首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RecA-dependent DNA damage response pathway (SOS response) appears to be the major DNA repair mechanism in most bacteria, but it has been suggested that a RecA-independent mechanism is responsible for controlling expression of most damage-inducible DNA repair genes in Mycobacterium tuberculosis. The specific reparative responses and molecular mediators involved in the DNA repair mechanism remain largely unclear in this pathogen and its related species. In this study, a mycobacterial ClpR-like regulator, corresponding to Rv2745c in M. tuberculosis and to Ms2694 in M. smegmatis mc(2)155, was found to interact with the promoter regions of multiple damage-inducible DNA repair genes. Specific binding of the ClpR-like factor to the conserved RecA-independent promoter RecA-NDp motif was then confirmed using in vitro electrophoretic mobility shift assays as well as in vivo chromatin immunoprecipitation experiments. The ClpR knock-out experiments, in combination with quantitative real time PCR assays, demonstrated that the expression of these RecA-independent genes were significantly down-regulated in the mutant strain of M. smegmatis in response to a DNA-damaging agent compared with the wild type strain. Furthermore, the ClpR-like factor was shown to contribute to mycobacterial genomic stability. These results enhance our understanding of the function of the ClpR regulator and the regulatory mechanism of RecA-independent DNA repair in mycobacteria.  相似文献   

2.
Master regulators, which broadly affect expression of diverse genes, play critical roles in bacterial growth and environmental adaptation. However, the underlying mechanism by which such regulators interact with their cognate DNA remains to be elucidated. In this study, we solved the crystal structure of a broad regulator Ms6564 in Mycobacterium smegmatis and its protein-operator complex at resolutions of 1.9 and 2.5 Å, respectively. Similar to other typical TetR family regulators, two dimeric Ms6564 molecules were found to bind to opposite sides of target DNA. However, the recognition helix of Ms6564 inserted only slightly into the DNA major groove. Unexpectedly, 11 disordered water molecules bridged the interface of TetR family regulator DNA. Although the DNA was deformed upon Ms6564 binding, it still retained the conformation of B-form DNA. Within the DNA-binding domain of Ms6564, only two amino acids residues directly interacted with the bases of cognate DNA. Lys-47 was found to be essential for the specific DNA binding ability of Ms6564. These data indicate that Ms6564 can bind DNA with strong affinity but makes flexible contacts with DNA. Our study suggests that Ms6564 might slide more easily along the genomic DNA and extensively regulate the expression of diverse genes in M. smegmatis.  相似文献   

3.
4.
5.
6.
Huang F  He ZG 《PloS one》2012,7(6):e38276
The chromosome partitioning proteins, ParAB, ensure accurate segregation of genetic materials into daughter cells and most bacterial species contain their homologs. However, little is known about the regulation of ParAB proteins. In this study, we found that 3-methyladenine DNA glycosylase I MsTAG(Ms5082) regulates bacterial growth and cell morphology by directly interacting with MsParA (Ms6939) and inhibiting its ATPase activity in Mycobacterium smegmatis. Using bacterial two-hybrid and pull-down techniques in combination with co-immunoprecipitation assays, we show that MsTAG physically interacts with MsParA both in vitro and in vivo. Expression of MsTAG under conditions of DNA damage induction exhibited similar inhibition of growth as the deletion of the parA gene in M. smegmatis. Further, the effect of MsTAG on mycobacterial growth was found to be independent of its DNA glycosylase activity, and to result instead from direct inhibition of the ATPase activity of MsParA. Co-expression of these two proteins could counteract the growth defect phenotypes observed in strains overexpressing MsTAG alone in response to DNA damage induction. Based on protein co-expression and fluorescent co-localization assays, MsParA and MsTAG were further found to co-localize in mycobacterial cells. In addition, the interaction between the DNA glycosylase and ParA, and the regulation of ParA by the glycosylase were conserved in M. tuberculosis and M. smegmatis. Our findings provide important new insights into the regulatory mechanism of cell growth and division in mycobacteria.  相似文献   

7.
In many species of bacteria most inducible DNA repair genes are regulated by LexA homologues and are dependent on RecA for induction. We have shown previously by analysing the induction of recA that two mechanisms for the induction of gene expression following DNA damage exist in Mycobacterium tuberculosis. Whereas one of these depends on RecA and LexA in the classical way, the other mechanism is independent of both of these proteins and induction occurs in the absence of RecA. Here we investigate the generality of each of these mechanisms by analysing the global response to DNA damage in both wild-type M. tuberculosis and a recA deletion strain of M. tuberculosis using microarrays. This revealed that the majority of the genes that were induced remained inducible in the recA mutant stain. Of particular note most of the inducible genes with known or predicted functions in DNA repair did not depend on recA for induction. Amongst these are genes involved in nucleotide excision repair, base excision repair, damage reversal and recombination. Thus, it appears that this novel mechanism of gene regulation is important for DNA repair in M. tuberculosis.  相似文献   

8.
A gene conferring low-level isoniazid (INH) resistance on Mycobacterium smegmatis was isolated from a cosmid library of the genome of an INH-resistant Mycobacterium bovis strain. The gene had good homology with ahpC , the product of which is a subunit of alkyl hydroperoxide reductase, and also with a family of thiol-specific antioxidant enzymes. A mutation was found in the promoter upon comparison with the equivalent DNA sequence from the INH-sensitive parent strain. Promoter sequences from other INH-sensitive and INH-resistant M. bovis and Mycobacterium tuberculosis strains were sequenced and the mutation was found only in the INH-resistant strains. An INH-resistant M. tuberculosis strain also had an additional mutation in the promoter region. The wild-type promoter and promoters with one and two mutations were ligated into a reporter plasmid containing the lacZ gene. The presence of the first mutation resulted in a sixfold induction of β-galactosidase activity, and the presence of both mutations caused a 10-fold induction. Increased expression of AhpC may account for some of the INH resistance of strains of the M. tuberculosis complex.  相似文献   

