首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lipopolysaccharide of Plesiomonas shigelloides serotype O74:H5 (strain CNCTC 144/92) was obtained with the hot phenol/water method, but unlike most of the S-type enterobacterial lipopolysaccharides, the O-antigens were preferentially extracted into the phenol phase. The poly- and oligosaccharides released by mild acidic hydrolysis of the lipopolysaccharide from both phenol and water phases were separated and investigated by (1)H and (13)C NMR spectroscopy, MALDI-TOF mass spectrometry, and sugar and methylation analysis. The O-specific polysaccharide and oligosaccharides consisting of the core, the core with one repeating unit, and the core with two repeating units were isolated. It was concluded that the O-specific polysaccharide is composed of a trisaccharide repeating unit with the [-->2)-beta-d-Quip3NAcyl-(1-->3)-alpha-l-Rhap2OAc-(1-->3)-alpha-d-FucpNAc-(1-->] structure, in which d-Qui3NAcyl is 3-amino-3,6-dideoxy-d-glucose acylated with 3-hydroxy-2,3-dimethyl-5-oxopyrrolidine-2-carboxylic acid. The major oligosaccharide consisted of a single repeating unit and a core oligosaccharide. This undecasaccharide contains information about the biological repeating unit and the type and position of the linkage between the O-specific chain and core. The presence of a terminal beta-d-Quip3NAcyl-(1--> residue and the -->3)-beta-d-FucpNAc-(1-->4)-alpha-d-GalpA element showed the structure of the biological repeating unit of the O-antigen and the substitution position to the core. The -->3)-beta-d-FucpNAc-(1--> residue has the anomeric configuration inverted compared to the same residue in the repeating unit. The core oligosaccharide was composed of a nonphosphorylated octasaccharide, which represents a novel core type of P. shigelloides LPS characteristic of serotype O74. The similarity between the isolated O-specific polysaccharide and that found on intact bacterial cells and lipopolysaccharide was confirmed by HR-MAS NMR experiments.  相似文献   

2.
Serological tests revealed immunochemical similarities between the lipopolysaccharides of Hafnia alvei strains PCM 1200, 1203 and 1205. Immunoblotting and ELISA showed cross-reactions between the strains. NMR spectroscopy showed that the O-deacetylated O-specific polysaccharides isolated from lipopolysaccharides of H. alvei strains PCM 1200 and 1203 possessed the same composition and sequence as the O-deacetylated O-specific polysaccharide of H. alvei strain PCM 1205, that is a glycerol teichoic-acid-like polymer with a repeating unit of the following structure: [carbohydrate structure: see text] NMR spectroscopic studies of the polysaccharides concluded that O-3 of the side chain beta-D-GlcpNAc is partially O-acetylated (50-80%) in both investigated strains. In strain PCM 1203 an additional O-acetyl group (50-80%) is linked to O-6 of the chain -->3)-alpha-D-GlcpNAc-(1--> residue. The structural features of the isolated O-specific polysaccharides were also the same as those of the O-specific polysaccharides on the bacterial cells directly observed by the HR-MAS NMR technique.  相似文献   

3.
The O-specific polysaccharide of Citrobacter braakii PCM 1531 (serogroup O6) was isolated by mild acid hydrolysis of the lipopolysaccharide (LPS) and found to contain d-fucose, l-rhamnose, 4-deoxy-d-arabino-hexose and O-acetyl groups in molar ratios 2 : 1 : 1 : 1. On the basis of methylation analysis and 1H and 13C NMR spectroscopy data, the structure of the branched tetrasaccharide repeating unit of the O-specific polysaccharide was established. Using various serological assays, it was demonstrated that the LPS of strain PCM 1531 is not related serologically to other known 4-deoxy-d-arabino-hexose-containing LPS from Citrobacter PCM 1487 (serogroup O5) or C. youngae PCM 1488 (serogroup O36). Two other strains of Citrobacter, PCM 1504 and PCM 1505, which, together with strain PCM 1531, have been classified in serogroup O6, were shown to be serologically distinct from strain PCM 1531 and should be reclassified into another serogroup.  相似文献   

