首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 497 毫秒
1.
Earlier studies have reported a role for lipooligosaccharides (LOSs) in sliding motility, biofilm formation, and infection of host macrophages in Mycobacterium marinum. Although a LOS biosynthetic gene cluster has recently been identified in this species, many structural features of the different LOSs (LOS-I–IV) are still unknown. This clearly hampers assessing the contribution of each LOS in mycobacterial virulence as well as structure-function-based studies of these important cell wall-associated glycolipids. In this study, we have identified an M. marinum isolate, M. marinum 7 (Mma7), which failed to produce LOS-IV but instead accumulated large amounts of LOS-III. Local genomic comparison of the LOS biosynthetic cluster established the presence of a highly disorganized region in Mma7 compared with the standard M strain, characterized by multiple genetic lesions that are likely to be responsible for the defect in LOS-IV production in Mma7. Our results indicate that the glycosyltransferase LosA alone is not sufficient to ensure LOS-IV biosynthesis. The availability of different M. marinum strains allowed us to determine the precise structure of individual LOSs through the combination of mass spectrometric and NMR techniques. In particular, we established the presence of two related 4-C-branched monosaccharides within LOS-II to IV sequences, of which one was never identified before. In addition, we provided evidence that LOSs are capable of inhibiting the secretion of tumor necrosis factor-α in lipopolysaccharide-stimulated human macrophages. This unexpected finding suggests that these cell wall-associated glycolipids represent key effectors capable of interfering with the establishment of a pro-inflammatory response.A key feature of all members of the genus Mycobacterium is a cell wall of unique and complex structure, which plays an important role in antibiotic resistance and pathogenesis of mycobacteria by modulating the host immune system and phagocytic cell functions (1). The mycobacterial cell wall includes essentially two types of lipids, the mycolic acids, which are very long chain fatty acids covalently bound to the arabinogalactan polysaccharide attached to a peptidoglycan backbone (2), and a vast array of extractable lipids/glycolipids (3). The latter include the ubiquitous trehalose dimycolate (TDM)3 and phosphatidyl mannosides (PIM) (4) as well as a vast array of species-specific lipids such as phenol glycolipids (5), phthiocerol dimycocerosates (5), sulfolipids (4), glycopeptidolipids, and lipooligosaccharides (LOSs).LOSs were found and described in Mycobacterium kansasii (68), Mycobacterium gastri (8, 9), Mycobacterium szulgai (10), Mycobacterium malmoense (11), Mycobacterium gordonae (12), Mycobacterium butyricum (13), Mycobacterium mucogenicum (14), the Canetti variant of Mycobacterium tuberculosis (15) and, more recently in Mycobacterium marinum (Mma) (16). However, they remain among the less studied mycobacterial glycolipids at a biosynthetic, structural, and functional point of view. To date, only three genes have been experimentally demonstrated to be involved in the late steps of LOS biosynthesis in M. marinum (16, 17), and one gene encodes a polyketide synthase responsible for the synthesis of the polymethyl-branched fatty acid in the Mycobacterium smegmatis LOS (18).LOSs represent highly antigenic glycoconjugates exposed to the cell surface and useful target molecules for serotyping in a given mycobacterial species. Their precise role in mycobacteria virulence as well as in the colony morphology remains unclear (19, 20). Early studies demonstrated that rough variants of M. kansasii, devoid of all LOSs, induce chronic systemic infections in mice, whereas smooth variants containing LOSs are rapidly cleared from the organs of infected animals (19, 21). It was therefore proposed that LOSs may act as avirulence factors by masking other cell wall-associated virulence factors. Accordingly, LOSs are absent in most clinical isolates of M. tuberculosis as well as in the laboratory strain H37Rv. A recent genetically based comparison of the LOS biosynthetic cluster in M. marinum and M. tuberculosis revealed that only about one-third of the genes are conserved between the two species, with the genetic locus of M. tuberculosis H37Rv containing fewer genes (17). Although recent studies suggested a possible role of LOSs in sliding motility, biofilm formation, and infection of macrophages by M. marinum (17), the precise contribution of LOSs to M. marinum pathogenesis or virulence is seriously hampered by the restricted number of isogenic strains deficient in their production and the lack of precise structural data of LOS variants. LOSs from different mycobacterial species exhibit considerable variations in the glycan core. A previous work identified the presence of four major LOS variants in M. marinum, designated LOS-I to LOS-IV (16). Through partial characterization, the structure of LOS-I was previously established as 3-O-Me-Rhap-(1–3)-Glcp-(1–3)-Glcp-(1–4)-Glcp-(1–1)-Glcp. Although all LOSs were shown to contain this common oligosaccharidic core substituted by an additional Xylp unit, LOS-II, -III, and -IV are further substituted by other unidentified monosaccharides, designated X and YZ, which leave their exact sequence largely unknown (16).In this study, we report the identification of a natural mutant of M. marinum, devoid of LOS-IV production, which allowed the production of large amounts of LOS-III and the determination of the fine structure of all LOSs. In addition, the availability of all LOS variants with defined structures has opened the possibility to undertake structure-function relationship studies. These molecules were therefore used in in vitro assays to uncover their potent biological roles.  相似文献   

