首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The goal of functional genomics is to determine the function of each protein encoded by an organism. Typically, this is done by inactivating individual genes and, subsequently, analyzing the phenotype of the modified organisms. In higher eukaryotes, where a tremendous amount of alternative splicing occurs, such approaches are not feasible because they have the potential to simultaneously affect multiple proteins that could have quite distinct and important functions. Thus, it is necessary to develop techniques that inactivate only a subset of proteins synthesized from genes encoding alternatively spliced mRNAs. Here we demonstrate that RNA interference (RNAi) can be used to selectively degrade specific alternatively spliced mRNA isoforms in cultured Drosophila cells. This is achieved by treating the cells with double-stranded RNA corresponding to an alternatively spliced exon. This technique may prove to be a powerful tool to assess the function of proteins synthesized from alternatively spliced mRNAs. In addition, these results have implications regarding the mechanism of RNAi in Drosophila.  相似文献   

3.
4.
5.
6.
7.
Very closely related short sequences are present at the 5' end of cytoplasmic mRNAs in Euglena as evidenced by comparison of cDNA sequences and hybrid-arrested translation experiments. By cloning Euglena gracilis nuclear DNA and isolating the rbcS gene (encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase), we have shown that the short leader sequence does not flank the nuclear gene sequence. The leader sequences were found to constitute the 5' extremities of a family of small RNAs. Sequencing six members of this family revealed a striking similarity to vertebrate U snRNAs. We propose that a trans-splicing mechanism transfers the spliced leader (SL) sequence from these small RNAs (SL RNAs) to pre-mature mRNAs. Transfer of leader sequences to mRNAs by trans-splicing has been shown only in trypanosomes where cis-splicing is unknown, and in nematodes where not more than 10% of the mRNAs have leader sequences. Our results strongly suggest that Euglena is a unique organism in which both a widespread trans-splicing and a cis-splicing mechanism co-exist.  相似文献   

8.
Interleukin-24 (mda-7/IL-24) is a cytokine in the IL-10 family that has received a great deal of attention for its properties as a tumor suppressor and as a potential treatment for cancer. In this study, we have identified and characterized five alternatively spliced isoforms of this gene. Several, but not all of these isoforms induce apoptosis in the osteosarcoma cell line U2OS, while none affect the survival of the non-cancerous NOK cell line. One of these isoforms, lacking three exons and encoding the N-terminal end of the mda-7/IL-24 protein sequence, caused levels of apoptosis that were higher than those caused by the full-length mda-7/IL-24 variant. Additionally, we found that the ratio of isoform expression can be modified by the splice factor SRp55. This regulation suggests that alternative splicing of mda-7/IL-24 is under tight control in the cell, and can be modified under various cellular conditions, such as DNA damage. In addition to providing new insights into the function of an important tumor suppressor gene, these findings may also point toward new avenues for cancer treatment.  相似文献   

9.
10.
11.
12.
13.
Throughout the 20th century, great advances were made in understanding of how blood coagulation occurs, what physiological and biochemical mechanisms are responsible for its regulation, and what genes and their protein products comprise the essential components of the hemostatic network. Recently, complete sequencing of the human genome revealed that the structural diversity of higher eukaryotes cannot be solely attributed to the number of protein-encoding genes, whereas tools of molecular biology helped establish that pre-mRNAs produced by most protein-encoding genes undergo alternative splicing, a mechanism that enables production of multiple protein isoforms by a single gene. Research in the field of thrombosis and hemostasis revealed that the genes encoding several critical proteins at various junctures of the coagulation cascade produce alternatively spliced protein isoforms with distinct structural and biochemical characteristics, revealing a principally novel dimension in the regulation of blood clotting and, possibly, a few novel therapeutic approaches to treatment of abnormal hemostasis. This review summarizes recently published data pertaining to biosynthesis of the alternatively spliced isoforms of tissue factor (TF, or coagulation factor III), tissue factor pathway inhibitor (TFPI), and coagulation factor XI (FXI), and discusses future directions of this continuously evolving area of biomedical research, with an emphasis on molecular mechanics responsible for regulation of constitutive as well as alternative pre-mRNA splicing.  相似文献   

14.
I Sadler  K Suda  G Schatz  F Kaudewitz    A Haid 《The EMBO journal》1984,3(9):2137-2143
Cytochrome c1 is a component of the mitochondrial respiratory chain in most eukaryotes. The protein is coded by nuclear DNA, synthesized as a larger precursor outside the mitochondria and then cleaved to the mature form in two successive steps during its import into the mitochondria. We have cloned the structural gene for yeast cytochrome c1 by functional complementation of a cytochrome c1-deficient yeast mutant with a yeast genomic library in the yeast-Escherichia coli 'shuttle' vector YEp 13. The complete nucleotide sequence of the gene and of its 5'- and 3'-flanking regions was determined. The deduced amino acid sequence of the yeast cytochrome c1 precursor reveals an unusually long transient amino-terminal presequence of 61 amino acids. This presequence consists of a strongly basic amino-terminal region of 35 amino acids, a central region of 19 uncharged amino acids and an acidic carboxy-terminal region of seven amino acids. This tripartite structure of the presequence resembles that of the precursor of cytochrome c peroxidase and supports a previous suggestion on the import pathways of these two precursors.  相似文献   

15.
16.
17.
Trichomonads are early-diverging eukaryotes that lack both mitochondria and peroxisomes. They do contain a double membrane-bound organelle, called the hydrogenosome, that metabolizes pyruvate and produces ATP. To address the origin and biological nature of hydrogenosomes, we have established an in vitro protein import assay. Using purified hydrogenosomes and radiolabeled hydrogenosomal precursor ferredoxin (pFd), we demonstrate that protein import requires intact organelles, ATP and N-ethylmaleimide-sensitive cytosolic factors. Protein import is also affected by high concentrations of the protonophore, m-chlorophenylhydrazone (CCCP). Binding and translocation of pFd into hydrogenosomes requires the presence of an eight amino acid N-terminal presequence that is similar to presequences found on all examined hydrogenosomal proteins. Upon import, pFd is processed to a size consistent with cleavage of the presequence. Mutation of a conserved leucine at position 2 in the presequence to a glycine disrupts import of pFd into the organelle. Interestingly, a comparison of hydrogenosomal and mitochondrial protein presequences reveals striking similarities. These data indicate that mechanisms underlying protein targeting and biogenesis of hydrogenosomes and mitochondria are similar, consistent with the notion that these two organelles arose from a common endosymbiont.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号