首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper investigates the potential use of the corticolous lichen genus Bulbothrix Hale as a bioindicator of ‘time-since-last-fire’ in the cerrado (savannas) of central Brazil. Work was carried out at the Reserva Ecológica do IBGE and the Jardim Botãnico de Brasilia, 33 km outside Brasilia D.F., in plots of cerrado denso with known fire histories within the ‘Fire Project’ area. Measurements of abundance and thallus size were taken of all Bulbothrix individuals encountered up to 2 m on the trunks of three phorophyte species. The results show that abundances and thalli sizes of the Bulbothrix populations can be correlated with the ‘time-since-last-fire’ that had occurred in each of the plots. This study shows that is is possible to use characteristics of specific lichen populations as bioindicators of fire history.  相似文献   

2.
Previous studies have indicated that epiphytic lichens can be good bioindicators of fire history in tropical savannas. A Lichen Fire History (LFH) Key was developed to assess fire history in areas of cerrado (savanna) in central Brazil. However, the effectiveness and reliability of the LFH Key is much influenced by other lichen determinants. The aim of this study, therefore, was to investigate some of these factors in more detail, thereby allowing better estimates of fire history using the LFH Key. Fieldwork was carried out at the Reserva Ecológica do IBGE, 33 km outside Brasilia D.F., in plots of cerrado denso of varying fire history. Vegetation sampling took place in 20 × 20 m-quadrats within which measurements of the lichen abundance, scorch and phorophyte characteristics, including height, girth and tortuosity, were recorded for all the phorophytes encountered. Bark samples were collected from common cerrado phorophytes and tested for pH, conductivity, moisture content and absorbing capacity, texture and nutrient content. The results show that the greater the impact of fire, the lower the influence of other factors, such as bark characteristics, on the lichens. The strongest determinants of lichens in areas subjected to rare fires or protected from fire are bark aluminium content, bark pH, and microclimatic factors. Using the information gathered from the study, phorophyte species are grouped in terms of their reliability for use in the LFH Key. This study highlights the range of factors which can affect lichen abundance in the tropics, and the relationships between them.  相似文献   

3.
Aims The effects of traditional land use by mobile livestock keepers on biodiversity in forest steppe ecotones are insufficiently studied. Epiphytes are an important part of forest plant diversity. Here we analyze differences in the diversity and composition of the epiphytic lichen vegetation between the edge and the interior of Siberian larch forests in the Khangai Mountains, western Mongolia, which are highly subdivided into patches. We asked whether the epiphytic lichen vegetation at the forest edge differs significantly from that in the interior, whether the edge is inhabited by more nitrophilous species than the interior and whether the density of nomad camps around the forest affects epiphytic lichen diversity.Methods Cover percentages of epiphytic lichen species were recorded from 20 trees per plot on 6 plots in the interior and 6 plots at the edge of Larix sibirica forests. The position of nomad summer camps was surveyed using Global Positioning System. Data were analyzed with pairwise significance tests, analysis of similarities, nonmetric multidimensional scaling and canonical correspondence analysis.Important findings The composition of the epiphytic lichen vegetation clearly differed between the two habitats, with more species being more frequent at the edge than in the interior. However, there was no difference in species richness (α-diversity). The epiphyte vegetation at the edge was more uniform and characterized by lower variation of tree-level α-diversity and lower β-diversity than in the interior. At the edge, only nitrophytic lichens were dominant, whereas in the interior, nitrophytes and acidophytes were among the dominant species. This pattern is probably attributable to the spatial heterogeneity of the intensity of forest grazing and was shown to be influenced by the density of nomad summer camps in the vicinity of the forests. Tree-level α-diversity increased with stem diameter, but high-diameter trees were rare. The results suggest that the present level of forest patchiness and the effect of forest grazing increases the diversity of epiphytic lichens on the landscape level, while logging of high-diameter trees reduces lichen diversity.  相似文献   

