首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous study demonstrated the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in transporting bicarbonate that is necessary for sperm capacitation; however, whether its involvement is direct or indirect remains unclear. The present study investigated the possibility of a Cl-/HCO3- exchanger (solute carrier family 26, number 3 [SLC26A3]) operating with CFTR during guinea pig sperm capacitation. Incubating sperm in media with various concentrations of Cl- resulted in varied percentages of capacitated sperm in a concentration-dependent manner. Depletion of Cl-, even in the presence of HCO3-, abolished sperm capacitation and vice versa, indicating the involvement of both anions in the process. Capacitation-associated HCO3--dependent events, including increased intracellular pH, cAMP production, and protein tyrosine phosphorylation, also depend on Cl- concentrations. Similar Cl- dependence and inhibitor sensitivity were observed for sperm-hyperactivated motility and for sperm-egg fusion. The expression and localization of CFTR and SLC26A3 were demonstrated using immunostaining and Western blot analysis. Taken together, our results indicate that Cl- is required for the entry of HCO3- that is necessary for sperm capacitation, implicating the involvement of SLC26A3 in transporting HCO3-, with CFTR providing the recycling pathway for Cl-.  相似文献   

2.
Members of the SLC26 transporter family play an essential role in several epithelial functions, as revealed by diseases associated with mutations in members of the family. Several members were shown to function as Cl(-) and HCO(3)(-) transporters that likely play an important role in epithelial Cl(-) absorption and HCO(3)(-) secretion. However, the mechanism of most transporters is not well understood. SLC26A7 is a member of the SLC26 transporter family reported to be expressed in the basolateral membrane of the cortical collecting duct and parietal cells and functions as a coupled Cl(-)/HCO(3)(-) exchanger. In the present work we examined the transport properties of SLC26A7 to determine its transport characteristics and electrogenicity. We found that when expressed in Xenopus oocytes or HEK293 cells SLC26A7 functions as a pH(i)-regulated Cl(-) channel with minimal OH(-)/HCO(3)(-) permeability. Expression of SLC26A7 in oocytes or HEK293 cells generated a Cl(-) current with linear I/V and an instantaneous current that was voltage- and time-independent. Based on measurement of reversal potential the selectivity of SLC26A7 is NO(3)(-)>Cl(-)=Br(-)=I(-)>SO(4)(2-)=Glu(-), although I(-) partially inhibited the current. Incubating the cells with HCO(3)(-) or butyrate acidified the cytosol and increased the selectivity of SLC26A7 for Cl(-). Measurement of membrane potential and pH(i) showed minimal OH(-) and HCO(3)(-) transport by SLC26A7 when the cells were incubated in Cl(-)-containing or Cl(-)-free media. The activity of SLC26A7 was inhibited by all inhibitors of anion transporters tested, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, diphenylamine-2-carboxylic acid, and glybenclamide. These findings reveal that SLC26A7 functions as a unique Cl(-) channel that is regulated by intracellular H(+).  相似文献   

3.
SLC26 proteins function as anion exchangers and Cl(-) channels. SLC26A9 has been proposed to be a constitutively active and CFTR-regulated anion conductance in human bronchial epithelia. This positive interaction between two Cl(-) channels has been questioned by others and evidence has been provided that CFTR rather inhibits the transport activity of SLC26A9. We therefore examined the functional interaction between CFTR and SLC26A9 in polarized airway epithelial cells and in non-polarized HEK293 cells expressing CFTR and SLC26A9. We found that SLC26A9 provides a constitutively active basal Cl(-) conductance in polarized grown CFTR-expressing CFBE airway epithelial cells, but not in cells expressing F508del-CFTR. In polarized CFTR-expressing cells, SLC26A9 also contributes to both Ca(2+) - and CFTR-activated Cl(-) secretion. In contrast in non-polarized HEK293 cells co-expressing CFTR/SLC26A9, the baseline Cl(-) conductance provided by SLC26A9 was inhibited during activation of CFTR. SLC26A9 and CFTR behave differentially in polarized and non-polarized cells, which may explain earlier conflicting data.  相似文献   