9.
Mycobacterium avium is widely distributed in the environment, and it is chiefly found in water and soil. M. avium, as well as Mycobacterium smegmatis, has been recognized to produce a biofilm or biofilm-like structure. We screened an M. avium green fluorescent protein (GFP) promoter library in M. smegmatis for genes involved in biofilm formation on polyvinyl chloride (PVC) plates. Clones associated with increased GFP expression > or =2.0-fold over the baseline were sequenced. Seventeen genes, most encoding proteins of the tricarboxylic acid (TCA) cycle and GDP-mannose and fatty acid biosynthesis, were identified. Their regulation in M. avium was confirmed by examining the expression of a set of genes by real-time PCR after incubation on PVC plates. In addition, screening of 2,000 clones of a transposon mutant bank constructed using M. avium strain A5, a mycobacterial strain with the ability to produce large amounts of biofilm, revealed four mutants with an impaired ability to form biofilm. Genes interrupted by transposons were homologues of M. tuberculosis 6-oxodehydrogenase (sucA), enzymes of the TCA cycle, protein synthetase (pstB), enzymes of glycopeptidolipid (GPL) synthesis, and Rv1565c (a hypothetical membrane protein). In conclusion, it appears that GPL biosynthesis, including the GDP-mannose biosynthesis pathway, is the most important pathway involved in the production of M. avium biofilm.  相似文献   

10.
11.
12.
成簇的规律间隔的短回文重复序列干扰(clustered regularly interspaced short palindromic repeat interference,CRISPRi)是一种新型转录抑制技术,该系统包含RNA介导的DNA内切酶dCas9和针对目的基因的特异性单向导RNA(single guide RNA,sgRNA),通过形成DNA识别复合物特异性识别相应DNA序列以抑制目的基因的转录。异柠檬酸脱氢酶(isocitrate dehydrogenase,ICD)是三羧酸循环中的关键代谢酶,在分枝杆菌的碳代谢过程中发挥重要作用。本研究利用CRISPRi高效抑制分枝杆菌特定基因表达的方法构建耻垢分枝杆菌icd敲低(icd knockdown,ICD-KD)株。定量聚合酶链反应(quantitative polymerase chain reaction,qPCR)和蛋白免疫印迹检测结果显示,耻垢分枝杆菌中icd转录水平与ICD蛋白表达水平显著下降,表明采用CRISPRi技术成功构建了耻垢分枝杆菌ICD-KD株。进一步研究ICD-KD株的生长情况,测定其在固体培养基点板及液体培养基中的生长曲线,结果均显示ICD-KD株生长速率明显减慢,同时菌体内ICD酶活显著降低,提示ICD对分枝杆菌的生长存活起重要作用。本研究使用CRISPRi技术快速构建了分枝杆菌必需基因的敲低菌株,为后续研究分枝杆菌ICD在碳源代谢通路中的功能和碳通量流向调控机制提供了重要基础。  相似文献   

13.
14.
Lama A  Pawaria S  Dikshit KL 《FEBS letters》2006,580(17):4031-4041
Unraveling of microbial genome data has indicated that two distantly related truncated hemoglobins (trHbs), HbN and HbO, might occur in many species of slow-growing pathogenic mycobacteria. Involvement of HbN in bacterial defense against NO toxicity and nitrosative stress has been proposed. A gene, encoding a putative HbN homolog with conserved features of typical trHbs, has been identified within the genome sequence of fast-growing mycobacterium, Mycobacterium smegmatis. Sequence analysis of M. smegmatis HbN indicated that it is relatively smaller in size and lacks N-terminal pre-A region, carrying 12-residue polar sequence motif that is present in HbN of M. tuberculosis. HbN encoding gene of M. smegmatis was expressed in E. coli as a 12.8kD homodimeric heme protein that binds oxygen reversibly with high affinity (P50 approximately 0.081 mm Hg) and autooxidizes faster than M. tuberculosis HbN. The circular dichroism spectra indicate that HbN of M. smegmatis and M. tuberculosis are structurally similar. Interestingly, an hmp mutant of E. coli, unable to metabolize nitric oxide, exhibited very low NO uptake activity in the presence of M. smegmatis HbN as compared to HbN of M. tuberculosis. On the basis of cellular heme content, specific nitric oxide dioxygenase (NOD) activity of M. smegmatis HbN was nearly one-third of that from M. tuberculosis. Additionally, the hmp mutant of E. coli, carrying M. smegmatis HbN, exhibited nearly 10-fold lower cell survival under nitrosative stress and nitrite derived reactive nitrogen species as compared to the isogenic strain harboring HbN of M. tuberculosis. Taken together, these results suggest that NO metabolizing activity and protection provided by M. smegmatis HbN against toxicity of NO and reactive nitrogen is significantly lower than HbN of M. tuberculosis. The lower efficiency of M. smegmatis HbN for NO detoxification as compared to M. tuberculosis HbN might be related to different level of NO exposure and nitrosative stress faced by these mycobacteria during their cellular metabolism.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号