首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of triphenyltin on mitochondrial Ca2+ content was studied. It was found that this trialkyltin compound induces an increase in membrane permeability that leads to Ca2+ release, drop of the transmembrane potential, and efflux of matrix proteins. Interestingly, cyclosporin A was unable to inhibit triphenyltin-induced Ca2+ release. Based on these results it is proposed that the hyperpermeable state is produced by modification of 2.25 nmol of membrane thiol groups.  相似文献   

2.
It was recently demonstrated that the rat-selective toxicant norbormide also induces rat-selective opening of the permeability transition pore (PTP) in isolated mitochondria. Norbormide is a mixture of endo and exo stereoisomers; however, only the endo forms are lethal to rats. In the present study we tested both endo and exo isomers as well as neutral and cationic derivatives of norbormide to: (i) verify if the PTP-regulatory activity by norbormide is stereospecific; (ii) define the structural features of norbormide responsible for PTP-activation, (iii) elucidate the basis for the drug species-specificity. Our results show that: (i) norbormide isomers affect PTP in a rat-selective fashion; however, no relevant differences between lethal and non-lethal forms are observed suggesting that drug regulation of PTP-activity and lethality in rats are unrelated phenomena; (ii) a (phenylvinyl)pyridine moiety represents the key element conferring the PTP-activating effect; (iii) cationic derivatives of rat-active compounds accumulate in the matrix via the membrane potential and activate the PTP also in mouse and guinea pig mitochondria. These findings suggest that the norbormide-sensitive PTP-target is present in all species examined, and is presumably located on the matrix side. The species-selectivity may depend on the unique properties of a transport system allowing drug internalisation in rat mitochondria.  相似文献   

3.
It was recently demonstrated that the rat-selective toxicant norbormide also induces rat-selective opening of the permeability transition pore (PTP) in isolated mitochondria. Norbormide is a mixture of endo and exo stereoisomers; however, only the endo forms are lethal to rats. In the present study we tested both endo and exo isomers as well as neutral and cationic derivatives of norbormide to: (i) verify if the PTP-regulatory activity by norbormide is stereospecific; (ii) define the structural features of norbormide responsible for PTP-activation, (iii) elucidate the basis for the drug species-specificity. Our results show that: (i) norbormide isomers affect PTP in a rat-selective fashion; however, no relevant differences between lethal and non-lethal forms are observed suggesting that drug regulation of PTP-activity and lethality in rats are unrelated phenomena; (ii) a (phenylvinyl)pyridine moiety represents the key element conferring the PTP-activating effect; (iii) cationic derivatives of rat-active compounds accumulate in the matrix via the membrane potential and activate the PTP also in mouse and guinea pig mitochondria. These findings suggest that the norbormide-sensitive PTP-target is present in all species examined, and is presumably located on the matrix side. The species-selectivity may depend on the unique properties of a transport system allowing drug internalisation in rat mitochondria.  相似文献   

4.
Glycyrrhetinic acid (GE), the aglycone of glycyrrhizic acid, a triterpene glycoside which represents one of the main constituents of licorice root, induces an oxidative stress in liver mitochondria responsible for the induction of membrane permeability transition. In fact, GE, by interacting with the mitochondrial respiratory chain, generates hydrogen peroxide which in turn oxidizes critical thiol groups and endogenous pyridine nucleotides leading to the opening of the transition pore. Most likely the reactive group of GE is the carbonyl oxygen in C-11 which, by interacting mainly with a Fe/S centre of mitochondrial complex I, generates an oxygen-centered radical responsible for the pro-oxidant action.  相似文献   

5.
Glycyrrhetinic acid (GE), the aglycone of glycyrrhizic acid, a triterpene glycoside which represents one of the main constituents of licorice root, induces an oxidative stress in liver mitochondria responsible for the induction of membrane permeability transition. In fact, GE, by interacting with the mitochondrial respiratory chain, generates hydrogen peroxide which in turn oxidizes critical thiol groups and endogenous pyridine nucleotides leading to the opening of the transition pore. Most likely the reactive group of GE is the carbonyl oxygen in C-11 which, by interacting mainly with a Fe/S centre of mitochondrial complex I, generates an oxygen-centered radical responsible for the pro-oxidant action.  相似文献   