4.
The unusually low 78% amino acid identity between the orthologous human SLC26A6 and mouse slc26a6 polypeptides prompted systematic comparison of their anion transport functions in Xenopus oocytes. Multiple human SLC26A6 variant polypeptides were also functionally compared. Transport was studied as unidirectional fluxes of (36)Cl(-), [(14)C]oxalate, and [(35)S]sulfate; as net fluxes of HCO(3)(-) by fluorescence ratio measurement of intracellular pH; as current by two-electrode voltage clamp; and as net Cl(-) flux by fluorescence intensity measurement of relative changes in extracellular and intracellular [Cl(-)]. Four human SLC26A6 polypeptide variants each exhibited rates of bidirectional [(14)C]oxalate flux, Cl(-)/HCO(3)(-) exchange, and Cl(-)/OH(-) exchange nearly equivalent to those of mouse slc26a6. Cl(-)/HCO(3)(-) exchange by both orthologs was cAMP-sensitive, further enhanced by coexpressed wild type cystic fibrosis transmembrane regulator but inhibited by cystic fibrosis transmembrane regulator DeltaF508. However, the very low rates of (36)Cl(-) and [(35)S]sulfate transport by all active human SLC26A6 isoforms contrasted with the high rates of the mouse ortholog. Human and mouse orthologs also differed in patterns of acute regulation. Studies of human-mouse chimeras revealed cosegregation of the high (36)Cl(-) transport phenotype with the transmembrane domain of mouse slc26a6. Mouse slc26a6 and human SLC26A6 each mediated electroneutral Cl(-)/HCO(3)(-) and Cl(-)/OH(-) exchange. In contrast, whereas Cl(-)/oxalate exchange by mouse slc26a6 was electrogenic, that mediated by human SLC26A6 appeared electroneutral. The increased currents observed in oocytes expressing either mouse or human ortholog were pharmacologically distinct from the accompanying monovalent anion exchange activities. The human SLC26A6 polypeptide variants SLC26A6c and SLC26A6d were inactive as transporters of oxalate, sulfate, and chloride. Thus, the orthologous mouse and human SLC26A6 proteins differ in anion selectivity, transport mechanism, and acute regulation, but both mediate electroneutral Cl(-)/HCO(3)(-) exchange.  相似文献   

5.
The secretin-stimulated human pancreatic duct secretes HCO(3)(-)-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO(3)(-) secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl(-)/HCO(3)(-) exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ~140 mM HCO(3)(-) or more, mouse and rat ducts secrete ~40-70 mM HCO(3)(-). Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO(3)(-) secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl(-)/Cl(-) exchange and electroneutral Cl(-)/HCO(3)(-) exchange. gpSlc26a6 in Xenopus oocytes mediated Cl(-)/Cl(-) exchange and bidirectional exchange of Cl(-) for oxalate and sulfate, but Cl(-)/HCO(3)(-) exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl(-), oxalate, and sulfate transport but no detectable Cl(-)/HCO(3)(-) exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of (36)Cl(-) influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO(3)(-) secretion in species that share a high HCO(3)(-) secretory output.  相似文献   

6.
In inflamed colonic mucosa, the equilibrium between absorptive and secretory functions for electrolyte and salt transport is disturbed. We compared the expression of three major mediators of the intestinal salt transport between healthy and inflamed colonic mucosa to understand the pathophysiology of diarrhea in inflammatory bowel disease. Expression levels of the cystic fibrosis transmembrane regulator (CFTR) (Cl- channel), SLC26A3 (Cl-/HCO exchanger) and SLC9A3 (Na+/H+ exchanger) mRNAs were measured by real-time quantitative RT-PCR in peroperative colonic samples from controls (n = 4) and patients with ulcerative colitis (n = 10). Several samples were obtained from each individual. Tissue samples were divided into three subgroups according to their histological degree of inflammation. Expression of CFTR and SLC26A3 proteins were determined by immunohistochemistry and Western blotting from the same samples, respectively. Increased expression of CFTR mRNA was observed in all three groups of affected tissue samples, most pronounced in mildly inflamed colonic mucosa (5-fold increase in expression; P < 0.001). The expression of the CFTR protein was detected from health and inflamed colon tissue. Although the expression of the SLC26A3 mRNA was significantly decreased in severe ulcerative colitis (P < 0.05), the SLC26A3 protein levels remained unchanged in all groups. The expression of SLC9A3 mRNA was significantly changed between the mild and severe groups. Intestinal inflammation modulates the expression of three major mediators of intestinal salt transport and may contribute to diarrhea in ulcerative colitis both by increasing transepithelial Cl- secretion and by inhibiting the epithelial NaCl absorption.  相似文献   