4.
The distribution of lichens in lowland deciduous and evergreen forests in Thailand is used to interpret recent changes in the distribution of these forests. The role of fire in changing the forest structure, microclimate and species content is discussed. Characteristic corticolous lichen communities of dry deciduous and moist evergreen forests are described, as well as changes in the composition of the flora following fire events. Where frequent fires have altered the forest rates of change in forest type are suggested using lichen data from randomly selected trees in forest plots, and growth rates of sampled species in quadrats. The disjunct nature of the lichen floras in lowland deciduous and evergreen forests is discussed, their origin and use in interpreting changes in forest types in monsoon climates over long periods of time.  相似文献   

5.
Abstract. Epiphytic and epixylic lichens were surveyed on 15 1-ha plots in mature Picea abies-dominated boreal forests in southern Finland. The sample plots were classified into three groups according to the age of the dominant tree stand and recent signs of cutting: (1) early mature managed, ‘EM’ (95 -109 yr), (2) late mature managed, ‘LM’ (126 - 145 yr) and (3) old-growth, ‘OG’ (129 - 198 yr). Two data sets on epiphytic and epixylic lichens were recorded from each plot: (1) species on basal trunks and branches of Picea abies and (2) species on all available woody substrates, including basal parts of all tree species, saplings, snags, logs and stumps. 142 epiphytic and epixylic lichen species were found, of which 83 (58%) occurred on P. abies. Mean total numbers of species per sample plot were 69 in EM, 78 in LM and 88 in OG plots, species number on P. abies were 47, 56, and 54 respectively. The LM plots had lower species numbers than OG plots, mainly due to the lack of old Populus tremula trees, but they had higher species number than the EM plots mainly due to the higher age of Picea abies. Differences in species composition, both within and between the three groups, were small. The results suggest that the epiphytic and epixylic lichen diversity in a managed stand can be increased by prolonging the rotation of the stand to >120 yr and by increasing the diversity of habitats in the stand.  相似文献   

6.
A transect of 47 mature trees was studied within an Atlantic rain-forest plot in northeastern Brazil to determinate effects of phorophyte specificity and environmental parameters vs. stochasticity on the structure of corticolous, crustose microlichen communities. A total of 150 lichen species was found, most being rare to extremely rare. Multivariate analysis of sample plots indicated subtle phorophyte preferences among certain lichen species, corresponding to differences in bark pH, degree of bark shedding, density and size of bark lenticels, and presence of milk sap. Individual and multiple regressions revealed correlations between lichen species richness; respectively, area cover and bark pH (negative); density and size of bark lenticels (negative); degree of bark shedding (negative); presence of milk sap (positive); and diffuse site factor (positive). No strongly delimited lichen communities were detected, but cluster analysis revealed three main groups and six subgroups with slightly different lichen species composition, each one with characteristic indicator species but with highly variable overall species composition. Beta diversity was high among samples and lacked spatial structure. However, beta diversity was significantly lower among samples belonging to the same tree species, independent of their spatial arrangement. It was concluded that community formation in tropical rain-forest understory lichens subtly correlates with two main environmental factor complexes—phorophyte bark characteristics and microclimate—but is to a large extent determined by the stochastic effects of species dispersal, especially of rare species.  相似文献   

7.
The Uholka-Shyrokyi Luh area of the Carpathian Biosphere Reserve is considered the largest and the most valuable primeval beech forest in Europe for biodiversity conservation. To study the impact of different topographic and forest-stand variables on epiphytic lichen diversity a total of 294 systematically distributed sampling plots were surveyed and 198 epiphytic lichen species recorded in this forest landscape, which has an uneven-aged structure. The obtained data were analysed using a non-metric multidimensional ordination and a generalized linear model. The epiphytic lichen species density at the plot level was mainly influenced by altitude and forest-stand variables. These variables are related to both the light availability i.e. canopy closure, and the habitat diversity, i.e. the developmental stage of the forest stands and the mean stem diameter. We found that lichen species density on plots with a relatively open canopy was significantly higher than on plots with a fairly loose or closed canopy structure. The late developmental stage of forest stands, which is characterized by a large number of old trees with rough and creviced bark, had a strong positive effect on lichen species density. In the Uholka-Shyrokyi Luh primeval forest the mean stem diameter of beech trees significantly correlated with lichen species density per plot. Similar trends in the species diversity of nationally red-listed lichens were revealed. Epiphytic lichens with a high conservation value nationally and internationally were found to be rather abundant in the Uholka-Shyrokyi Luh area, which shows its international importance for the conservation of forest-bound lichens.  相似文献   