2.
3.

Background

Although mycobacterial glycolipids are among the first-line molecules involved in host–pathogen interactions, their contribution in virulence remains incomplete. Mycobacterium marinum is a waterborne pathogen of fish and other ectotherms, closely related to Mycobacterium tuberculosis. Since it causes tuberculosis-like systemic infection it is widely used as a model organism for studying the pathogenesis of tuberculosis. It is also an occasional opportunistic human pathogen. The M. marinum surface-exposed lipooligosaccharides (LOS) are immunogenic molecules that participate in the early interactions with macrophages and modulate the host immune system. Four major LOS species, designated LOS-I to LOS-IV, have been identified and characterized in M. marinum. Herein, we investigated the interactions between a panel of defined M. marinum LOS mutants that exhibited various degrees of truncation in the LOS structure, and human-derived THP-1 macrophages to address the potential of LOSs to act as pro- or avirulence factors.

Results

A moderately truncated LOS structure did not interfere with M. marinum invasion. However, a deeper shortening of the LOS structure was associated with increased entry of M. marinum into host cells and increased elimination of the bacilli by the macrophages. These effects were dependent on Toll-like receptor 2.

Conclusion

We provide the first evidence that LOSs inhibit the interaction between mycobacterial cell wall ligands and appropriate macrophage pattern recognition receptors, affecting uptake and elimination of the bacteria by host phagocytes.
  相似文献   

4.
5.
Most mycobacterial species possess a full complement of genes for the biosynthesis of molybdenum cofactor (MoCo). However, a distinguishing feature of members of the Mycobacterium tuberculosis complex is their possession of multiple homologs associated with the first two steps of the MoCo biosynthetic pathway. A mutant of M. tuberculosis lacking the moaA1-moaD1 gene cluster and a derivative in which moaD2 was also deleted were significantly impaired for growth in media containing nitrate as a sole nitrogen source, indicating a reduced availability of MoCo to support the assimilatory function of the MoCo-dependent nitrate reductase, NarGHI. However, the double mutant displayed residual respiratory nitrate reductase activity, suggesting that it retains the capacity to produce MoCo. The M. tuberculosis moaD and moaE homologs were further analyzed by expressing these genes in mutant strains of M. smegmatis that lacked one or both of the sole molybdopterin (MPT) synthase-encoding genes, moaD2 and moaE2, and were unable to grow on nitrate, presumably as a result of the loss of MoCo-dependent nitrate assimilatory activity. Expression of M. tuberculosis moaD2 in the M. smegmatis moaD2 mutant and of M. tuberculosis moaE1 or moaE2 in the M. smegmatis moaE2 mutant restored nitrate assimilation, confirming the functionality of these genes in MPT synthesis. Expression of M. tuberculosis moaX also restored MoCo biosynthesis in M. smegmatis mutants lacking moaD2, moaE2, or both, thus identifying MoaX as a fused MPT synthase. By implicating multiple synthase-encoding homologs in MoCo biosynthesis, these results suggest that important cellular functions may be served by their expansion in M. tuberculosis.  相似文献   