6.
7.
Cepharanthine (CEP), a biscocrourine alkaloid, has been widely used in Japan for the treatment of several disorders. Furthermore, accumulated evidence shows that CEP protects against some cell death systems but not others. Recently, it was found that mitochondria play an important role in a mechanism of apoptosis involving membrane permeability transition (MPT). Although CEP stabilizes the mitochondrial membrane structure and protects some functions of mitochondria from damage, the mechanism of action of CEP on MPT remains obscure. In this study, therefore, we examined the effect of CEP on Ca2+- and Fe2+/ADP-induced MPT of isolated mitochondria. CEP inhibited Ca2+-induced swelling, depolarization, Cyt.c release, and the release of Ca2+ in a concentration dependent manner. CEP also inhibited Ca2+-induced generation of reactive oxygen species and Fe/ADP-induced swelling and lipid peroxidation. Furthermore, CEP suppressed Ca2+-induced thiol modification of adenine nucleotide transloase (ANT). These results suggested that CEP suppressed MPT by a decrease in affinity of cyclophilin D for ANT. From these results it was concluded that the suppression of MPT by CEP might be due to its inhibitory action on Ca2+ release and antioxidant activity and that CEP might suppress the mechanism of apoptotic cell death when directly interacted with mitochondria in cells.  相似文献   

8.
AimsEffect of mitochondrial permeability transition (MPT) inhibitors on mitochondrial membrane-bound glutathione transferase (mtMGST1) activity in rat liver was investigated in vitro.Main methodsWhen mitochondria were incubated with MPT inhibitors, mtMGST1 activity was decreased dose dependently and their 50% inhibition concentration (IC50) were 1.2 μM (cyclosporin A; CsA), 31 μM (bongkrekic acid; BKA), 1.8 mM (ADP), and 3.2 mM (ATP). The decrease of mtMGST1 activity by the MPT inhibitors was not observed in the presence of detergent Triton X-100. On the contrary, mtMGST1 inhibition by GST inhibitors such as cibacron blue (IC50, 4.2 μM) and S-hexylglutathione (IC50, 480 μM) was not affected in the presence of detergent. Although mtMGST1 resides in both the inner (IMM) and outer mitochondrial membranes (OMM), only mtMGST1 in the IMM was inhibited by the MPT inhibitors in the absence of detergent. GST inhibitors decreased mtMGST1 activity both in the IMM and OMM regardless of the presence or absence of detergent. Cytosolic GSTs and microsomal MGST1 were not inhibited by the MPT inhibitors.Key findingsThese results indicate that mtMGST1 is inhibited by MPT inhibitors through membrane components, not directly by the inhibitors.SignificanceSince CsA binds to cyclophilin D (Cyp-D) in the mitochondrial matrix whereas BKA or ADP binds to adenine nucleotide translocator (ANT) in the IMM, it was suggested that mtMGST1 in the IMM interacts with Cyp-D/ANT and the binding of MPT inhibitors to Cyp-D or ANT causes their conformational change followed by an alteration of mtMGST1 conformation, resulting in decreasing mtMGST1 activity.  相似文献   