8.
We surveyed lichens in an extensive area of lowland deciduous oak and beech dominated forest under wood pasture management within the New Forest National Park, southern England. This provided the basis for an investigation of factors affecting the species density and composition of epiphytic lichen communities. Fifteen 1 hectare plots were established in the same sites as a parallel invertebrate survey, of which nine were in old growth forest and six in oak plantations of between c. 150 and 300 years old. In each plot 12 trees were identified for sampling and lichens were sampled on four aspects of each trunk. Results at the plot level showed that species density was significantly higher in the old growth woodland plots from those in plantations. Plot age had a significant effect on species on oak but this was not significant for lichen communities on beech. The species density of lichens associated with Trentepohliaceae photobionts on oaks showed a linear positive relationship with increasing plot age while the species density of species with other coccal green Chlorophyta decreased with age of the plot. A major part of the lichenised fungi with Trentepohliaceae photobionts includes indicator and notable species used in conservation evaluation and this component is most affected by fragmentation and isolation of forest sites. The results emphasise the importance of long term connectivity and ecological continuity in this extensive mosaic of lowland deciduous forest.  相似文献   

9.
Epiphytic lichen vegetation onFagus sylvatica sas studied in 4 sites along an altitudinal gradient from 930 to 1500 m on SE facing slopes of Mount Olympos (Greece). The crucial factor determining the spatial heterogeneity of epiphytic lichens onF. sylvatica is the altitude and not the height on the trunk at which lichen community is established. 17 out of 26 taxa are confined to a particular elevation range, while another three are clearly ubiquitous in their distribution. The number of lichen species at breast height is higher than at the base of the trunks. The results were compared with those gathered earlier in an analogous study on the vertical distribution of epiphytic lichens onPinus nigra along an altitudinal gradient from 750 to 1510 m of the same mountain. Comparison suggests that spatial heterogeneity of epiphytic lichens onF. sylvatica is different from the one onP. nigra.  相似文献   

10.
 根据多年的研究资料并采用聚类分析方法对分布在天山西部山脉的地衣群落结构进行了研究。结果表明,分布在该地区的地衣种类形成了6种群落:1) 土星猫耳衣(Leptogium saturninum)+矮石蕊(Cladonia humilis)+兰灰蜈蚣衣(Physcia caesia)群落;2)黑穗石蕊(Cladonia amaurocr  相似文献   

11.
To identify representative quantitative criteria for the creation of a future Red List of epiphytic lichens, 849 trees in 132 long-term ecological observation plots in the Swiss Central Plateau and the Pre-Alps were surveyed by standard sampling. Based on the trees, frequency data of the lichen taxa observed are described by the log series model, indicating the controlling effect of few ecological factors. Based on the plots, four classes of scarcity, each comprising 25% of the species, were established. As a contribution to the development of a national, representative survey of lichens, α-diversity (species richness, species density) andβ-diversity (dissimilarity) were calculated in terms of region, vegetation formation, vegetation belt and for their combinations. Differences in lichen diversity between the Central Plateau and the Pre-Alps were caused by the bigger elevational range in the Pre-Alps, which resulted in a higher species richness. α-Diversity of forest and non-forest were similar, whereas each vegetation formation showed one third of its species restricted to it. The contributions to the total lichen diversity of crustose, foliose and fruticose as well as of generative and vegetative species was calculated. Specific features along the altitudinal gradient of vegetation belts emerged: the percentage of crustose and generative lichens declined with every altitudinal step, increased in fruticose and vegetative lichens, and was the same in foliose species.  相似文献   