6.
The lipid-rich cell wall is a defining feature of Mycobacterium species. Individual cell wall components affect diverse mycobacterial phenotypes including colony morphology, biofilm formation, antibiotic resistance, and virulence. In this study, we describe a transposon insertion mutant of Mycobacterium smegmatis mc2 155 that exhibits altered colony morphology and defects in biofilm formation. The mutation was localized to the lsr2 gene. First identified as an immunodominant T-cell antigen of Mycobacterium leprae, lsr2 orthologs have been identified in all sequenced mycobacterial genomes, and homologs are found in many actinomycetes. Although its precise function remains unknown, localization experiments indicate that Lsr2 is a cytosolic protein, and cross-linking experiments demonstrate that it exists as a dimer. Characterization of cell wall lipid components reveals that the M. smegmatis lsr2 mutant lacks two previously unidentified apolar lipids. Characterization by mass spectrometry and thin-layer chromatography indicate that these two apolar lipids are novel mycolate-containing compounds, called mycolyl-diacylglycerols (MDAGs), in which a mycolic acid (alpha- or alpha'-mycolate) molecule is esterified to a glycerol. Upon complementation with an intact lsr2 gene, the mutant reverts to the parental phenotypes and MDAG production is restored. This study demonstrates that due to its impact on the biosynthesis of the hydrophobic MDAGs, Lsr2 plays an important role in the colony morphology and biofilm formation of M. smegmatis.  相似文献   

7.
The increasing incidence of multiple-drug-resistant mycobacterial infections indicates that the development of new methods for treatment of mycobacterial diseases should be a high priority. meso-Diaminopimelic acid (DAP), a key component of a highly immunogenic subunit of the mycobacterial peptidoglycan layer, has been implicated as a potential virulence factor. The mycobacterial DAP biosynthetic pathway could serve as a target for design of new antimycobacterial agents as well as the construction of in vivo selection systems. We have isolated the asd, dapA, dapB, dapD, and dapE genes involved in the DAP biosynthetic pathway of Mycobacterium bovis BCG. These genes were isolated by complementation of Escherichia coli mutations with an expression library of BCG DNA. Our analysis of these genes suggests that BCG may use more than one pathway for biosynthesis of DAP. The nucleotide sequence of the BCG dapB gene was determined. The activity of the product of this gene in Escherichia coli provided evidence that the gene may encode a novel bifunctional dihydrodipicolinate reductase and DAP dehydrogenase.  相似文献   

8.
Lipooligosaccharides are glycolipids found in the cell wall of many mycobacterial species including the opportunistic pathogen Mycobacterium kansasii. The genome of M. kansasii ATCC12478 contains a cluster with genes orthologous to Mycobacterium marinum LOS biosynthesis genes. To initiate a genetic dissection of this cluster and demonstrate its role in LOS biosynthesis in M. kansasii, we chose MKAN27435, a gene encoding a putative glycosyltransferase. Using Specialized Transduction, a phage-based gene knockout tool previously used to generate null mutants in other mycobacteria, we generated a MKAN27435 null mutant. The mutant strain was found to be defective in the biosynthesis of higher LOS subspecies, viz LOS-IV, LOS-V, LOS-VI and LOS-VII. Additionally, a range of low abundance species were detected in the mutant strain and mass spectroscopic analysis indicated that these were shunt products generated from LOS-III by the addition of up to six molecules of a pentose.  相似文献   

