the chemical and physical properties of extracellular matrix (ECM) and cell-cell adhesions. The shear stress applied on the luminal surface of ECs can be sensed by cell membrane and associated receptor and transmitted throughout the cell to cell-ECM adhesions and cell-cell adhesions. As a result, shear stress induces directional migration of ECs by promoting lamellipodial protrusion and the formation of focal adhesions (FAs) at the front in the flow direction and the disassembly of FAs at the rear. Persistent EC migration in the flow direction can be driven by polarized activation of signaling molecules and the positive feedback loops constituted by Rho GTPases, cytoskeleton, and FAs at the leading edge. Furthermore, shear stress-induced EC migration can overcome the haptotaxis of ECs. Given the hemodynamic environment of the vascular system, mechanotransduction during EC migration has a significant impact on vascular development, angiogenesis, and vascular wound healing.  相似文献   

3.
Li S  Bhatia S  Hu YL  Shiu YT  Li YS  Usami S  Chien S 《Biorheology》2001,38(2-3):101-108
The migration of vascular endothelial cells (ECs) plays an important role in vascular remodeling. Here we studied the effects of cell morphology on the migration of bovine aortic ECs by culturing cells on micropatterned strips of collagen matrix (60-, 30-, and 15-microm wide). The spreading areas of the cells on 15- and 30-microm wide strips were 30% lower than those on 60-microm wide strips and unpatterned collagen. The cells on 15-microm wide strips completely aligned in the direction of the strip, and had significantly lower shape index than those in all other groups. On strips of all widths, ECs tended to migrate in the direction of strips. ECs on 15-microm wide strips had highest speed, particularly in the direction of the strip. Vinculin staining showed that the leading edge of ECs on 15-microm wide strips had focal adhesions that were oriented with their lamellipodial protrusion and the direction of cell migration; this arrangement of the focal adhesions may promote EC migration. The present study provides direct evidence on the role of cell morphology in EC migration, and will help us to understand the mechanisms of EC migration during angiogenesis and wound healing.  相似文献   

4.
The formation of vascular structures requires precisely controlled proliferation of endothelial cells (ECs), which occurs through strict regulation of the cell cycle. However, the mechanism by which EC proliferation is coordinated during vascular formation remains largely unknown, since a method of analyzing cell-cycle progression of ECs in living animals has been lacking. Thus, we devised a novel system allowing the cell-cycle progression of ECs to be visualized in vivo. To achieve this aim, we generated a transgenic zebrafish line that expresses zFucci (zebrafish fluorescent ubiquitination-based cell cycle indicator) specifically in ECs (an EC-zFucci Tg line). We first assessed whether this system works by labeling the S phase ECs with EdU, then performing time-lapse imaging analyses and, finally, examining the effects of cell-cycle inhibitors. Employing the EC-zFucci Tg line, we analyzed the cell-cycle progression of ECs during vascular development in different regions and at different time points and found that ECs proliferate actively in the developing vasculature. The proliferation of ECs also contributes to the elongation of newly formed blood vessels. While ECs divide during elongation in intersegmental vessels, ECs proliferate in the primordial hindbrain channel to serve as an EC reservoir and migrate into basilar and central arteries, thereby contributing to new blood vessel formation. Furthermore, while EC proliferation is not essential for the formation of the basic framework structures of intersegmental and caudal vessels, it appears to be required for full maturation of these vessels. In addition, venous ECs mainly proliferate in the late stage of vascular development, whereas arterial ECs become quiescent at this stage. Thus, we anticipate that the EC-zFucci Tg line can serve as a tool for detailed studies of the proliferation of ECs in various forms of vascular development in vivo.  相似文献   