7.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel that is present in a variety of epithelial cell types, and usually expressed in the luminal membrane. In contrast, prestin (SLC26A5) is a voltage-dependent motor protein, which is present in the basolateral membrane of cochlear outer hair cells (OHCs), and plays an important role in the frequency selectivity and sensitivity of mammalian hearing. By using in situ hybridization and immunofluorescence, we found that both mRNA and protein of CFTR are present in OHCs, and that CFTR localizes in both the apical and the lateral membranes. CFTR was not detected in the lateral membrane of inner hair cells (IHCs) or in that of OHCs derived from prestin-knockout mice, i.e., in instances where prestin is not expressed. These results suggest that prestin may interact physically with CFTR in the lateral membrane of OHCs. Immunoprecipitation experiments confirmed a prestin-CFTR interaction. Because chloride is important for prestin function and for the efferent-mediated inhibition of cochlear output, the prestin-directed localization of CFTR to the lateral membrane of OHCs has a potential physiological significance. Aside from its role as a chloride channel, CFTR is known as a regulator of multiple protein functions, including those of the solute carrier family 26 (SLC26). Because prestin is in the SLC26 family, several members of which interact with CFTR, we explored the potential modulatory relationship associated with a direct, physical interaction between prestin and CFTR. Electrophysiological experiments demonstrated that cAMP-activated CFTR is capable of enhancing voltage-dependent charge displacement, a signature of OHC motility, whereas prestin does not affect the chloride conductance of CFTR.  相似文献   

8.
Aberrant HCO(3)(-) transport is a hallmark of cystic fibrosis (CF) and is associated with aberrant Cl(-)-dependent HCO(3)(-) transport by the cystic fibrosis transmembrane conductance regulator (CFTR). We show here that HCO(3)(-) current by CFTR cannot account for CFTR-activated HCO(3)(-) transport and that CFTR does not activate AE1-AE4. In contrast, CFTR markedly activates Cl(-) and OH(-)/HCO(3)(-) transport by members of the SLC26 family DRA, SLC26A6 and pendrin. Most notably, the SLC26s are electrogenic transporters with isoform-specific stoichiometries. DRA activity occurred at a Cl(-)/HCO(3)(-) ratio > or =2. SLC26A6 activity is voltage regulated and occurred at HCO(3)(-)/Cl(-) > or =2. The physiological significance of these findings is demonstrated by interaction of CFTR and DRA in the mouse pancreas and an altered activation of DRA by the R117H and G551D mutants of CFTR. These findings provide a molecular mechanism for epithelial HCO(3)(-) transport (one SLC26 transporter-electrogenic transport; two SLC26 transporters with opposite stoichiometry in the same membrane domain-electroneutral transport), the CF-associated aberrant HCO(3)(-) transport, and reveal a new function of CFTR with clinical implications for CF and congenital chloride diarrhea.  相似文献   

9.
In the present study, we characterized a STAS-domain amino acid mutation of SLC26A9 having a significant impact on ion transport. We focused on the sole conserved L- leucine residue of the STAS domain identified among SLC26 members. We therefore characterized the L683P mutation of SLC26A9 in Xenopus oocytes by monitoring the protein functional expression (two-electrode technique for voltage-clamp analysis) and its presence at the cell membrane (surface protein biotinylation technique). This mutation was found to reduce Cl(-) transport through SLC26A9 as well as the positive interaction exerted by SLC26A9 on CFTR ion transport activity. The origin of this effect is discussed in the light of the presence of the SLC26A9-L683P mutant at the plasma membrane.  相似文献   