4.
An acidic O-specific polysaccharide was isolated from Hafnia alvei PCM 1196 lipopolysaccharide and studied by sugar and methylation analyses along with one- and two-dimensional 1H and 13C NMR spectroscopy, including NOESY and HMBC experiments. The following structure of the pentasaccharide repeating unit was established: -->4)-alpha-D-GalpA-(1-->3)-beta-D-GlcpNAc-(1-->2)-beta-D-Galp-(1-->6)-alpha-D-Glcp-(1-->6)-alpha-D-GlcpNAc-(1-->.  相似文献   

5.
The structure of the O-specific polysaccharide isolated by mild acid hydrolysis of the lipopolysaccharide of Mesorhizobium huakuii IFO15243T was studied using methylation analysis and various one- and two-dimensional 1H and 13C NMR experiments. The O-antigen polysaccharide was found to be linear polymer constituted by a trisaccharide repeating unit of the following structure: --> 2)-alpha-L-6dTalp-(1 --> 3)-alpha-L-6dTalp-(1 --> 2)-alpha-L-Rhap-(1 -->.  相似文献   

6.
A neutral O-specific polysaccharide (O-antigen) was isolated from the lipopolysaccharide (LPS) of the bacterium Proteus penneri 71. On the basis of sugar analysis and 1H- and 13C-NMR spectroscopic studies, including two-dimensional COSY, 13C,1H heteronuclear COSY and ROESY, the following structure of the trisaccharide repeating unit of the polysaccharide was established: -->3)-beta-D-GlcpNAc-(1-->4)-beta-D-GlcpNAc-(1-->3)-alpha-D-Galp-(1-- > The polysaccharide has the same carbohydrate backbone as the O-specific polysaccharide of P. penneri 19 and both are similar to that of P. penneri 62 studied by us previously. A cross-reactivity of anti-P. penneri 71, 19 and 62 O-antisera with 11 P. penneri strains was revealed and substantiated at the level of the O-antigen structures. These strains could be divided into three subgroups within a new proposed Proteus O64 serogroup containing P. penneri strains only.  相似文献   

7.
The O-specific polysaccharide chain (O-antigen) of the lipopolysaccharide (LPS) of Providencia stuartii O49 was studied using sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including two-dimensional COSY, TOCSY, ROESY, H-detected 1H, 13C HSQC and HMBC experiments. The polysaccharide was found to have the trisaccharide repeating unit with the following structure: -->6)-beta-D-Galp(1-->3)-beta-D-GalpNAc(1-->4)-alpha-D-Galp(1-->  相似文献   

8.
On the basis of chemical and methylation analyses, one- and two-dimensional (1)H- and (13)C-NMR spectroscopy, including COSY, TOCSY, NOESY and (1)H, (13)C HSQC experiments, a neutral O-specific polysaccharide isolated from Hafnia alvei strain PCM 1223 lipopolysaccharide (LPS) was found to be an alpha-mannan composed of pentasaccharide repeating units having the following structure:-->3)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->. Immunoblotting showed a strong cross-reactivity between anti-H. alvei PCM 1223 serum and LPSs of Escherichia coli O9 and Klebsiella pneumoniae O3. The serological relationship of the LPSs of these bacteria is due to the structural identity of their O-specific polysaccharides, though the LPSs differ in their core regions.  相似文献   

9.
The structure of the O-specific side chain of the lipopolysaccharide (LPS) of Plesiomonas shigelloides, strain CNCTC 113/92 has been investigated by NMR spectroscopy, matrix-assisted laser desorption/ionization time of flight mass spectrometry and sugar and methylation analysis. It was concluded that the polysaccharide is composed of a hexasaccharide repeating unit with the following structure: in which D-beta-D-Hepp is Dglycero-beta-Dmanno-heptopyranose and 6d-beta-D-Hep is 6-deoxy-beta-Dmanno-heptopyranose. This structure represents a novel hexasaccharide repeating unit of bacterial O-antigen that is characteristic and unique to the Plesiomonas shigelloides strain. Using the high-resolution magic angle spinning technique, 1H-NMR spectra were also obtained for the O-polysaccharide components of isolated LPS and in their original form directly on the surface of bacterial cells.  相似文献   