9.
ABSTRACT: BACKGROUND: Glycopeptidolipids (GPLs) are among the major free glycolipid components of the outer membrane of several saprophytic and clinically-relevant Mycobacterium species. The architecture of GPLs is based on a constant tripeptide-amino alcohol core of nonribosomal peptide synthetase origin that is N-acylated with a 3-hydroxy/methoxy acyl chain synthesized by a polyketide synthase and further decorated with variable glycosylation patterns built from methylated and acetylated sugars. GPLs have been implicated in many aspects of mycobacterial biology, thus highlighting the significance of gaining an understanding of their biosynthesis. Our bioinformatics analysis revealed that every GPL biosynthetic gene cluster known to date contains a gene (referred herein to as gplH) encoding a member of the MbtH-like protein family. Herein, we sought to conclusively establish whether gplH was required for GPL production. RESULTS: Deletion of gplH, a gene clustered with nonribosomal peptide synthetase-encoding genes in the GPL biosynthetic gene cluster of Mycobacterium smegmatis, produced a GPL deficient mutant. Transformation of this mutant with a plasmid expressing gplH restored GPL production. Complementation was also achieved by plasmid-based constitutive expression of mbtH, a paralog of gplH found in the biosynthetic gene cluster for production of the siderophore mycobactin of M. smegmatis. Further characterization of the gplH mutant indicated that it also displayed atypical colony morphology, lack of sliding motility, altered capacity for biofilm formation, and increased drug susceptibility. CONCLUSIONS: Herein, we provide evidence formally establishing that gplH is essential for GPL production in M. smegmatis. Inactivation of gplH also leads to a pleiotropic phenotype likely to arise from alterations in the cell envelope due to the lack of GPLs. While genes encoding MbtH-like proteins have been shown to be needed for production of siderophores and antibiotics, our study presents the first case of one such a gene proven to be required for production of a cell wall component. Furthermore, our results provide the first example of a mbtH-like gene with confirmed functional role in a member of the Mycobacterium genus. Altogether, our findings demonstrate a critical role of gplH in mycobacterial biology and advance our understanding of the genetic requirements for the biosynthesis of an important group of constituents of the mycobacterial outer membrane.  相似文献   

10.
The mycobacterial cell envelope is characterized by the presence of a highly impermeable second membrane, which is composed of mycolic acids intercalated with different unusual free lipids, such as lipooligosaccharides (LOS). Transport across this cell envelope requires a dedicated secretion system for extracellular proteins, such as PE_PGRS proteins, which are specific mycobacterial proteins with polymorphic GC-rich sequence (PGRS). In this study, we set out to identify novel components involved in the secretion of PE_PGRS proteins by screening Mycobacterium marinum transposon mutants for secretion defects. Interestingly, most mutants were not affected in secretion but in the release of PE_PGRS proteins from the cell surface. These mutants had insertions in a gene cluster associated with LOS biosynthesis. Lipid analysis of these mutants revealed a role at different stages of LOS biosynthesis for 10 novel genes. Furthermore, we show that regulatory protein WhiB4 is involved in LOS biosynthesis. The absence of the most extended LOS molecule, i.e. LOS-IV, and a concomitant accumulation of LOS-III was already sufficient to reduce the release of PE_PGRS proteins from the mycobacterial cell surface. A similar effect was observed for major surface protein EspE. These results show that the attachment of surface proteins is strongly influenced by the glycolipid composition of the mycobacterial cell envelope. Finally, we tested the virulence of a LOS-IV-deficient mutant in our zebrafish embryo infection model. This mutant showed a marked increase in virulence as compared with the wild-type strain, suggesting that LOS-IV plays a role in the modulation of mycobacterial virulence.  相似文献   

11.
Phosphatidylinositol mannosides (PIMs) and their related molecules lipomannan (LM) and lipoarabinomannan (LAM) are important components of the mycobacterial cell wall. These molecules mediate host-pathogen interactions and exhibit immunomodulatory activities. The biosynthesis of these lipoglycans is not fully understood. In this study, we have identified a mycobacterial gene (Rv1500) that is involved in the synthesis of PIMs. We have named this gene pimF. Transposon mutagenesis of pimF of Mycobacterium marinum resulted in multiple phenotypes, including altered colony morphology, disappearance of tetracyl-PIM(7), and accumulation of tetraacyl-PIM(5). The syntheses of LAM and LM were also affected. In addition, the pimF mutant exhibited a defect during infection of cultured macrophage cells. Although the mutant was able to replicate and persist within macrophages, the initial cell entry step was inefficient. Transformation of the M. marinum mutant with the pimF homolog of Mycobacterium tuberculosis complemented all of the above mentioned phenotypes. These results provide evidence that PimF is a mannosyltransferase. However, sequence analysis indicates that PimF is distinct from mannosyltransferases involved in the early steps of PIM synthesis. PimF catalyzes the formation of high molecular weight PIMs, which are precursors for the synthesis of LAM and LM. As such, this work marks the first analysis of a mannosyltransferase involved in the later stages of PIM synthesis.  相似文献   