5.
6.
Lymphocyte trafficking and migration through vascular endothelial cells (ECs) in secondary lymphoid tissues is critical for immune protection. In the present study, we investigate the role of nectin cell adhesion molecules for the migration of lymphocytes through ECs. Nectins are key players for the establishment of homotypic and heterotypic cell to cell contacts; they are required for cell to cell adherens junction formation and take part in the transendothelial migration of monocytes during the step of diapedesis, when monocytes migrate through EC junctions. We first show that Nectin-3 (CD113) is the only nectin expressed by T lymphocytes and since nectins are expressed on ECs we explored Nectin-3 potential functions in lymphocyte: EC interactions. We demonstrate that Nectin-2, expressed on ECs, is the major counter-receptor of Nectin-3. A soluble form of Nectin-3 binds to Nectin-2 localized at EC junctions and blocking Nectin-2 trans-interactions with monoclonal antibodies abolishes the binding of soluble Nectin-3 to ECs. Nectin-2 is expressed on High Endothelial venules (HEVs), where lymphocyte homing occurs in vivo. Finally, we show that Nectin-3 trans-interaction with Nectin-2 is essential for the process of lymphocyte transendothelial migration in vitro as targeting with blocking monoclonal antibodies either Nectin-3, expressed on lymphocytes, or Nectin-2, expressed on ECs, inhibits lymphocyte extravasation. The nectin family of CAMs is important for the regulation of endothelial barrier functions and transendothelial migration of immune cells. Our results demonstrate for the first time that Nectin-3 trans-interacts with Nectin-2 to promote lymphocyte and monocyte extravasation.  相似文献   

7.
Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs), orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin) structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs), enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation.  相似文献   

8.
Endothelial dysfunction is decisive and leads to the development of several inflammatory diseases. Endotoxemia-derived sepsis syndrome exhibits a broad inflammation-induced endothelial dysfunction. We reported previously that the endotoxin, lipopolysaccharide (LPS), induces the conversion of endothelial cells (ECs) into activated fibroblasts, showing a myofibroblast-like protein expression profile. Enhanced migration is a hallmark of myofibroblast function. However, the mechanism involved in LPS-induced EC migration is no totally understood. Some studies have shown that the transient receptor potential melastatin 7 (TRPM7) ion channel is involved in fibroblast and tumor cell migration through the regulation of calcium influx. Furthermore, LPS modulates TRPM7 expression. However, whether TRPM7 is involved in LPS-induced EC migration remains unknown.Here, we study the participation of LPS as an inducer of EC migration and study the mechanism underlying evaluating the participation of the TRPM7 ion channel.Our results demonstrate that LPS induced EC migration in a dose-dependent manner. Furthermore, this migratory process was mediated by the TLR-4/NF-κB pathway and the generation of ROS through the PKC-activated NAD(P)H oxidase. In addition, LPS increased the intracellular calcium level and the number of focal adhesion kinase (FAK)-positive focal adhesions in EC. Finally, we demonstrate that using TRPM7 blockers or suppressing TRPM7 expression through siRNA successfully inhibits the calcium influx and the LPS-induced EC migration.These results point out TRPM7 as a new target in the drug design for several inflammatory diseases that impair vascular endothelium function.  相似文献   

9.
Angiogenesis is a complex process, which is accomplished by reiteration of modules such as sprouting, elongation and bifurcation, that configures branching vascular networks. However, details of the individual and collective behaviors of vascular endothelial cells (ECs) during angiogenic morphogenesis remain largely unknown. Herein, we established a time-lapse imaging and computer-assisted analysis system that quantitatively characterizes behaviors in sprouting angiogenesis. Surprisingly, ECs moved backwards and forwards, overtaking each other even at the tip, showing an unknown mode of collective cell movement with dynamic 'cell-mixing'. Mosaic analysis, which enabled us to monitor the behavior of individual cells in a multicellular structure, confirmed the 'cell-mixing' phenomenon of ECs that occurs at the whole-cell level. Furthermore, an in vivo EC-tracking analysis revealed evidence of cell-mixing and overtaking at the tip in developing murine retinal vessels. In parametrical analysis, VEGF enhanced tip cell behavior and directed EC migration at the stalk during branch elongation. These movements were counter-regulated by EC-EC interplay via γ-secretase-dependent Dll4-Notch signaling, and might be promoted by EC-mural cell interplay. Finally, multiple regression analysis showed that these molecule-mediated tip cell behaviors and directed EC migration contributed to effective branch elongation. Taken together, our findings provide new insights into the individual and collective EC movements driving angiogenic morphogenesis. The methodology used for this analysis might serve to bridge the gap in our understanding between individual cell behavior and branching morphogenesis.  相似文献   