10.
11.
The basolateral Cl(-)/HCO(3)(-) exchanger in parietal cells plays an essential role in gastric acid secretion mediated via the apical gastric H(+)-K(+)-ATPase. Here, we report the identification of a new Cl(-)/HCO(3)(-) exchanger, which shows exclusive expression in mouse stomach and kidney, with expression in the stomach limited to the basolateral membrane of gastric parietal cells. Tissue distribution studies by RT-PCR and Northern hybridizations demonstrated the exclusive expression of this transporter, also known as SLC26A7, to stomach and kidney, with the stomach expression significantly more abundant. No expression was detected in the intestine. Cellular distribution studies by RT-PCR and Northern hybridizations demonstrated predominant localization of SLC26A7 in gastric parietal cells. Immunofluorescence labeling localized this exchanger exclusively to the basolateral membrane of gastric parietal cells, and functional studies in oocytes indicated that SLC26A7 is a DIDS-sensitive Cl(-)/HCO(3)(-) exchanger that is active in both acidic and alkaline pH(i). On the basis of its unique expression pattern and function, we propose that SLC26A7 is a basolateral Cl(-)/HCO(3)(-) exchanger in gastric parietal cells and plays a major role in gastric acid secretion.  相似文献   

12.
HCO3- secretion by gastric mucous cells is essential for protection against acidic injury and peptic ulcer. Herein we report the identification of an apical HCO3- transporter in gastric surface epithelial cells. Northern hybridization and RT-PCR demonstrate the expression of this transporter, also known as SLC26A9, in mouse and rat stomach and trachea (but not kidney). In situ hybridization in mouse stomach showed abundant expression of SLC26A9 in surface epithelial cells with apical localization on immunofluorescence labeling. Functional studies in HEK-293 cells demonstrated that SLC26A9 mediates Cl-/HCO3- exchange and is also capable of Cl--independent HCO3- extrusion. Unlike other anion exchangers or transport proteins reported to date, SLC26A9 activity is inhibited by ammonium (NH4+). The inhibitory effect of NH4+ on gastric HCO3- secretion was also indicated by reduced gastric juxtamucosal pH (pHjm) in rat stomach in vivo. This report is the first to describe the inhibition of HCO3- transport in vitro and the reduction of pHjm in stomach in vivo by NH4+. Given its critical localization on the apical membrane of surface epithelial cells, its ability to transport HCO3-, and its inhibition by NH4+, we propose that SLC26A9 mediates HCO3- secretion in surface epithelial cells and is essential for protection against acidic injury in the stomach. Disease states that are associated with increased ammonia (NH3)/NH4+ generation (e.g., Helicobacter pylori) may impair gastric HCO3- secretion and therefore predispose patients to peptic ulcer by inhibiting SLC26A9.  相似文献   

13.
胰管细胞以至少6倍浓度差逆向分泌HCO3^-(人体浓度约140mmol/L)。HCO3^-跨顶膜转运的可能机制包括SLC26阴离子转运体的Cl-HCO3^-交换和囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,cFrR)对HCO3^-的传导扩散。SLC26家族成员介导上皮顶膜Cl^--HCO3^-交换,胰管中检测到SLC26A6和SLC26A3。共表达研究揭示,鼠类slc26a6和slc26a3通过slc26的STAS结构域与CFTR的R结构域相互作用,导致活性互相增强。研究显示这些交换体是产电的:slc26a6介导1Cl^--2HCO3^-交换,slc26a3介导2Cl^--1HCO3^-交换。近期slc26a6^-/-小鼠离体胰管研究显示,slc26a6介导大部分Cl^-依赖的HCO3^-跨顶膜分泌,与slc26a6的产电性一致。然而,因为人体能分泌非常高浓度的HCO3^-,SLC26A6在胰管HCO3^-分泌中的作用并不十分清楚。SLC26A6的作用只能在与人类似能分泌约140mmol/LHCO3^-的物种,如豚鼠中研究。现有的豚鼠研究数据显示,像slc26a6介导的1Cl^--2HCO3^-交换不可能完成这种高浓度差的HCO3^-分泌。另一方面,CFTR的HCO3^-电导性可以在理论上支持HCO3^-逆向分泌。所以,在豚鼠和人胰腺HCO3^-的分泌中,CFTR可能比SLC26A6发挥更大作用。  相似文献   

