首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The obligate intracellular bacterium Ehrlichia ruminantium (ER) causes heartwater, a fatal tick-borne disease in livestock. In the field, ER strains present different levels of virulence, limiting vaccine efficacy, for which the molecular basis remains unknown. Moreover, there are no genetic tools currently available for ER manipulation, thus limiting the knowledge of the genes/proteins that are essential for ER pathogenesis and biology. As such, to identify proteins and/or mechanisms involved in ER virulence, we performed the first exhaustive comparative proteomic analysis between a virulent strain (ERGvir) and its high-passaged attenuated strain (ERGatt). Despite their different behaviors in vivo and in vitro, our results from 1DE-nanoLC-MS/MS showed that ERGvir and ERGatt share 80% of their proteins; this core proteome includes chaperones, proteins involved in metabolism, protein-DNA-RNA biosynthesis and processing, and bacterial effectors. Conventional 2DE revealed that 85% of the identified proteins are proteoforms, suggesting that post-translational modifications (namely glycosylation) are important in ER biology. Strain-specific proteins were also identified: while ERGatt has an increased number and overexpression of proteins involved in cell division, metabolism, transport and protein processing, ERGvir shows an overexpression of proteins and proteoforms (DIGE experiments) involved in pathogenesis such as Lpd, AnkA, VirB9 and B10, providing molecular evidence for its increased virulence in vivo and in vitro. Overall, our work reveals that ERGvir and ERGatt proteomes are streamlined to fulfill their biological function (maximum virulence for ERGvir and replicative capacity for ERGatt), and we provide both pioneering data and novel insights into the pathogenesis of this obligate intracellular bacterium.  相似文献   

2.
The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113.  相似文献   

3.
A Novel Family of Ubiquitous Heavy Metal Ion Transport Proteins   总被引:33,自引:0,他引:33  
We describe a novel diverse family of metal ion transporter (CDF) proteins (the cation diffusion facilitator (CDF) family) with members occurring in both prokaryotes and eukaryotes. Thirteen sequenced protein members of the CDF family have been identified, several of which have been shown to transport cobalt, cadmium and/or zinc. All members of the CDF family possess six putative transmembrane spanners with strongest conservation in the four N-terminal spanners, and on the basis of the analyses, we present a unified structural model. Members of the family are shown to exhibit an unusual degree of size variation, sequence divergence, and differences in cell localization and polarity. The phylogenetic tree for the CDF family reveals that prokaryotic and eukaryotic proteins cluster separately. It allows functional predictions for some uncharacterized members of this family. A signature sequence specific for the CDF family is derived. Received: 15 July 1996/Revised: 21 October 1996  相似文献   

4.
WASP family proteins control actin polymerization by activating the Arp2/3 complex. Several subfamilies exist, but their regulation and physiological roles are not well understood, nor is it even known if all subfamilies have been identified. Our extensive search reveals few novel WASP family proteins. The WASP, WASH, and SCAR/WAVE subfamilies are evolutionarily ancient, with WASH the most universally present, whereas WHAMM/JMY first appears in invertebrates. An unusual Dictyostelium WASP homologue that has lost the WH1 domain has retained its function in clathrin-mediated endocytosis, demonstrating that WASPs can function with a remarkably diverse domain topology. The WASH and SCAR/WAVE regulatory complexes are much more rigidly maintained; their domain topology is highly conserved, and all subunits are present or lost together, showing that the complexes are ancient and functionally interdependent. Finally, each subfamily has a distinctive C motif, indicating that this motif plays a specific role in each subfamily''s function, unlike the generic V and A motifs. Our analysis identifies which features are universally conserved, and thus essential, and which are branch-specific modifications. It also shows the WASP family is more widespread and diverse than currently appreciated and unexpectedly biases the physiological role of the Arp2/3 complex toward vesicle traffic.  相似文献   