12.
The genus Mycobacterium comprises clinically important pathogens such as M. tuberculosis , which has re-emerged as a major cause of morbidity and mortality world-wide especially with the emergence of multidrug-resistant strains. The use of fast-growing species such as Mycobacterium smegmatis has allowed important advances to be made in the field of mycobacterial genetics and in the study of the mechanisms of resistance in mycobacteria. The isolation of an aminoglycoside-resistance gene from Mycobacterium fortuitum has recently been described. The aac(2 ' )-Ib gene is chromosomally encoded and is present in all isolates of M. fortuitum . The presence of this gene in other mycobacterial species is studied here and genes homologous to that of M. fortuitum have been found in all mycobacterial species studied. In this report, the cloning of the aac(2 ' )-Ic gene from M. tuberculosis H37Rv and the aac(2 ' )-Id gene from M. smegmatis mc2155 is described. Southern blot hybridizations have shown that both genes are present in all strains of this species studied to date. In addition, the putative aac(2 ' )-Ie gene has been located in a recent release of the Mycobacterium leprae genome. The expression of the aac(2 ' )-Ic and aac(2 ' )-Id genes has been studied in M. smegmatis and only aac(2 ' )-Id is correlated with aminoglycoside resistance. In order to elucidate the role of the aminoglycoside 2'- N -acetyltransferase genes in mycobacteria and to determine whether they are silent resistance genes or whether they have a secondary role in mycobacterial metabolism, the aac(2 ' )-Id gene from M. smegmatis has been disrupted in the chromosome of M. smegmatis mc2155. The disruptant shows an increase in aminoglycoside susceptibility along with a slight increase in the susceptibility to lysozyme.  相似文献   

13.
We report the involvement of an evolutionarily conserved set of mycobacterial genes, the esx-3 region, in evasion of bacterial killing by innate immunity. Whereas high-dose intravenous infections of mice with the rapidly growing mycobacterial species Mycobacterium smegmatis bearing an intact esx-3 locus were rapidly lethal, infection with an M. smegmatis Δesx-3 mutant (here designated as the IKE strain) was controlled and cleared by a MyD88-dependent bactericidal immune response. Introduction of the orthologous Mycobacterium tuberculosis esx-3 genes into the IKE strain resulted in a strain, designated IKEPLUS, that remained susceptible to innate immune killing and was highly attenuated in mice but had a marked ability to stimulate bactericidal immunity against challenge with virulent M. tuberculosis. Analysis of these adaptive immune responses indicated that the highly protective bactericidal immunity elicited by IKEPLUS was dependent on CD4(+) memory T cells and involved a distinct shift in the pattern of cytokine responses by CD4(+) cells. Our results establish a role for the esx-3 locus in promoting mycobacterial virulence and also identify the IKE strain as a potentially powerful candidate vaccine vector for eliciting protective immunity to M. tuberculosis.  相似文献   

14.
15.
This report describes the first successful transfer and complete expression of clustered mycobacterial genes controlling a biosynthetic pathway (carotenogenesis) in a homologous system. A genomic library of pigmented Mycobacterium aurum A+ (yellow-orange) DNA was constructed in shuttle vector pHLD-69. The colourless mutant A11 and the brick-red mutant NgR9 derived from M. aurum A+ were electroporated with the plasmid library. Among the transformants, colonies different in colour from the recipient mutants were detected, and were cloned. One of the clones from the transformed A11 mutant had a yellow-orange phenotype, and was designated A11T; one of the clones from the NgR9 (brick-red) mutant had a yellow-orange phenotype and was designated NgR9T. The carotenoid pigments from the A11T and NgR9T clones were analyzed and in both the end product of carotenogenesis in M. aurum (leprotene) was detected. A11T and NgR9T harboured the same recombinant plasmid (Cl) containing a 11-kb M. aurum fragment. pCl was used to transform the colourless Mycobacterium smegmatis MC2-155 strain. All the transformants were pigmented. A colony (MC2-T) was arbitrarily chosen and leprotene was detected. It was therefore concluded that M. aurum genes involved in carotenogenesis had been cloned, and were expressed not only in M. aurum mutants, but also in M. smegmatis.  相似文献   