14.
Chloride absorption and bicarbonate secretion are vital functions of epithelia, as highlighted by cystic fibrosis and diseases associated with mutations in members of the SLC26 chloride-bicarbonate exchangers. Many SLC26 transporters (SLC26T) are expressed in the luminal membrane together with CFTR, which activates electrogenic chloride-bicarbonate exchange by SLC26T. However, the ability of SLC26T to regulate CFTR and the molecular mechanism of their interaction are not known. We report here a reciprocal regulatory interaction between the SLC26T DRA, SLC26A6 and CFTR. DRA markedly activates CFTR by increasing its overall open probablity (NP(o)) sixfold. Activation of CFTR by DRA was facilitated by their PDZ ligands and binding of the SLC26T STAS domain to the CFTR R domain. Binding of the STAS and R domains is regulated by PKA-mediated phosphorylation of the R domain. Notably, CFTR and SLC26T co-localize in the luminal membrane and recombinant STAS domain activates CFTR in native duct cells. These findings provide a new understanding of epithelial chloride and bicarbonate transport and may have important implications for both cystic fibrosis and diseases associated with SLC26T.  相似文献   

15.
We investigated the possible functional‐ and physical protein‐interactions between two airway Cl? channels, SLC26A9 and CFTR. Bronchial CFBE41o‐ cell lines expressing CFTRWT or CFTRΔF508 were transduced with SLC26A9. Immunoblots identified a migrating band corresponding to SLC26A9 present in whole‐cell lysates as on apical membrane of cells grown on polarized filters. CFTR levels were increased by the presence of SLC26A9 in both CFTRWT and CFTRΔF508 cell lines. In CFBE41o‐ cells and CFBE41o‐/CFTRWT cells transduced with SLC26A9, currents associated to the protein expression were not detected. However, the forskolin (FK)‐stimulated currents were enhanced in SLC26A9‐transduced cells compared to control cells. Therefore, the presence of SLC26A9 resulted in an increase in CFTR activity (same % of CFTR(inh)‐172 or GlyH‐101 inhibition in both groups). In CFBE41o‐/CFTRΔF508 cells transduced with SLC26A9 (at 27°C), a current associated to the protein expression was also lacking. FK‐stimulated currents and level of CFTR(inh)‐172 inhibition were not different in both groups. The presence of SLC26A9 in Xenopus oocytes expressing CFTR also enhanced the FK‐stimulated currents as compared to oocytes expressing CFTR alone. This stimulation was mostly linked to CFTR. An enhancement of FK‐stimulated currents was not found in oocytes co‐expressing SLC26A9 and CFTRΔF508. In conclusion, in both protein expression systems used, SLC26A9 stimulates CFTR activity but not that of CFTRΔF508. Our co‐immunoprecipitation studies demonstrate a physical interaction between both anion channels. We propose as an alternative hypothesis (not exclusive) to the known SLC26A9‐STAS domain/CFTR interaction, that SLC26A9 favors the biogenesis and/or stabilization of CFTR, leading to stimulated currents. J. Cell. Physiol. 226: 212–223, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
SLC26A3 is a Cl(-)/HCO(3)(-) exchanger that plays a major role in Cl(-) absorption from the intestine. Its mutation causes congenital chloride-losing diarrhea. It has been shown that SLC26A3 are glycosylated, with the attached carbohydrate being extracellular and perhaps modulating function. However, the role of glycosylation has yet to be clearly determined. We used the approaches of biochemical modification and site-directed mutagenesis to prevent glycosylation. Deglycosylation experiments with glycosidases indicated that the mature glycosylated form of SLC26A3 exists at the plasma membrane, and a putative large second extracellular loop contains all of the N-linked carbohydrates. Deglycosylation of SLC26A3 causes depression of transport activity compared with wild-type, although robust intracellular pH changes were still observed, suggesting that N-glycosylation is not absolutely necessary for transport activity. To localize glycosylation sites, we mutated the five consensus sites by replacing asparagine (N) with glutamine. Immnoblotting suggests that SLC26A3 is glycosylated at N153, N161, and N165. Deglycosylation of SLC26A3 causes a defect in cell surface processing with decreased cell surface expression. We also assessed whether SLC26A3 is protected from tryptic digestion. While the mature glycosylated SLC26A3 showed little breakdown after treatment with trypsin, deglycosylated SLC26A3 exhibited increased susceptibility to trypsin, suggesting that the oligosaccharides protect SLC26A3 from tryptic digestion. In conclusion, our data indicate that N-glycosylation of SLC26A3 is important for cell surface expression and for protection from proteolytic degradation that may contribute to the understanding of pathogenesis of congenital disorders of glycosylation.  相似文献   