5.
6.
红海榄根部盐胁迫反应的比较蛋白质组学分析   总被引:3,自引:0,他引:3  
红海榄(Rhizophora stylosa)是一种典型的红树林盐生植物.本研究利用蛋白组学技术对淡栽(R0)和3% NaCl盐栽(R3)处理后的红海榄根部总蛋白进行了比较研究.双向电泳图谱的结果表明,R0和R3分别有981和972个蛋白点,蛋白点主要集中在分子量28~70 kD,等电点4.0~8.5之间. R0和R3之间差异明显的有15个蛋白点.其中,8个蛋白的表达量在R0中表达增高(10倍),而在R3中相对下降.另外,7个蛋白的表达量在R0中较低,而在R3中表达量显著增高.对这15个蛋白点进行肽质量指纹图谱分析,10个蛋白点找到匹配蛋白.功能预测分析发现,在盐水栽培上调的蛋白质一般与逆境胁迫有关,淡水栽培上调的蛋白质一般与基本代谢有关.这些研究结果为进一步研究红海榄的耐盐机理提供了有意义的线索.  相似文献   

7.
Integral membrane transport proteins homologous to those found in the Transporter Classification Database (TCDB; www.tcdb.org ) were identified and bioinformatically characterized by transporter class, family, and substrate specificity in three ciliates, Paramecium tetraurelia (Para), Tetrahymena thermophila (Tetra), and Ichthyophthirius multifiliis (Ich). In these three organisms, 1,326 of 39,600 proteins (3.4%), 1,017 of 24,800 proteins (4.2%), and 504 out of 8,100 proteins (6.2%) integral membrane transport proteins were identified, respectively. Thus, an inverse relationship was observed between the % transporters identified and the number of total proteins per genome reported. This surprising observation provides insight into the evolutionary process, giving rise to genome reduction following whole genome duplication (as in the case of Para) or during pathogenic association with a host organism (Ich). Of these transport proteins in Para and Tetra, about 41% were channels (more than any other type of organism studied), 31% were secondary carriers (fewer than most eukaryotes) and 26% were primary active transporters, mostly ATP‐hydrolysis driven (more than most other eukaryotes). In Ich, the number of channels was selectively reduced by 66%, relative to Para and Tetra. Para has four times more inorganic anion transporters than Tetra, and Ich has nonselectively lost most of these. Tetra and Ich preferentially transport sugars and monocarboxylates while Para prefers di‐ and tricarboxylates. These observations serve to characterize the transport proteins of these related ciliates, providing insight into their nutrition and metabolism.  相似文献   

8.
9.
10.
Streptococcus pseudopneumoniae (SPPN) is a recently described species of the viridans group streptococci (VGS). Although the pathogenic potential of S. pseudopneumoniae remains uncertain, it is most commonly isolated from patients with underlying medical conditions, such as chronic obstructive pulmonary disease. S. pseudopneumoniae can be distinguished from the closely related species, S. pneumoniae and S. mitis, by phenotypic characteristics, including optochin resistance in the presence of 5% CO2, bile insolubility, and the lack of the pneumococcal capsule. Previously, we reported the draft genome sequence of S. pseudopneumoniae IS7493, a clinical isolate obtained from an immunocompromised patient with documented pneumonia. Here, we use comparative genomics approaches to identify similarities and key differences between S. pseudopneumoniae IS7493, S. pneumoniae and S. mitis. The genome structure of S. pseudopneumoniae IS7493 is most closely related to that of S. pneumoniae R6, but several recombination events are evident. Analysis of gene content reveals numerous unique features that distinguish S. pseudopneumoniae from other streptococci. The presence of loci for competence, iron transport, pneumolysin production and antimicrobial resistance reinforce the phylogenetic position of S. pseudopneumoniae as an intermediate species between S. pneumoniae and S. mitis. Additionally, the presence of several virulence factors and antibiotic resistance mechanisms suggest the potential of this commensal species to become pathogenic or to contribute to increasing antibiotic resistance levels seen among the VGS.  相似文献   