16.
17.
18.
Identification of the novel PE multigene family was an unexpected finding of the genomic sequencing of Mycobacterium tuberculosis. Presently, the biological role of the PE and PE_PGRS proteins encoded by this unique family of mycobacterial genes remains unknown. In this report, a representative PE_PGRS gene (Rv1818c/PE_PGRS33) was selected to investigate the role of these proteins. Cell fractionation studies and fluorescence analysis of recombinant strains of Mycobacterium smegmatis and M. tuberculosis expressing green fluorescent protein (GFP)-tagged proteins indicated that the Rv1818c gene product localized in the mycobacterial cell wall, mostly at the bacterial cell poles, where it is exposed to the extracellular milieu. Further analysis of this PE_PGRS protein showed that the PE domain is necessary for subcellular localization. In addition, the PGRS domain, but not PE, affects bacterial shape and colony morphology when Rv1818c is overexpressed in M. smegmatis and M. tuberculosis. Taken together, the results indicate that PE_PGRS and PE proteins can be associated with the mycobacterial cell wall and influence cellular structure as well as the formation of mycobacterial colonies. Regulated expression of PE genes could have implications for the survival and pathogenesis of mycobacteria within the human host and in other environmental niches.  相似文献   

19.
Until recently, genetic analysis of Mycobacterium tuberculosis, the causative agent of tuberculosis, was hindered by a lack of methods for gene disruptions and allelic exchange. Several groups have described different methods for disrupting genes marked with antibiotic resistance determinants in the slow-growing organisms Mycobacterium bovis bacillus Calmette-Guérin (BCG) and M. tuberculosis. In this study, we described the first report of using a mycobacterial suicidal plasmid bearing the counterselectable marker sacB for the allelic exchange of unmarked deletion mutations in the chromosomes of two substrains of M. bovis BCG and M. tuberculosis H37Rv. In addition, our comparison of the recombination frequencies in these two slow-growing species and that of the fast-growing organism Mycobacterium smegmatis suggests that the homologous recombination machinery of the three species is equally efficient. The mutants constructed here have deletions in the lysA gene, encoding meso-diaminopimelate decarboxylase, an enzyme catalyzing the last step in lysine biosynthesis. We observed striking differences in the lysine auxotrophic phenotypes of these three species of mycobacteria. The M. smegmatis mutant can grow on lysine-supplemented defined medium or complex rich medium, while the BCG mutants grow only on lysine-supplemented defined medium and are unable to form colonies on complex rich medium. The M. tuberculosis lysine auxotroph requires 25-fold more lysine on defined medium than do the other mutants and is dependent upon the detergent Tween 80. The mutants described in this work are potential vaccine candidates and can also be used for studies of cell wall biosynthesis and amino acid metabolism.  相似文献   

20.
Abstract Chromosomal DNA of different species of mycobacteria, Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium avium and Mycobacterium smegmatis , has been submitted to polymerase chain reaction using two oligonucleotide primers highly homologous to DNA sequences flanking the quinolone resistance-determining region in the gyrA gene of Escherichia coli and Staphylococcus aureus . For each of these mycobacterial species, a 150-bp DNA fragment hybridizing with an intragenic probe of the gyrA gene of E. coli K12 was obtained. The nucleotide sequences of the 108-bp fragments amplified from M. tuberculosis and M. avium were determined. The two sequences were 87% homologous. Except for one residue, their deduced amino acid sequences were identical and shared 67% homology with the quinolone resistance-determining region of the gyrase A subunits of E. coli and S. aureus . Sequencing of the 108-bp fragment amplified from an in vitro mutant of M. avium , highly resistant to fluoroquinolones, showed a point mutation leading to the substitution of Ala for Val at a position corresponding to residues involved in quinolone resistance in E. coli and S. aureus , i.e. Ser 83 for E. coli and Ser 84 for S. aureus .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号