10.
The differentiation, growth, and survival of endothelial cells (ECs) are regulated by multiple signalling pathways, such as vascular endothelial growth factors (VEGFs) and angiopoietins through their receptor tyrosine kinases, VEGF receptor (VEGFR) 2 and Tie2, respectively. Bone morphogenetic proteins (BMPs), members of the transforming growth factor (TGF)-beta family, have been implicated in the development and maintenance of vascular systems. However, their effects on EC proliferation remain to be elucidated. In the present study, we show that BMPs induce the proliferation and migration of mouse embryonic stem cell (ESC)-derived endothelial cells (MESECs) and human microvascular endothelial cells (HMECs). Addition of BMP-4 to culture induced significant proliferation and migration of both types of ECs. BMP-4 also increased the expression and phosphorylation of VEGFR2 and Tie2. These findings suggest that BMP signalling activates endothelium via activation of VEGF/VEGFR2 and Angiopoietin/Tie2 signalling.  相似文献   

11.
The serine/threonine protein kinase phosphoinositide-dependent kinase 1 (PDK1) plays a central role in cellular signaling by phosphorylating members of the AGC family of kinases, including PKB/Akt. We now present evidence showing that PDK1 is essential for the motility of vascular endothelial cells (ECs) and that it is involved in the regulation of their chemotaxis. ECs differentiated from mouse embryonic stem cells lacking PDK1 completely lost their ability to migrate in vitro in response to vascular endothelial growth factor-A (VEGF-A). In addition, PDK1(-/-) embryoid bodies exhibit evident developmental and vascular defects that can be attributed to a reduced cell migration. Moreover, the overexpression of PDK1 increased the EC migration induced by VEGF-A. We propose a model of spatial distribution of PDK1 and Akt in which the synthesis of phosphatidylinositol 3,4,5 triphosphate at plasma membrane by activation of phosphoinositide 3-kinase recruits both proteins at the leading edge of the polarized ECs and promotes cell chemotaxis. These findings establish a mechanism for the spatial localization of PDK1 and its substrate Akt to regulate directional migration.  相似文献   

12.
Glycogen synthase kinase-3beta (GSK3beta) plays important roles in metabolism, embryonic development, and tumorigenesis. Here we investigated the role of GSK3beta signaling in vascular biology by examining its function in endothelial cells (ECs). In EC, the regulatory phosphorylation of GSK3beta was found to be under the control of phosphoinositide 3-kinase-, MAPK-, and protein kinase A-dependent signaling pathways. The transduction of a nonphosphorylatable constitutively active mutant of GSKbeta promoted apoptosis under the conditions of prolonged serum deprivation or the disruption of cell-matrix attachments. Conversely, the transduction of catalytically inactive GSK3beta promoted EC survival under the conditions of cellular stress. Under normal cell culture conditions, the activation of GSK3beta signaling inhibited the migration of EC to vascular endothelial growth factor or basic fibroblast growth factor. Angiogenesis was inhibited by GSK3beta activation in an in vivo Matrigel plug assay, whereas the inhibition of GSK3beta signaling enhanced capillary formation. These data suggest that GSK3beta functions at the nodal point of converging signaling pathways in EC to regulate vessel growth through its control of vascular cell migration and survival.  相似文献   

13.
beta1 integrin (encoded by Itgb1) is established as a regulator of angiogenesis based upon the phenotypes of complete knockouts of beta1 heterodimer partners or ligands and upon antibody inhibition studies in mice. Its direct function in endothelial cells (ECs) in vivo has not been determined because Itgb1(-/-) embryos die before vascular development. Excision of Itgb1 from ECs and a subset of hematopoietic cells, using Tie2-Cre, resulted in abnormal vascular development by embryonic day (e) 8.5 and lethality by e10.5. Tie1-Cre mediated a more restricted excision of Itgb1 from ECs and hematopoietic cells and resulted in embryonic lethal vascular defects by e11.5. Capillaries of the yolk sacs were disorganized, and the endothelium of major blood vessels and of the heart was frequently discontinuous in mutant embryos. We also found similar vascular morphogenesis defects characterized by EC disorganization in embryonic explants and isolated ECs. Itgb1-null ECs were deficient in adhesion and migration in a ligand-specific fashion, with impaired responses to laminin and collagens, but not to fibronectin. Deletion of Itgb1 reduced EC survival, but did not affect proliferation. Our findings demonstrate that beta1 integrin is essential for EC adhesion, migration and survival during angiogenesis, and further validate that therapies targeting beta1 integrins may effectively impair neovascularization.  相似文献   