11.
去甲斑蝥素是我国自行研制的抗肿瘤药物,在临床上主要用于消化道肿瘤的治疗.实验表明,去甲斑蝥素可引起人胃癌BGC-823细胞发生 M期阻滞及细胞凋亡.进一步利用双向电泳和质谱技术,筛选出了去甲斑蝥素抑癌作用相关蛋白.研究显示,线粒体热休克蛋白CH60、线粒体ATP合酶d亚单位、内质网葡萄糖调节蛋白GRP78、线粒体Hsp70的辅助因子GRPE1、SH3L3以及染色质组装因子1小亚基RBBP4参与了去甲斑蝥素的抑癌作用.研究提示,去甲斑蝥素可能通过促进线粒体热休克蛋白及p53的表达进而激活caspase-3依赖的凋亡通路,并且去甲斑蝥素在引发内质网协迫之后,可通过抑制胞外信号调节激酶(extracellular signal regulated kinase, ERK)的活性促进肿瘤细胞的凋亡.进一步分析了去甲斑蝥素与线粒体ATP合酶抑制剂寡霉素A的联合用药对人胃癌细胞生长的影响,结果表明,联合用药的抑瘤效果比单独用药的抑瘤效果显著,提示去甲斑蝥素可能通过抑制线粒体ATP合酶功能抑制BGC-823生长.上述结果为优化去甲斑蝥素的联合用药方案提供了新线索.  相似文献   

12.
13.
Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria.  相似文献   

14.
Plant fungal pathogens secrete numerous proteins into the apoplast at the plant–fungus contact sites to facilitate colonization. However, only a few secretory proteins were functionally characterized in Magnaporthe oryzae, the fungal pathogen causing rice blast disease worldwide. Asparagine-linked glycosylation 3 (Alg3) is an α-1,3-mannosyltransferase functioning in the N-glycan synthesis of N-glycosylated secretory proteins. Fungal pathogenicity and cell wall integrity are impaired in Δalg3 mutants, but the secreted proteins affected in Δalg3 mutants are largely unknown. In this study, we compared the secretomes of the wild-type strain and the Δalg3 mutant and identified 51 proteins that require Alg3 for proper secretion. These proteins were predicted to be involved in metabolic processes, interspecies interactions, cell wall organization, and response to chemicals. Nine proteins were selected for further validation. We found that these proteins were localized at the apoplastic region surrounding the fungal infection hyphae. Moreover, the N-glycosylation of these proteins was significantly changed in the Δalg3 mutant, leading to the decreased protein secretion and abnormal protein localization. Furthermore, we tested the biological functions of two genes, INV1 (encoding invertase 1, a secreted invertase) and AMCase (encoding acid mammalian chinitase, a secreted chitinase). The fungal virulence was significantly reduced, and the cell wall integrity was altered in the Δinv1 and Δamcase mutant strains. Moreover, the N-glycosylation was essential for the function and secretion of AMCase. Taken together, our study provides new insight into the role of N-glycosylated secretory proteins in fungal virulence and cell wall integrity.  相似文献   

15.
Tuberculosis caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (MTB) strains is a growing problem in many countries. The availability of the complete nucleotide sequences of several MTB genomes allows to use the comparative genomics as a tool to study the relationships of strains and differences in their evolutionary history including acquisition of drug-resistance. In our work, we sequenced three genomes of Russian MTB strains of different phenotypes – drug susceptible, MDR and XDR. Of them, MDR and XDR strains were collected in Tomsk (Siberia, Russia) during the local TB outbreak in 1998–1999 and belonged to rare KQ and KY families in accordance with IS6110 typing, which are considered endemic for Russia. Based on phylogenetic analysis, our isolates belonged to different genetic families, Beijing, Ural and LAM, which made the direct comparison of their genomes impossible. For this reason we performed their comparison in the broader context of all M. tuberculosis genomes available in GenBank. The list of unique individual non-synonymous SNPs for each sequenced isolate was formed by comparison with all SNPs detected within the same phylogenetic group. For further functional analysis, all proteins with unique SNPs were ascribed to 20 different functional classes based on Clusters of Orthologous Groups (COG). We have confirmed drug resistant status of our isolates that harbored almost all known drug-resistance associated mutations. Unique SNPs of an XDR isolate CTRI-4XDR, belonging to a Beijing family were compared in more detail with SNPs of additional 14 Russian XDR strains of the same family. Only type specific mutations in genes of repair, replication and recombination system (COG category L) were found common within this group. Probably the other unique SNPs discovered in CTRI-4XDR may have an important role in adaptation of this microorganism to its surrounding and in escape from antituberculosis drugs treatment.  相似文献   