9.
Molecular basis of bacterial outer membrane permeability.   总被引:253,自引:9,他引:244       下载免费PDF全文
  相似文献   

10.
Incubation of rat liver mitochondria with 100-500 mM tyramine, a substrate for monoamine oxidases A and B (MAOs), in the presence of 30 mM Ca2+ induces matrix swelling, accompanied by collapse of membrane potential, efflux of endogenous Mg2+ and accumulated Ca2+ and oxidation of endogenous pyridine nucleotides. These effects are completely abolished in the presence of cyclosporin A, ADP, dithioerythritol and N-ethylmaleimide, thus confirming the induction of the mitochondrial membrane permeability transition (MPT). The observed partial protective effect exerted by catalase indicates the involvement of both MAO-derived hydrogen peroxide and aldehyde. Higher concentrations of tyramine (1-2 mM) are less effective or even completely ineffective. At these high concentrations tyramine has an inhibitory effect when the MPT is induced by 100 mM Ca2+. The MAO inhibitors clorgyline (50 mM) and pargyline (500 mM) completely protect against MPT induction by 100 mM tyramine but also inhibit the phenomenon, although with different efficacy, when it is induced by 100 mM Ca2+ in the absence of tyramine. Taken together, our data suggest that tyramine, clorgyline and pargyline act as modulators of the MPT either through a direct inducing/protective effect or by controlling hydrogen peroxide and aldehyde generation.  相似文献   

11.
Role of the mitochondrial membrane permeability transition in cell death   总被引:6,自引:0,他引:6  
In recent years, the role of the mitochondria in both apoptotic and necrotic cell death has received considerable attention. An increase of mitochondrial membrane permeability is one of the key events in apoptotic or necrotic death, although the details of the mechanism involved remain to be elucidated. The mitochondrial membrane permeability transition (MPT) is a Ca2+-dependent increase of mitochondrial membrane permeability that leads to loss of Δψ, mitochondrial swelling, and rupture of the outer mitochondrial membrane. The MPT is thought to occur after the opening of a channel that is known as the permeability transition pore (PTP), which putatively consists of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT), cyclophilin D (Cyp D: a mitochondrial peptidyl prolyl-cis, trans-isomerase), and other molecule(s). Recently, significant progress has been made by studies performed with mice lacking Cyp D at several laboratories, which have convincingly demonstrated that Cyp D is essential for the MPT to occur and that the Cyp D-dependent MPT regulates some forms of necrotic, but not apoptotic, cell death. Cyp D-deficient mice have also been used to show that the Cyp D-dependent MPT plays a crucial role in ischemia/reperfusion injury. The anti-apoptotic proteins Bcl-2 and Bcl-xL have the ability to block the MPT, and can therefore block MPT-dependent necrosis in addition to their well-established ability to inhibit apoptosis.  相似文献   

12.
13.
14.
Molecular basis of bacterial outer membrane permeability revisited.   总被引:13,自引:0,他引:13  
Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.  相似文献   

15.
The mitochondrial permeability transition (MPT) is involved in both Ca2+ signaling and cell death. The present study aimed to clarify the involvement of cyclophilin D, a peptidyl prolyl cis-trans isomerase (PPIase), in MPT induction in intact cells. To achieve this, we used C6 cells overexpressing wild-type or PPIase-deficient cyclophilin D, and measured the inner mitochondrial membrane permeability to calcein, a 623-Da hydrophilic fluorescent molecule, to evaluate MPT induction. In vector control cells, the percentage of MPT induction by ionomycin increased as the Ca2+ concentration in the extracellular medium increased. This result indicates that the present method is valid for numerical evaluation of MPT induction. In C6 cells expressing the PPIase-deficient mutant, the percentage of MPT induction was significantly decreased compared with wild-type CypD-overexpressing cells or vector control cells. These results suggest that cyclophilin D is involved in MPT induction by Ca2+ in intact cells.  相似文献   

16.
This paper reports an investigation upon the effect of dehydroepiandrosterone (DHEA) on some mitochondrial membrane functions, such as electron transport, transmembrane electric gradient and calcium permeability. It was found that the hormone induced the efflux of accumulated matrix Ca2+, inhibited Site I of the respiratory chain, as well as bringing about the collapse of the transmembrane potential, and mitochondrial swelling. Taking into account that cyclosporin A (CSA) inhibited Ca2+ release and the collapse of the transmembrane potential, it is concluded that the hormone may induce the opening of a non-specific transmembrane pore. The mechanism of pore opening is ascribed to peroxidation of the membrane lipid bilayer. It should be mentioned that estrone, even at the concentration of 200 μM, failed to reproduce the behavior of dehydroepiandrosterone on mitochondrial functions.  相似文献   