12.
Host species has an important influence on the distribution of epiphytic lichens in forests. However, the importance of non-dominant trees in shaping lichen communities has been poorly studied owing to the relative rarity of individuals. The importance of dominant and non-dominant trees for distribution of epiphytic lichens was determined in eight subtropical forests in southwestern China. Dominant trees supported more abundant total and exclusive lichen species only in secondary forests. The occurrence of non-dominant trees promoted lichen diversity within forest types and influenced lichen communities on both tree groups. The effects of total tree species on lichen distribution largely resulted from the presence of non-dominant trees. Dominant and non-dominant trees supported distinct lichen assemblages within forest types, and ordination analyses showed a clear separation. Our study, therefore, reinforces the importance of non-dominant trees for conserving epiphytic lichens, and highlights that lichen assemblages are shaped by both dominant and non-dominant trees.  相似文献   

13.
地衣是亚热带山地森林系统附生生物类群的重要组成部分之一,对环境变化极其敏感。为了更好地了解附生地衣对森林边缘效应的响应,我们在云南哀牢山地区原生山地常绿阔叶林中,分别在距林缘5m、25m、50m和 100m处设立样地,收集附生大型地衣的凋落物1年;分析附生地衣凋落物的物种多样性和生物量、功能群特征和组成结构对林缘深度变化的响应特征。研究结果显示,边缘效应能够显著提高林缘附生地衣群落的物种多样性和生物量;其发生的距离最深不超过25m。林缘-林内梯度上,不同地衣功能群的响应模式具有各自的特征。排序分析表明仅在5m样地与其他样地之间存在显著差异,指示种分析则发现仅5m样地具有指示种。哀牢山原生林中边缘效应促进林缘附生地衣生长和分布的现象,可能与当地高湿环境削减了地衣的高光损伤以及以叶状和灌状类群为主的地衣个体受到风力破坏的程度相对较低有关。  相似文献   

14.
地衣是由低等植物中的藻类与菌类中的真菌和兰细菌共生而成的一群特殊的植物。由于耐寒耐旱对生活中的养分要求不高,在养纷贫瘠、环境恶劣的高山寒漠、平原、戈壁和沙漠中地衣都能生长,因而广泛地分布和生长在不同的生态环境中。有关新疆地衣方面的研究报道集中在物种分类水平上,对于地衣群落结构方面的研究比较少。因此,我们应用多元分析中的主分量分析及聚类分析方法对分布在天山森林生态系统中树生地衣植物群落进行数量分类并对群落结构物种多样性、相似性和均匀度等群落参数进行了比较系统的研究。结果表明, 在西部天山不同森林生态系统中树生地衣群落的分布与海拔高度和树种有密切的关系, 不同海拔的不同类型的森林生态系统中分布着不同种类的树生地衣植物。 根据多元分析结果和生境的综合特征,该地区的树生地衣可划分为4种类型: 1) 茎口果粉衣+金黄茶衣群丛Chaenotheca stemonea+Candellaria aurella Association; 2)叉小孢衣+裸扁枝衣+粉唇蜈蚣衣群丛Bryoria furcellata+Evernia esorediosa+Physcia tribacoides Association; 3)亚广开梅衣+槽梅衣+疑小梅衣群丛Parmelia fertilis+Parmelia sulcata+Parmeliopsis ambigua Association; 4)睫毛黑蜈蚣衣+黑蜈蚣衣群丛Phaeophyscia ciliata+Phaeophyscia nigricans Association。其群落多样性指数以亚广开梅衣+槽梅衣+疑小梅衣群丛为最高 (1.920), 叉小孢衣+裸扁枝衣+粉唇蜈蚣衣群丛为最低 (1.562)。  相似文献   