16.
Legionella pneumophila, which is a causative pathogen of Legionnaires'' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE) combined with Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry (MALDI-TOF-MS). Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB) biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins) were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs). Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.  相似文献   

17.
Acidovorax citrulli (Ac) is the causative agent of bacterial fruit blotch disease in watermelon. Since resistant cultivars have not yet been developed, the virulence factors/mechanisms of Ac need to be characterized. This study reports the functions of a putative pyridoxal phosphate-dependent aminotransferase (PpdaAc) that transfers amino groups to its substrates and uses pyridoxal phosphate as a coenzyme. It was observed that a ppdaAc knockout mutant had a significantly reduced virulence in watermelon when introduced via germinated-seed inoculation as well as leaf infiltration. Comparative proteomic analysis predicted the cellular mechanisms related to PpdaAc. Apart from causing virulence, the PpdaAc may have significant roles in energy production, cell membrane, motility, chemotaxis, post-translational modifications, and iron-related mechanisms. Therefore, it is postulated that PpdaAc may possess pleiotropic effects. These results provide new insights into the functions of a previously unidentified PpdaAc in Ac.  相似文献   

18.
Fusarium spp. isolated from diseased Euphorbia spp. in Europe were assessed for pathogenicity to North American accessions of leafy spurge ( Euphorbia esula/virgata ). Of the nine strains of Fusarium spp. isolated from diseased E. stepposa or E. virgata in the Caucasus region of Russia and E. esula/virgata in southern France, all were pathogenic to leafy spurge. There were significant differences in virulence among strains. Four strains, including the two that were most virulent, were identified as F. oxysporum . Four of the five other strains were identified as F. solani and one was identified as F. proliferatum . Three of the four most virulent strains to leafy spurge were isolated from E. stepposa . The most virulent strain was associated with root damage caused by insect biological control agents, as found earlier with domestic strains of Fusarium spp. pathogenic to leafy spurge. Two strains identified as F. solani were vegetatively compatible. It was concluded that further screening of a larger set of strains of foreign Fusarium spp. under quarantine conditions in the US or in limited overseas facilities would be justified, and could yield promising biological control agents for leafy spurge.  相似文献   

19.
Background Mycobacterium ulcerans is the fundamental agent of the third most common Mycobacterial disease known as Buruli Ulcer (BU). It is an infection of the skin and soft tissue affecting the human population worldwide. Presently, the vaccine is not available against BU.ObjectiveThis study aimed to investigate the vaccine potential of virulence proteins of M. ulcerans computationally.MethodsChromosome encoded virulence proteins of Mycobacterium ulcerans strain Agy99 were selected, which were available at the VFDB database. These proteins were analyzed for their subcellular localization, antigenicity, and human non-homology analysis. Ten virulence factors were finally chosen and analyzed for further study. Three-dimensional structures for selected proteins were predicted using Phyre2. B cell and T cell epitope analysis was done using methods available at Immune Epitope Database and Analysis Resource. Antigenicity, allergenicity, and toxicity analysis were also done to predict epitopes. Molecular docking analysis was done for T cell epitopes, those showing overlap with B cell epitopes.ResultsSelected virulence proteins were predicted with B cell and T cell epitopes. Some of the selected proteins were found to be already reported as antigenic in other mycobacteria. Some of the predicted epitopes also had similarities with experimentally identified epitopes of M. ulcerans and M. tuberculosis which further supported our predictions.ConclusionIn-silico approach used for the vaccine candidate identification predicted some virulence proteins that could be proved important in future vaccination strategies against this chronic disease. Predicted epitopes require further experimental validation for their potential use as peptide vaccines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号