10.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the Shewanella algae strain BrY lipopolysaccharide and was found to contain L-rhamnose, 2-acetamido-4-[D-3-hydroxybutyramido)]-2,4,6-trideoxy-D-glucose (D-BacNAc4NHbu), and 2-amino-2,6-dideoxy-L-galactose, N-acylated by the 4-carboxyl group of L-malic acid (L-malyl-(4-->2)-alpha-L-FucN) in the ratio 2:1:1. 1H and 13C NMR spectroscopy was applied to the intact polysaccharide, and the following structure of the repeating unit was established:-3)-alpha-D-BacNAc4NHbu-(1-->3)-alpha-L-Rha-(1-->2)-alpha-L-Rha-(1-->2)-L-malyl-(4-->2)-alpha-L-FucN-(1-. The repeating unit includes linkage via the residue of malic acid, reported here for the first time as a component of bacterial polysaccharides.  相似文献   

11.
The O-specific polysaccharide of Citrobacter gillenii PCM 1542 from serotype O-12a,12 b is composed of one residue each of D-glucose, D-GlcNAc, 2-deoxy-2-[(R)-3-hydroxybutyramido]-D-glucose (D-GlcNAcyl) and two GalNAc residues. On the basis of sugar and methylation analyses of the intact and Smith degraded polysaccharides, along with 1D and 2D 1H and 13C NMR spectroscopy, the following structure of the branched pentasaccharide repeating unit of the O-specific polysaccharide was established:This structure differs significantly from that of the O-specific polysaccharide of C. gillenii PCM 1544 from the same serotype O-12a,12 b, which has been established earlier (Kübler-Kielz.shtsls;b, J. et al. Carbohydr. Res. 2001, 331, 331-336). Serological studies confirmed that the two O-antigens are not related and suggested that strains PCM 1542 and 1544 should be classified into different O-serogroups.  相似文献   

12.
Lipopolysaccharide was extracted from cells of Salmonella enterica serovar Toucra O48 and, after mild acid hydrolysis (1% AcOH, 1 h, 100 degrees C or 0.1 M NaOH-AcOH, pH 4.5, 5 h, 100 degrees C), the O-specific polysaccharide was isolated and characterized. The core and an oligosaccharide containing a fragment of the repeating unit linked to the core region were also obtained, depending on hydrolysis conditions. On the basis of sugar and methylation analyses and NMR spectroscopy of the hydrolysis products, the biological repeating unit of the O-specific polysaccharide was shown to be the following trisaccharide: -->4)-alpha-Neup5Ac(2-->3)-L-alpha-FucpNAc(1-->3)-D-beta-Glc pNAc(1--> The polysaccharide O-chain was substituted with a single molar equivalent of O-acetyl group, distributed between the Neu5Ac O-9 and O-7 positions, in an approximate ratio of 7 : 3.  相似文献   

13.
Salmonella enterica sv. Typhimurium strain 1135 possesses smooth(S)-form lipopolysaccharide (LPS). Although the structures of the core region and the O-specific polysaccharide were investigated intensively between the 1960s and the 1980s, the structure of the linkage region between the O-chain and the core was not elucidated unequivocally. By using modern MS and high-field NMR spectroscopy for analysis of the isolated carbohydrate backbone of the LPS, it has been shown that it is a beta-D-Galp residue that links the first repeating unit of the O-specific polysaccharide to O-4 of the last D-Glcp residue of the core region. Interestingly, this particular D-Galp residue is alpha-linked in all following repeating units. The data are discussed with regard to the ligation of O-specific polysaccharide and core region during LPS biosynthesis.  相似文献   

