首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter‐residue interactions, ion‐pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic–mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three‐dimensional structures of elongation factor‐Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the importance of hydrophobicity as the dominating characteristic in the stability of thermophilic proteins, and we anticipate this will be useful in our attempts to engineering thermostable proteins. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
La D  Silver M  Edgar RC  Livesay DR 《Biochemistry》2003,42(30):8988-8998
Protein motifs represent highly conserved regions within protein families and are generally accepted to describe critical regions required for protein stability and/or function. In this comprehensive analysis, we present a robust, unique approach to identify and compare corresponding mesophilic and thermophilic sequence motifs between all orthologous proteins within 44 microbial genomes. Motif similarity is determined through global sequence alignment of mesophilic and thermophilic motif pairs, which are identified by a greedy algorithm. Our results reveal only modest correlation between motif and overall sequence similarity, highlighting the rationale of motif-based approaches in comprehensive multigenome comparisons. Conserved mutations reflect previously suggested physiochemical principles for conferring thermostability. Additionally, comparisons between corresponding mesophilic and thermophilic motif pairs provide key biochemical insights related to thermostability and can be used to test the evolutionary robustness of individual structural comparisons. We demonstrate the ability of our unique approach to provide key insights in two examples: the TATA-box binding protein and glutamate dehydrogenase families. In the latter example, conserved mutations hint at novel origins leading to structural stability differences within the hexamer structures. Additionally, we present amino acid composition data and average protein length comparisons for all 44 microbial genomes.  相似文献   

3.
4.
S Kumar  C J Tsai  R Nussinov 《Biochemistry》2001,40(47):14152-14165
Here, we analyze the thermodynamic parameters and their correlations in families containing homologous thermophilic and mesophilic proteins which show reversible two-state folding <--> unfolding transitions between the native and the denatured states. For the proteins in these families, the melting temperatures correlate with the maximal protein stability change (between the native and the denatured states) as well as with the enthalpic and entropic changes at the melting temperature. In contrast, the heat capacity change is uncorrelated with the melting temperature. These and additional results illustrate that higher melting temperatures are largely obtained via an upshift and broadening of the protein stability curves. Both thermophilic and mesophilic proteins are maximally stable around room temperature. However, the maximal stabilities of thermophilic proteins are considerably greater than those of their mesophilic homologues. At the living temperatures of their respective source organisms, homologous thermophilic and mesophilic proteins have similar stabilities. The protein stability at the living temperature of the source organism does not correlate with the living temperature of the protein. We tie thermodynamic observations to microscopics via the hydrophobic effect and a two-state model of the water structure. We conclude that, to achieve higher stability and greater resistance to high and low temperatures, specific interactions, particularly electrostatic, should be engineered into the protein. The effect of these specific interactions is largely reflected in an increased enthalpy change at the melting temperature.  相似文献   

5.
Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.  相似文献   

6.
通过分析3216条嗜热蛋白和4007条常温蛋白的二肽组成,结果发现,在嗜热蛋白中存在更多EE,EK,KE,VE,EI,KI,EV,KK,VK和IE等二肽,更少AA,LL,LA,AL,QA,QL,AQ,LT,TL和EQ等二肽。在此基础上发展了一种识别嗜热和常温蛋白的统计学方法,通过对两组共853个蛋白序列进行识别,该方法识别平均正确率分别可达89.0%和89.6%。同时探讨了一些特定二肽对识别效果的影响。  相似文献   

7.
Role of cation-pi interactions to the stability of thermophilic proteins   总被引:3,自引:0,他引:3  
Elucidating the factors responsible for exhibiting extreme thermal stability of thermophilic proteins is very important for an understanding of the mechanism of protein stability, as well as to design stable proteins. In this work, we have analyzed the influence of cation-pi interactions to enhance the stability from mesophilic to thermophilic proteins. The favorable residue pairs forming such a system of interactions have been brought out. We found that the Tyr has a greater number of such interactions with Lys in thermophilic proteins. Specifically, the same Lys would experience a greater number of cation-pi interactions with several Tyr residues in thermophiles. On the other hand, the influence of Phe in making cation-pi interactions is higher in mesophiles than in thermophiles. Further, a network of cation-pi interactions are maintained by Lys in thermophiles, whereas Arg plays a major role in mesophilic proteins. Moreover, atoms that have a substantial positive charge in both Lys and Arg make a more significant contribution for cation-pi interactions than do cationic group atoms.  相似文献   