15.
Question: What are the edge effect responses of epiphytic lichen communities in Mediterranean Quercus pyrenaica forest? Location: Central Spain. Methods: We established ten transects perpendicular to a road dissecting a well conserved remnant of Q. pyrenaica forest into two sections. Transects extended from the forest/road edge to 100 m into the forest. Data were collected from seven plots in each transect at different distances from the edge. Variables were grouped into stand scale variables (distance to edge, number of trees per plot, mean diameter per plot, irradiance) and tree scale variables (diameter and height of sampled trees, aspect of the sampled square and relative height of the square). We used General Mixed Linear Models and constrained ordination techniques to test the hypothesis that the spatio‐temporal heterogeneity of light and water controls the occurrence of lichens and bryophytes along the edge‐interior gradient in the Q. pyrenaica forest. Results: Microclimatic parameters vary in a non‐linear way; edge and interior stands showed the most divergent and extreme values. Although the micro‐environment within Mediterranean forests is heterogeneous, interior conditions are apparently suitable for the performance of some specific forest epiphytes. Consequently, species richness does not show significant differences along the gradient. Total epiphytic cover increases towards the forest interior, but distance to the edge together with other predictors at the tree scale (aspect and height of the square) are the most relevant predictors for the composition and structure of these communities. Conclusions: Composition and structure of epiphytic communities in a Mediterranean semi‐deciduous forest are affected by the edge between the forest and the road constructed. Since some extremely rare lichens only occur at interior stands, the conservation of these threatened elements requires urgent conservation measures because well preserved and unmanaged forests in the Mediterranean region are very rare.  相似文献   

16.
Lichen epiphytes are applied as excellent environmental indicators worldwide. However, very little is known about epiphytic lichen communities and their response to forest dynamics in subtropical China. This paper proposes the applications of the cover, diversity, and functional traits of epiphytic lichens to assess environmental changes associated with succession in subtropical forests of southwest China. Bole lichens were sampled from 120 plots of eight representative forest types in the Ailao Mountains. Total cover, species richness, diversity and community structure of bole lichens differed significantly among forest types, and the highest cover and diversity occurred in the Populus bonatii secondary forest (PBSF). Sixty-one indicator species were associated with particular forest types and more than 50% occurred in the PBSF. Both cover and diversity of most lichen functional groups varied regularly during forest succession. Lichen pioneer species were not displaced by competitively superior species as succession proceeds and cyanolichens were more prevalent in secondary forests. The results also highlight the importance of habitat variables such as canopy openness, host diversity, forest age, tree size, the size of the largest tree, tree density, and basal area on the lichen community. Consequently, our findings support the notion that epiphytic lichens, in terms of cover, diversity, species composition and functional traits can be used as effective indicators for large-scale and long-term forest monitoring. More importantly, the narrowly lobed foliose group was the best candidate indicator of environmental conditions in this region. The combined application of lichen indicator species and functional groups seemed to be a more reliable and more powerful method for monitoring forest dynamics in subtropical montane ecosystems.  相似文献   

17.
Many global ecosystems have undergone shifts in fire regimes in recent decades, such as changes in fire size, frequency, and/or severity. Recent research shows that increases in fire size, frequency, and severity can lead to long‐persisting deforestation, but the consequences of shifting fire regimes for biodiversity of other vegetative organisms (such as understory plants, fungi, and lichens) remain poorly understood. Understanding lichen responses to wildfire is particularly important because lichens play crucial roles in nutrient cycling and supporting wildlife in many ecosystems. Lichen responses to fire have been little studied, and most previous research has been limited to small geographic areas (e.g. studies of a single fire), making it difficult to establish generalizable patterns. To investigate long‐term effects of fire severity on lichen communities, we sampled epiphytic lichen communities in 104 study plots across California's greater Sierra Nevada region in areas that burned in five wildfires, ranging from 4 to 16 years prior to sampling. The conifer forest ecosystems we studied have undergone a notable increase in fire severity in recent decades, and we sample across the full gradient of fire severity to infer how shifting fire regimes may influence landscape‐level biodiversity. We find that low‐severity fire has little to no effect on lichen communities. Areas that burned at moderate and high severities, however, have significantly and progressively lower lichen richness and abundance. Importantly, we observe very little postfire lichen recolonization on burned substrates even more than 15 years after fire. Our multivariate model suggests that the hotter, drier microclimates that occur after fire removes forest canopies may prevent lichen reestablishment, meaning that lichens are not likely to recolonize until mature trees regenerate. These findings suggest that altered fire regimes may cause broad and long‐persisting landscape‐scale biodiversity losses that could ultimately impact multiple trophic levels.  相似文献   