14.
The structure of the core oligosaccharide moiety of the lipopolysaccharide (LPS) of Plesiomonas shigelloides O54 (strain CNCTC 113/92) has been investigated by (1)H and (13)C NMR, fast atom bombardment mass spectrometry (MS)/MS, matrix-assisted laser-desorption/ionization time-of-flight MS, monosaccharide and methylation analysis, and immunological methods. It was concluded that the main core oligosaccharide of this strain is composed of a decasaccharide with the following structure: (see text) in which l-alpha-D-Hepp is l-glycero-alpha-D-manno-heptopyranose. The nonasaccharide variant of the core oligosaccharide ( approximately 10%), devoid of beta-D-Glcp substituting the alpha-D-GlcpN at C-6, was also identified. The core oligosaccharide substituted at C-4 of the outer core beta-D-Glcp residue with the single O-polysaccharide repeating unit was also isolated yielding a hexadecasaccharide structure. The determination of the monosaccharides involved in the linkage between the O-specific polysaccharide part and the core, as well as the presence of -->3)-D-beta-D-Hepp-(1--> instead of -->3,4)-D-beta-D-Hepp-(1--> in the repeating unit, revealed the structure of the biological repeating unit of the O-antigen. The core oligosaccharides are not substituted by phosphate residues and represent novel core type of bacterial LPS that is characteristic for the Plesiomonas shigelloides serotype O54. Serological screening of 69 different O-serotypes of P. shigelloides suggests that epitopes similar to the core oligosaccharide of serotype O54 (strain CNCTC 113/92) might also be present in the core region of the serotypes O24 (strain CNCTC 92/89), O37 (strain CNCTC 39/89) and O96 (strain CNCTC 5133) LPS.  相似文献   

15.
The O-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of Citrobacter werkmanii PCM 1548 and PCM 1549 (serogroup O14) and found to contain D-glucose, D-glucosamine and glycerol-1-phosphate in molar ratios 2 : 2 : 1. Based on methylation analysis and 1H and 13C nuclear magnetic resonance spectroscopy data, it was established that the O-specific polysaccharides from both strains have the identical branched tetrasaccharide repeating unit with 3,6-disubstituted GlcNAc, followed by 2,4-disubstituted Glc residues carrying at the branching points lateral residues of Glc and GlcNAc at positions 6 and 2, respectively. Glycerol-1-phosphate is linked to position 6 of the chain Glc. All sugars have a beta configuration, except for the side-chain Glc, which is alpha. Serological studies revealed a close relatedness of the lipopolysaccharides of C. werkmanii PCM 1548 and PCM 1549, both belonging to serogroup O14. In immunoblotting, anti-C. werkmanii PCM 1548 serum showed no cross-reactivity with the O-polysaccharide bands of the lipopolysaccharides of Citrobacter youngae PCM 1550 (serogroup O16) and Hafnia alvei PCM 1207, also containing a lateral glycerol phosphate residue.  相似文献   

16.
Serological studies using SDS-PAGE and immunoblotting revealed that from five strains that are ascribed to Citrobacter serogroup O2, four strains, PCM 1494, PCM 1495, PCM 1496 and PCM 1507, are reactive with specific anti-Citrobacter O2 serum. In contrast, strain PCM 1573 did not react with anti-Citrobacter O2 serum and, hence, does not belong to serogroup O2. The LPS of Citrobacter youngae O2a,1b (strain PCM 1507) was degraded under mild acidic conditions and the O-specific polysaccharide (OPS) released was isolated by gel chromatography. Sugar and methylation analyses along with (1)H- and (13)C-NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, NOESY and (1)H,(13)C HSQC experiments, showed that the repeating unit of the OPS has the following structure: [structure: see text]. NMR spectroscopic studies demonstrated that Citrobacter werkmanii O20 and C. youngae O25 have the same OPS structure as C. youngae O2. Sugar and methylation analyses of the core oligosaccharide fractions demonstrated structural differences in the lipopolysaccharide core regions of these strains, which may substantiate their classification in different serogroups.  相似文献   