17.
The interaction of salicylate with the respiratory chain of liver mitochondria generates hydrogen peroxide and, most probably, other reactive oxygen species, which in turn oxidize thiol groups and glutathione. This oxidative stress, confirmed by the prevention of action by antioxidant agents, leads to the induction of the mitochondrial permeability transition in the presence of Ca2+. This phenomenon induces further increase of oxidative damage resulting in impairment of oxidative phosphorylation and beta-oxidation, cardinal features of Reye's syndrome in the liver. Mitochondrial permeability transition induction also induces the release of cytochrome c and apoptotic inducing factor from mitochondria, suggesting that salicylate also behaves as a pro-apoptotic agent. The reactive group of salicylate for inducing oxidative stress is the hydroxyl group which, by interacting with a Fe-S cluster of mitochondrial Complex I, the so-called N-2(Fe-S) center, produces reactive oxygen species.  相似文献   

18.
Mitochondrial ATPase complex has been spin-labeled in the membrane using the inhibitor N-(2,2,6,6-tetramethylpeperidyl-1-OXYL)-N(cyclohexyl)carbodiimide (nccd). the amount of NCCD bound to mitochondrial fragments is 0.5 nmol/mg and cannot be dialyzed or extracted with ether, chloroform, or methanol. The electron paramagnetic resonance spectrum of NCCD bound to fragments is pH-sensitive, a greater label immobilization occurring at pH values lower or higher than 7. Ether extraction removes the ATPase inhibition by NCCD without detaching the label. This effect appears to be the consequence of the dislocation of some components of the ATPase complex. Removal of F1 natural inhibitor or of F1 does not affect the spectrum of NCCD bound to fragments, while the removal of oligomycin sensitivity-conferring protein produces an increase in the extreme splitting. Oligomycin sensitivity-conferring protein may thus interact with the NCCD binding component of the membrane. The isolation of the NCCD-binding proteolipid results in a large increase in the mobility of the label, but addition of dipalmitoyllecithin decreases the mobility of the label to the original level. Phospholipids are thus necessary to keep the NCCD-binding proteolipid in the native conformation.  相似文献   

19.
N,N'-dicyclohexylcarbodiimide (DCCD) was earlier reported to have stimulatory effects on mitochondrial respiration and to induce mitochondrial swelling, when it was added to mitochondrial suspensions. These data seem to imply that DCCD caused the mitochondrial permeability transition (PT), but this possibility had never been investigated. In the present study, effects of DCCD on the mitochondrial structure and function were studied in detail. DCCD was found to induce mitochondrial PT in a cyclosporine A-insensitive manner. Electron microscopic analysis also supported the induction of the mitochondrial PT by DCCD. However, different from many other PT inducers, DCCD failed to cause massive release of mitochondrial cytochrome c. To understand the relationship between the induction of mitochondrial PT and the release of mitochondrial cytochrome c, we compared the actions of DCCD on mitochondrial structure and function with those of Ca2+, known as an ordinary PT inducer. As a result, two parameters considered to be critical for controlling the release of mitochondrial cytochrome c on the induction of PT were mitochondrial volume and the velocity of mitochondrial oxygen consumption.  相似文献   

20.
The interference of glibenclamide, an antidiabetic sulfonylurea, with mitochondrial bioenergetics was assessed on mitochondrial ion fluxes (H+, K+, and Cl-) by passive osmotic swelling of rat liver mitochondria in K-acetate, KNO3, and KCl media, by O2 consumption, and by mitochondrial transmembrane potential (Deltapsi). Glibenclamide did not permeabilize the inner mitochondrial membrane to H+, but induced permeabilization to Cl- by opening the inner mitochondrial anion channel (IMAC). Cl- influx induced by glibenclamide facilitates K+ entry into mitochondria, thus promoting a net Cl-/K+ cotransport, Deltapsi dissipation, and stimulation of state 4 respiration rate. It was concluded that glibenclamide interferes with mitochondrial bioenergetics of rat liver by permeabilizing the inner mitochondrial membrane to Cl- and promoting a net Cl-/K+ cotransport inside mitochondria, without significant changes on membrane permeabilization to H+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号