17.
We previously found that antisense oligonucleotide specific to ClC-3 (ClC-3 antisense) prevented rat aortic smooth muscle cell proliferation, which was related to cell volume regulation. In the present study, we further characterized the regulation of intracellular Cl(-) concentrations ([Cl(-)](i)) via volume-regulated ClC-3 Cl(-) channels in an embryo rat aortic vascular smooth muscle cell line (A10 cell) and ClC-3 cDNA-transfected A10 cells (ClC-3-A10) using multiple approaches including [Cl(-)](i) measurement, whole cell patch clamp, and application of ClC-3 antisense and intracellular dialysis of an anti-ClC-3 antibody. We found that hypotonic solution decreased [Cl(-)](i) and evoked a native I(Cl.vol) in A10 cells. The responses of [Cl(-)](i) and I(Cl.vol) to hypotonic challenge were enhanced by expression of ClC-3, and inhibited by ClC-3 antisense. The currents in A10 (I(Cl.vol)) and in ClC-3-A10 cells (I(Cl.ClC-3)) were remarkably inhibited by intracellular dialysis of anti-ClC-3 antibody. Reduction in [Cl(-)](i) and activation of I(Cl.vol) and I(Cl.ClC-3) in A10 and ClC-3-A10 cells, respectively, were significantly inhibited by activation of protein kinase C (PKC) by phorbol-12,13-dibutyrate (PDBu) and inhibition of tyrosine protein kinase by genistein. Sodium orthovanadate (vanadate), a protein-tyrosine phosphatase inhibitor, however, enhanced the cell swelling-induced reduction in [Cl(-)](i), accompanied by the activation of I(Cl.vol) and I(Cl.ClC-3) in a voltage-independent manner. Our results suggest that the volume-regulated ClC-3 Cl(-) channels play important role in the regulation of [Cl(-)](i) and cell proliferation of vascular smooth muscle cells.  相似文献   

18.
Congenital chloride-losing diarrhea (CLD) is a genetic disorder causing watery stool and dehydration. Mutations in SLC26A3 (solute carrier 26 family member 3), which functions as a coupled Cl(-)/HCO(3)(-) exchanger, cause CLD. SLC26A3 is a membrane protein predicted to contain 12 transmembrane-spanning alpha-helices and a C-terminal STAS (sulfate transporters and anti-sigma-factor) domain homologous to the bacterial anti-sigma-factor antagonists. The STAS domain is required for SLC26A3 Cl(-)/HCO(3)(-) exchange function and for the activation of cystic fibrosis transmembrane conductance regulator by SLC26A3. Here we investigate the molecular mechanism(s) by which four CLD-causing mutations (DeltaY526/7, I544N, I675/6ins, and G702Tins) in the STAS domain lead to disease. In a heterologous mammalian expression system biochemical, immunohistochemical, and ion transport experiments suggest that the four CLD mutations cause SLC26A3 transporter misfolding and/or mistrafficking. Expression studies with the isolated STAS domain suggest that the I675/6ins and G702Tins mutations disrupt the STAS domain directly, whereas limited proteolysis experiments suggest that the DeltaY526/7 and I544N mutations affect a later step in the folding and/or trafficking pathway. The data suggest that these CLD-causing mutations cause disease by at least two distinct molecular mechanisms, both ultimately leading to loss of functional protein at the plasma membrane.  相似文献   