14.
Endothelial cell (EC) movement is an initiating and rate-limiting event in the neogenesis and repair of blood vessels. Here, we explore the hypothesis that microviscosity of the plasma membrane (PM) is a key physiological regulator of cell movement. Aortic ECs treated with membrane-active agents, such as alpha-tocopherol, cholesterol and lysophospholipids, exhibited a biphasic dependency on membrane microviscosity, in which moderate increases enhanced EC migration, but increases beyond a threshold markedly inhibited migration. Surprisingly, angiogenic growth factors, that is, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), also increased membrane microviscosity, as measured in live cells by fluorescence recovery after photobleaching (FRAP). The localization of Rac to the PM was modified in cells treated with membrane-active agents or growth factors, suggesting a molecular mechanism for how membrane microviscosity influences cell movement. Our data show that angiogenic growth factors, as well as certain lipophilic molecules, regulate cell motility through alterations in membrane properties and the consequent relocalization of critical signalling molecules to membranes.  相似文献   

15.
16.
Maintenance of the endothelial cell (EC) layer of the vessel wall is essential for proper functioning of the vessel and prevention of vascular disorders. Replacement of damaged ECs could occur through division of surrounding ECs. Furthermore, EC progenitor cells (EPCs), derived from the bone marrow and circulating in the bloodstream, can differentiate into ECs. Therefore, these cells might also play a role in maintenance of the endothelial layer in the vascular system. The proliferative potential of both cell types is limited by shortening of telomeric DNA. Accelerated telomere shortening might lead to senescent vascular wall cells and eventually to the inability of the endothelium to maintain a continuous monolayer. The aim of this study was to describe the dynamics of EC damage and repair and telomere shortening by a mathematical model. In the model, ECs were integrated in a two-dimensional structure resembling the endothelium in a large artery. Telomere shortening was described as a stochastic process with oxidative damage as the main cause of attrition. Simulating the model illustrated that increased cellular turnover or elevated levels of oxidative stress could lead to critical telomere shortening and senescence at an age of 65 yr. The model predicted that under those conditions the EC layer could display defects, which could initiate severe vascular wall damage in reality. Furthermore, simulations showed that 5% progenitor cell homing/yr can significantly delay the EC layer defects. This stresses the potential importance of EPC number and function to the maintenance of vascular wall integrity during the human life span.  相似文献   

17.
18.
Interaction between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) plays an important role in vascular biology. Cell adhesion to the extracellular matrix provides critical environmental information necessary for cell migration, proliferation, differentiation and survival. In this study, the role of VSMCs in EC adhesion was demonstrated by using a co-culture system. It was shown that the co-cultured VSMCs significantly increased the number of adherent ECs, and induced an increase of total focal adhesion area in ECs. These changes were associated with a low microtubule-to-tubulin ratio, and activation of extracellular signal-regulated kinase (ERK) and paxillin. Both the EC adhesion state and activation of the ERK/paxillin pathway by the co-cultured VSMCs could be inhibited by trichostatin A (TSA). As an inhibitor of histone deacetylase, TSA acts by modulating microtubule polymerization state. Taken together, these data suggest that the co-cultured VSMCs promote EC adhesion by modulating the microtubule cytoskeleton polymerization state, which in turn activates the ERK pathway and up-regulates phosphorylated paxillin expression to accelerate focal adhesion formation.  相似文献   

19.
Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration.  相似文献   

20.
In this study, we examined the effect of overexpression of tissue inhibitor of metalloproteinase (TIMP)-3 on the angiogenic phenotype expressed by vascular endothelial cells (ECs). ECs were infected with a recombinant adenovirus carrying the TIMP-3 gene at various multiplicities of infection, and TIMP-3 expression by transfected cells was confirmed by Western blotting and reverse zymography. At transfection doses of 6.25, 12.5, 25, 50 and 100 multiplicity of infection, EC migration was reduced to 66, 45, 25, 17 and 5%, respectively, of that of the control. At the multiplicity of infection of 20, capillary tube length was reduced by 80% compared to that of the control. Thus, expression of TIMP-3 by ECs effectively inhibited EC migration and tube formation. Overexpression of TIMP-3 by ECs may be considered a gene therapy strategy for the treatment of pathological angiogenesis such as cancer and diabetic retinopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号