8.
It has been known for some time that thermophilic proteins generally have increased numbers of non-covalent interactions (salt bridges, hydrogen bonds, etc.) compared with their mesophilic orthologs. Recently, anecdotal structural comparisons suggest that non-specific acid-base ion pairs on the protein surface can be an evolutionary efficient mechanism to increase thermostability. In this comprehensive structural analysis, we confirm this to be the case. Comparison of 127 orthologous mesophilic- thermophilic protein groups indicates a clear preference for stabilizing acid-base pairs on the surface of thermophilic proteins. Compared with positions in the core, stabilizing surface mutations are less likely to disrupt the tertiary structure, and thus more likely to be evolutionarily selected. Therefore, we believe that our results, in addition to being theoretically interesting, will facilitate identification of charge-altering mutations likely to increase the stability of a particular protein structure.  相似文献   

9.
A number of factors have been elucidated as responsible for the thermal stability of thermophilic proteins. However, the contribution of aromatic interactions to thermal stability has not been systematically studied. In the present investigation we used a graph spectral method to identify aromatic clusters in a dataset of 24 protein families for which the crystal structures of both the thermophilic and their mesophilic homologues are known. Our analysis shows a presence of additional aromatic clusters or enlarged aromatic networks in 17 different thermophilic protein families, which are absent in the corresponding mesophilic homologue. The additional aromatic clusters identified in the thermophiles are smaller in size and are largely found on the protein surface. The aromatic clusters are found to be relatively rigid regions of the surface and often the additional aromatic cluster is located close to the active site of the thermophilic enzyme. The residues in the additional aromatic clusters are preferably mutated to Leu, Ser or Ile in the mesophilic homologue. An analysis of the packing geometry of the pairwise aromatic interaction in the additional aromatic clusters shows a preference for a T-shaped orthogonal packing geometry. The present study also provides new insights for protein engineers to design thermostable and thermophilic proteins.  相似文献   

10.
In this work we investigate by computational means the behavior of two orthologous bacterial proteins, a mesophilic and a thermophilic tetrameric malate dehydrogenase (MalDH), at different temperatures. Namely, we quantify how protein mechanical rigidity at different length- and time-scales correlates to protein thermophilicity as commonly believed. In particular by using a clustering analysis strategy to explore the conformational space of the folded proteins, we show that at ambient conditions and at the molecular length-scale the thermophilic variant is indeed more rigid that the mesophilic one. This rigidification is the result of more efficient inter-domain interactions, the strength of which is further quantified via ad hoc free energy calculations. When considered isolated, the thermophilic domain is indeed more flexible than the respective mesophilic one. Upon oligomerization, the induced stiffening of the thermophilic protein propagates from the interface to the active site where the loop, controlling the access to the catalytic pocket, anchors down via an extended network of ion-pairs. On the contrary in the mesophilic tetramer the loop is highly mobile. Simulations at high temperature, could not re-activate the mobility of the loop in the thermophile. This finding opens questions on the similarities of the binding processes for these two homologues at their optimal working temperature and suggests for the thermophilic variant a possible cooperative role of cofactor/substrate.  相似文献   

11.
Are there any generalized molecular principles of thermal adaptation? Here, integrating the concepts of structural bioinformatics, sequence analysis, and classical knot theory, we develop a robust computational framework that seeks for mechanisms of thermal adaptation by comparing orthologous mesophilic-thermophilic and mesophilic-hyperthermophilic proteins of remarkable structural and topological similarities, and still leads us to context-independent results. A comprehensive analysis of 4741 high-resolution, non-redundant X-ray crystallographic structures collected from 11 hyperthermophilic, 32 thermophilic and 53 mesophilic prokaryotes unravels at least five “nearly universal” signatures of thermal adaptation, irrespective of the enormous sequence, structure, and functional diversity of the proteins compared. A careful investigation further extracts a set of amino acid changes that can potentially enhance protein thermal stability, and remarkably, these mutations are overrepresented in protein crystallization experiments, in disorder-to-order transitions and in engineered thermostable variants of existing mesophilic proteins. These results could be helpful to find a precise, global picture of thermal adaptation.  相似文献   