19.
Pancreatic duct cells secrete bicarbonate-rich fluids, which are important for maintaining the patency of pancreatic ductal trees as well as intestinal digestive function. The bulk of bicarbonate secretion in the luminal membrane of duct cells is mediated by a Cl(-)-dependent mechanism (Cl(-)/HCO(3)(-) exchange), and we previously reported that the mechanism is CFTR-dependent and cAMP-activated (Lee, M. G., Choi, J. Y., Luo, X., Strickland, E., Thomas, P. J., and Muallem, S. (1999) J. Biol. Chem. 274, 14670-14677). In the present study, we provide comprehensive evidence that calcium signaling also activates the same CFTR- and Cl(-)-dependent HCO(3)(-) transport. ATP and trypsin evoked intracellular calcium signaling in pancreatic duct-derived cells through the activation of purinergic and protease-activated receptors, respectively. Cl(-)/HCO(3)(-) exchange activity was measured by recording pH(i) in response to [Cl(-)](o) changes of the perfusate. In perfusate containing high concentrations of K(+), which blocks Cl(-) movement through electrogenic or K(+)-coupled pathways, ATP and trypsin highly stimulated luminal Cl(-)/HCO(3)(-) exchange activity in CAPAN-1 cells expressing wild-type CFTR, but not in CFPAC-1 cells that have defective (DeltaF508) CFTR. Notably, adenoviral transfection of wild-type CFTR in CFPAC-1 cells completely restored the stimulatory effect of ATP on luminal Cl(-)/HCO(3)(-) exchange. In addition, the chelation of intracellular calcium by 1,2-bis(2-aminophenoxy)ethane-N,N,N,N'-tetraacetic acid (BAPTA) treatment abolished the effect of calcium agonists on luminal Cl(-)/HCO(3)(-) exchange. These results provide a molecular basis for calcium-induced bicarbonate secretion in pancreatic duct cells and highlight the importance of CFTR in epithelial bicarbonate secretion induced by various stimuli.  相似文献   

20.
Slc26a2 is a ubiquitously expressed SO(4)(2-) transporter with high expression levels in cartilage and several epithelia. Mutations in SLC26A2 are associated with diastrophic dysplasia. The mechanism by which Slc26a2 transports SO(4)(2-) and the ion gradients that mediate SO(4)(2-) uptake are poorly understood. We report here that Slc26a2 functions as an SO(4)(2-)/2OH(-), SO(4)(2-)/2Cl(-), and SO(4)(2-)/OH(-)/Cl(-) exchanger, depending on the Cl(-) and OH(-) gradients. At inward Cl(-) and outward pH gradients (high Cl(-)(o) and low pH(o)) Slc26a2 functions primarily as an SO(4)(2-)(o)/2OH(-)(i) exchanger. At low Cl(-)(o) and high pH(o) Slc26a2 functions increasingly as an SO(4)(2-)(o)/2Cl(-)(i) exchanger. The reverse is observed for SO(4)(2-)(i)/2OH(-)(o) and SO(4)(2-)(i)/2Cl(-)(o) exchange. Slc26a2 also exchanges Cl(-) for I(-), Br(-), and NO(3)(-) and Cl(-)(o) competes with SO(4)(2-) on the transport site. Interestingly, Slc26a2 is regulated by an extracellular anion site, required to activate SO(4)(2-)(i)/2OH(-)(o) exchange. Slc26a2 can transport oxalate in exchange for OH(-) and/or Cl(-) with properties similar to SO(4)(2-) transport. Modeling of the Slc26a2 transmembrane domain (TMD) structure identified a conserved extracellular sequence (367)GFXXP(371) between TMD7 and TMD8 close to the conserved Glu(417) in the permeation pathway. Mutation of Glu(417) eliminated transport by Slc26a2, whereas mutation of Phe(368) increased the affinity for SO(4)(2-)(o) 8-fold while reducing the affinity for Cl(-)(o) 2 fold, but without affecting regulation by Cl(-)(o). These findings clarify the mechanism of net SO(4)(2-) transport and describe a novel regulation of Slc26a2 by an extracellular anion binding site and should help in further understanding aberrant SLC26A2 function in diastrophic dysplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号