17.
The structure of the O-specific side-chain of the Hafnia alvei strain PCM 1207 lipopolysaccharide (LPS) has been investigated. Methylation analysis, partial acid hydrolysis, matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) MS, fast atom bombardment (FAB)-MS/MS and 1H- and 13C-NMR spectroscopy were the principal methods used. Glycerol phosphate was identified as a constituent in the polysaccharide and the following structure of a pentasaccharide repeating unit was established: The polysaccharide is partially (approximately 10%) substituted with O-acetyl groups. The lipopolysaccharide was also subjected to high resolution magic angle spinning (HR-MAS) NMR analysis, which showed both the signals of the O-specific polysaccharide as well as several signals from unsubstituted core oligosaccharides. This confirmed the presence of the described structure in the native LPS.  相似文献   

18.
A high-molecular-mass O-specific polysaccharide was obtained by mild acid degradation of Proteus vulgaris O4 lipopolysaccharide followed by GPC. The polysaccharide was studied by chemical methods along with 1H and 13C NMR spectroscopy, including two-dimensional COSY, TOCSY, NOESY, H-detected 1H,13C HMQC, and 1H,13C HMBC experiments. Solvolysis of the polysaccharide with trifluoromethanesulfonic (triflic) acid resulted in a GlcpA-(1 --> 3)-GlcNAc disaccharide and a novel amino sugar derivative, 4,6-dideoxy-4-[N-[(R)-3-hydroxybutyryl]-L-alanyl]amino-D-glucose [Qui4N(HbAla)]. On the basis of the data obtained, the following structure of the tetrasaccharide repeating unit of the O-specific polysaccharide was established: --> 4)-beta-D-GlcpA-(1 --> 3)-beta-D-GlcpNAc-(1 --> 2)-beta-D-Quip4N(HbAla)-(1 --> 3)-alpha-D-Galp-(1 -->. This structure is unique among the O-specific polysaccharides, which is in accordance with classification of the strain studied in a separate Proteus serogroup.  相似文献   

19.
The O-specific polysaccharide chains (O-antigens) of the lipopolysaccharides (LPSs) of Proteus mirabilis O48 and Proteus vulgaris O21 were found to have tetrasaccharide and pentasaccharide repeating units, respectively, interlinked by a glycosidic phosphate. Polysaccharides and an oligosaccharide were derived from the LPSs by various degradation procedures and studied by 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, NOESY, H-detected 1H,13C and 1H,31P HMQC experiments. The following related structures of the repeating units of the O-antigens were established (top: Proteus mirabilis O48; bottom: Proteus vulgaris O21) The O-specific polysaccharide of P. vulgaris O21 has the same structure as that of Hafnia allvei 744 and PCM 1194 [Petersson C., Jachymek, W., Klonowska, A., Lugowski, C., Niedziela, T. & Kenne, L. (1997) Eur. J. Biochem., 245, 668-675], except that the GlcN residue carries the N-acetyl rather than the N-[(R)-3-hydroxybutyryl] group. Serological investigations confirmed the close relatedness of the Proteus and Hafnia O-antigens studied.  相似文献   

20.
The O-specific polysaccharide of Providencia rustigianii O14 was obtained by mild acid degradation of the LPS and studied by chemical methods and NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, NOESY, and 1H,(13)C HSQC experiments. The polysaccharide was found to contain N (epsilon)-[(S)-1-carboxyethyl]-N(alpha)-(D-galacturonoyl)-L-lysine ('alaninolysine', 2S,8S-AlaLys). The amino acid component was isolated by acid hydrolysis and identified by 13C NMR spectroscopy and specific optical rotation, using synthetic diastereomers for comparison. The following structure of the trisaccharide repeating unit of the polysaccharide was established:Anti-P. rustigianii O14 serum was found to cross-react with O-specific polysaccharides of Providencia and Proteus strains that contains amides of uronic acid with N(epsilon)-[(R)-1-carboxyethyl]-L-lysine and L-lysine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号