12.
MOTIVATION: Understanding the basis of protein stability in thermophilic organisms raises a general question: what structural properties of proteins are responsible for the higher thermostability of proteins from thermophilic organisms compared to proteins from mesophilic organisms? RESULTS: A unique database of 373 structurally well-aligned protein pairs from thermophilic and mesophilic organisms is constructed. Comparison of proteins from thermophilic and mesophilic organisms has shown that the external, water-accessible residues of the first group are more closely packed than those of the second. Packing of interior parts of proteins (residues inaccessible to water molecules) is the same in both cases. The analysis of amino acid composition of external residues of proteins from thermophilic organisms revealed an increased fraction of such amino acids as Lys, Arg and Glu, and a decreased fraction of Ala, Asp, Asn, Gln, Thr, Ser and His. Our theoretical investigation of folding/unfolding behavior confirms the experimental observations that the interactions that differ in thermophilic and mesophilic proteins form only after the passing of the transition state during folding. Thus, different packing of external residues can explain differences in thermostability of proteins from thermophilic and mesophilic organisms. AVAILABILITY: The database of 373 structurally well-aligned protein pairs is available at http://phys.protres.ru/resources/termo_meso_base.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

13.
Factors enhancing protein thermostability   总被引:22,自引:0,他引:22  
  相似文献   

14.
Thermostability of proteins in general and especially thermophilic proteins has been subject of a wide variety of studies based on theoretical and experimental investigation. Thermostability seems to be a property obtained through many minor structural modifications rather than certain amino acids substitution. In comparison with its mesophile homologue in a thermostable protein, usually a number of amino acids are exchanged. A wide variety of theoretical studies are based on comparative investigation of thermophilic proteins characteristics with their mesophilic counterparts in order to reveal their sequences, structural differences and consequently, to relate these observed differences to the thermostability properties. In this work we have compared a dataset of thermophilic proteins with their mesophilic homologues and furthermore, a mesophilic proteins dataset was also compared with its mesophilic homologue. This strategy enabled us first, to eliminate noise or background differences from signals and moreover, the important factors which were related to the thermostability were recognized too. Our results reveal that thermophilic and mesophilic proteins have both similar polar and nonpolar contribution to the surface area and compactness. On the other hand, salt bridges and main chain hydrogen bonds show an increase in the majority of thermophilic proteins in comparison to their mesophilic homologues. In addition, in thermophilic proteins hydrophobic residues are significantly more frequent, while polar residues are less. These findings indicate that thermostable proteins through evolution adopt several different strategies to withstand high temperature environments.  相似文献   

15.
Dominy BN  Minoux H  Brooks CL 《Proteins》2004,57(1):128-141
Two factors provide key contributions to the stability of thermophilic proteins relative to their mesophilic homologues: electrostatic interactions of charged residues in the folded state and the dielectric response of the folded protein. The dielectric response for proteins in a "thermophilic series" globally modulates the thermal stability of its members, with the calculated dielectric constant for the protein increasing from mesophiles to hyperthermophiles. This variability results from differences in the distribution of charged residues on the surface of the protein, in agreement with structural and genetic observations. Furthermore, the contribution of electrostatic interactions to the stability of the folded state is more favorable for thermophilic proteins than for their mesophilic homologues. This leads to the conclusion that electrostatic interactions play an important role in determining the stability of proteins at high temperatures. The interplay between electrostatic interactions and dielectric response also provides further rationalization for the enhanced stability of thermophilic proteins with respect to cold-denaturation. Taken together, the distribution of charged residues and their fluctuations have been shown to be factors in modulating protein stability over the entire range of biologically relevant temperatures.  相似文献   

16.
3-Phosphoglycerate kinases from yeast and the extreme thermophilic bacterium Thermus thermophilus HB8 have been used as models for investigating the relationship between stability, dynamics and activity. It was found that while at a given temperature the thermophilic protein is more stable, its conformational dynamics as measured by the ability of acrylamide to quench the fluorescence of a buried tryptophan as well as its specific activity, are both lower than for the mesophilic protein. As the temperature is increased, the thermodynamic stability of the thermophilic protein approaches that of the mesophilic protein at its working temperature. Its conformational dynamics and specific activity however were both shown to increase, until at the physiologically operational temperature, they become similar to those of the mesophilic enzyme at its operational temperature. These results confirm the proposal that a direct relationship and balance holds between thermodynamic stability, dynamics and specific activity in globular proteins. They demonstrate also the constraining effect of increased stability upon conformational dynamics and enzyme activity.  相似文献   