18.
Endophytic fungal communities in leaves of deciduous trees usually undergo pronounced seasonal changes. We hypothesised that such compositional shifts are predominantly caused by annuality of the leaves and therefore less pronounced in fungi colonising the perennial substrates bark and corticolous lichens. To test this hypothesis, thalli of the foliose lichen-forming fungal species Xanthoria parietina and Physconia distorta, along with the adjacent bark, were sampled during spring and autumn at two sides of a single tree in southern Germany. Analysis of clone libraries by restriction fragment length polymorphism (RFLP) revealed 588 singleton and 221 non-singleton RFLP-types of non-lichenised fungi. The communities differed significantly between host lichen species. Season and exposure had only a significant impact when the two factors were combined in the analysis. Accordingly, bark- and/or the lichen-associated fungal communities change throughout the year’s course, a finding that rejects the initial hypothesis. This survey revealed valuable information for future broad-based studies, by indicating that a relatively high diversity of non-lichenised fungi is associated with corticolous lichen thalli and the adjacent bark. Furthermore, the structure of non-lichenised fungal assemblages associated with corticolous lichen communities obviously depends at least on the following factors: ‘lichen species’, ‘exposure’, and ‘season’.  相似文献   

19.
Questions: What is the variability in abundance of lichens on grassland soil between and within fields after prescribed fire? Is post‐fire lichen abundance an effect of pre‐fire population size? Location: Cedar Creek Natural History Area, Minnesota, USA. Methods: Lichen abundance, estimated as ground cover and dominated by Cladonia spp., was mapped in plots in two fields before prescribed burning on 06.10.2003 and 15.10.2003 for the first time since abandonment in the 1950s. The plots were resurveyed one year post‐fire. Results: Post‐fire cover of Cladonia spp. varied strongly between the fields, most likely due to different weather conditions between the burn events, which resulted in different fire intensities, one of low and one of high intensity. In the field that experienced the low intensity fire, post‐fire cover of Cladonia spp. was still relatively high, and showed a positive relationship with pre‐fire cover, while no such relationship was found after the high intensity fire. In that field Cladonia spp. experienced high mortality rates irrespective of pre‐fire cover. Conclusions: This study provides an example of how species response to disturbance can be a function of population size, but that this relationship can be non‐linear; lichens in grassland can survive a low intensity fire proportionally to pre‐fire population size, but experience high mortality rates above a fire intensity threshold. The applications of these results are that fire intensity matters to species response to prescribed fire, and that the persistence of climax lichen communities and biodiversity in the study system needs a broad range of fire intervals.  相似文献   

20.
The ecology of many tropical rain forest organisms, not the least in Africa, remains poorly understood. Here, we present a detailed ecological study of epiphytic lichens in the equatorial montane rain forest of Bwindi National Park (331 km2), Uganda. We evaluated all major lichen growth forms, including selected groups of crustose lichens. In 14 transects at elevations of 1290 m to 2500 m, we sampled 276 trees belonging to 60 species. We recorded all lichen species on each tree trunk between ground level and 2 m above the ground, yielding 191 lichen species in 67 genera, with a mean of 4.7 species per tree. We used non‐metric multi‐dimensional scaling to separate epiphytic lichen assemblages according to tree species composition and elevation. Structural equation modeling indicated that elevation influenced tree species composition and that tree species composition largely determined lichen species composition. Thus, elevation acted indirectly on the lichen assemblages. Further studies examining factors such as bark properties and lichen colonization ecology may clarify what determines the association between tree species and lichen assemblages. The link between lichen assemblages and large‐scale elevation patterns, as well as disturbance and regrowth histories, warrants further study. An analysis of lichen species composition on individual tree species that occur over large elevation ranges would distinguish the effect of tree species on lichen assemblages from the effect of elevation and thus climate. Our study highlights the limited extent of our knowledge of tropical epiphytic lichens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号