17.
Identification of the characteristic structural patterns responsible for protein thermostability is theoretically important and practically useful but largely remains an open problem. These patterns may be revealed through comparative study on thermophilic and mesophilic proteins that have distinct thermostability. In this study, we constructed several distance-dependant potentials from thermophilic and mesophilic proteins. These potentials were then used to evaluate the structural difference between thermophilic and mesophilic proteins. We found that using the subtraction or division of the potentials derived from thermophilic and mesophilic proteins can dramatically increase the discriminatory ability. This approach revealed that the ability to distinct the subtle structural features responsible for protein thermostability may be effectively enhanced through rationally designed comparative study.  相似文献   

18.
Zhou XX  Wang YB  Pan YJ  Li WF 《Amino acids》2008,34(1):25-33
Summary. Thermophilic proteins show substantially higher intrinsic thermal stability than their mesophilic counterparts. Amino acid composition is believed to alter the intrinsic stability of proteins. Several investigations and mutagenesis experiment have been carried out to understand the amino acid composition for the thermostability of proteins. This review presents some generalized features of amino acid composition found in thermophilic proteins, including an increase in residue hydrophobicity, a decrease in uncharged polar residues, an increase in charged residues, an increase in aromatic residues, certain amino acid coupling patterns and amino acid preferences for thermophilic proteins. The differences of amino acids composition between thermophilic and mesophilic proteins are related to some properties of amino acids. These features provide guidelines for engineering mesophilic protein to thermophilic protein. Authors’ addresses: Yuan-Jiang Pan, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Zhejiang University Road 38, Hangzhou 310027, China; Wei-Fen Li, Microbiology Division, College of Animal Science, Zhejiang University, Hangzhou 310029, China  相似文献   

19.
No general strategy for thermostability has been yet established, because the extra stability of thermophiles appears to be the sum of different cumulative stabilizing interactions. In addition, the increase of conformational rigidity observed in many thermophilic proteins, which in some cases disappears when mesophilic and thermophilic proteins are compared at their respective physiological temperatures, suggests that evolutionary adaptation tends to maintain corresponding states with respect to conformational flexibility. In this study, we accomplished a structural analysis of the K18G/R82E Alicyclobacillus acidocaldarius thioredoxin (BacTrx) mutant, which has reduced heat resistance with respect to the thermostable wild-type. Furthermore, we have also achieved a detailed study, carried out at 25, 45, and 65 degrees C, of the backbone dynamics of both the BacTrx and its K18G/R82E mutant. Our findings clearly indicate that the insertion of the two mutations causes a loss of energetically favorable long-range interactions and renders the secondary structure elements of the double mutants more similar to those of the mesophilic Escherichia coli thioredoxin. Moreover, protein dynamics analysis shows that at room temperature the BacTrx, as well as the double mutant, are globally as rigid as the mesophilic thioredoxins; differently, at 65 degrees C, which is in the optimal growth temperature range of A. acidocaldarius, the wild-type retains its rigidity while the double mutant is characterized by a large increase of the amplitude of the internal motions. Finally, our research interestingly shows that fast motions on the pico- to nanosecond time scale are not detrimental to protein stability and provide an entropic stabilization of the native state. This study further confirms that protein thermostability is reached through diverse stabilizing interactions, which have the key role to maintain the structural folding stable and functional at the working temperature.  相似文献   

20.
Continuum electrostatic models are used to examine in detail the mechanism of protein stabilization and destabilization due to salt near physiological concentrations. Three wild-type cold shock proteins taken from mesophilic, thermophilic, and hyperthermophilic bacteria are studied using these methods. The model is validated by comparison with experimental data collected for these proteins. In addition, a number of single point mutants and three designed sequences are examined. The results from this study demonstrate that the sensitivity of protein stability toward salt is correlated with thermostability in the cold shock protein family. The calculations indicate that the mesophile is stabilized by the presence of salt while the thermophile and hyperthermophile are destabilized. A decomposition of the salt influence at a residue level permits identification of regions of the protein sequences that contribute toward the observed salt-dependent stability. This model is used to rationalize the effect of various point mutations with regard to sensitivity toward salt. Finally, it is demonstrated that designed cold shock protein variants exhibit electrostatic properties similar to the natural thermophilic and hyperthermophilic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号