首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome‐wide association (GWA) studies based on GBLUP models are a common practice in animal breeding. However, effect sizes of GWA tests are small, requiring larger sample sizes to enhance power of detection of rare variants. Because of difficulties in increasing sample size in animal populations, one alternative is to implement a meta‐analysis (MA), combining information and results from independent GWA studies. Although this methodology has been used widely in human genetics, implementation in animal breeding has been limited. Thus, we present methods to implement a MA of GWA, describing the proper approach to compute weights derived from multiple genomic evaluations based on animal‐centric GBLUP models. Application to real datasets shows that MA increases power of detection of associations in comparison with population‐level GWA, allowing for population structure and heterogeneity of variance components across populations to be accounted for. Another advantage of MA is that it does not require access to genotype data that is required for a joint analysis. Scripts related to the implementation of this approach, which consider the strength of association as well as the sign, are distributed and thus account for heterogeneity in association phase between QTL and SNPs. Thus, MA of GWA is an attractive alternative to summarizing results from multiple genomic studies, avoiding restrictions with genotype data sharing, definition of fixed effects and different scales of measurement of evaluated traits.  相似文献   

2.
Cohort studies typically sample unrelated individuals from a population, although family members of index cases may also be recruited to investigate shared familial risk factors. Recruitment of family members may be incomplete or ancillary to the main cohort, resulting in a mixed sample of independent family units, including unrelated singletons and multiplex families. Multiple methods are available to perform genome-wide association (GWA) analysis of binary or continuous traits in families, but it is unclear whether methods known to perform well on ascertained pedigrees, sibships, or trios are appropriate in analysis of a mixed unrelated cohort and family sample. We present simulation studies based on Multi-Ethnic Study of Atherosclerosis (MESA) pedigree structures to compare the performance of several popular methods of GWA analysis for both quantitative and dichotomous traits in cohort studies. We evaluate approaches suitable for analysis of families, and combined the best performing methods with population-based samples either by meta-analysis, or by pooled analysis of family- and population-based samples (mega-analysis), comparing type 1 error and power. We further assess practical considerations, such as availability of software and ability to incorporate covariates in statistical modeling, and demonstrate our recommended approaches through quantitative and binary trait analysis of HDL cholesterol (HDL-C) in 2,553 MESA family- and population-based African-American samples. Our results suggest linear modeling approaches that accommodate family-induced phenotypic correlation (e.g., variance-component model for quantitative traits or generalized estimating equations for dichotomous traits) perform best in the context of combined family- and population-based cohort GWAS.  相似文献   

3.
Phenotypic misclassification (between cases) has been shown to reduce the power to detect association in genetic studies. However, it is conceivable that complex traits are heterogeneous with respect to individual genetic susceptibility and disease pathophysiology, and that the effect of heterogeneity has a larger magnitude than the effect of phenotyping errors. Although an intuitively clear concept, the effect of heterogeneity on genetic studies of common diseases has received little attention. Here we investigate the impact of phenotypic and genetic heterogeneity on the statistical power of genome wide association studies (GWAS). We first performed a study of simulated genotypic and phenotypic data. Next, we analyzed the Wellcome Trust Case-Control Consortium (WTCCC) data for diabetes mellitus (DM) type 1 (T1D) and type 2 (T2D), using varying proportions of each type of diabetes in order to examine the impact of heterogeneity on the strength and statistical significance of association previously found in the WTCCC data. In both simulated and real data, heterogeneity (presence of “non-cases”) reduced the statistical power to detect genetic association and greatly decreased the estimates of risk attributed to genetic variation. This finding was also supported by the analysis of loci validated in subsequent large-scale meta-analyses. For example, heterogeneity of 50% increases the required sample size by approximately three times. These results suggest that accurate phenotype delineation may be more important for detecting true genetic associations than increase in sample size.  相似文献   

4.
A recent study by Cheung et al. demonstrates how to identify expression quantitative trait loci (eQTLs) underlying gene expression phenotypes through a combination of genome-wide linkage analysis and subsequent fine mapping or by genome-wide association (GWA) analysis. This study emphasizes the complexity of human traits, highlighting the challenges faced by investigators--in particular, insufficient linkage disequilibrium between the trait and marker variant, genetic heterogeneity and correcting for multiple testing will all adversely impact the power to detect loci by association. These issues must be considered carefully if the GWA approach is to succeed in mapping complex phenotypes.  相似文献   

5.
In contrast to large GWA studies based on thousands of individuals and large meta-analyses combining GWAS results, we analyzed a small case/control sample for uric acid nephrolithiasis. Our cohort of closely related individuals is derived from a small, genetically isolated village in Sardinia, with well-characterized genealogical data linking the extant population up to the 16(th) century. It is expected that the number of risk alleles involved in complex disorders is smaller in isolated founder populations than in more diverse populations, and the power to detect association with complex traits may be increased when related, homogeneous affected individuals are selected, as they are more likely to be enriched with and share specific risk variants than are unrelated, affected individuals from the general population. When related individuals are included in an association study, correlations among relatives must be accurately taken into account to ensure validity of the results. A recently proposed association method uses an empirical genotypic covariance matrix estimated from genome-screen data to allow for additional population structure and cryptic relatedness that may not be captured by the genealogical data. We apply the method to our data, and we also investigate the properties of the method, as well as other association methods, in our highly inbred population, as previous applications were to outbred samples. The more promising regions identified in our initial study in the genetic isolate were then further investigated in an independent sample collected from the Italian population. Among the loci that showed association in this study, we observed evidence of a possible involvement of the region encompassing the gene LRRC16A, already associated to serum uric acid levels in a large meta-analysis of 14 GWAS, suggesting that this locus might lead a pathway for uric acid metabolism that may be involved in gout as well as in nephrolithiasis.  相似文献   

6.

Background  

Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies.  相似文献   

7.
Many genetic loci and SNPs associated with many common complex human diseases and traits are now identified. The total genetic variance explained by these loci for a trait or disease, however, has often been very small. Much of the "missing heritability" has been revealed to be hidden in the genome among the large number of variants with small effects. Several recent studies have reported the presence of multiple independent SNPs and genetic heterogeneity in trait-associated loci. It is therefore reasonable to speculate that such a phenomenon could be common among loci known to be associated with a complex trait or disease. For testing this hypothesis, a total of 117 loci known to be associated with rheumatoid arthritis (RA), Crohn disease (CD), type 1 diabetes (T1D), or type 2 diabetes (T2D) were selected. The presence of multiple independent effects was assessed in the case-control samples genotyped by the Wellcome Trust Case Control Consortium study and imputed with SNP genotype information from the HapMap Project and the 1000 Genomes Project. Eleven loci with evidence of multiple independent effects were identified in the study, and the number was expected to increase at larger sample sizes and improved statistical power. The variance explained by the multiple effects in a locus was much higher than the variance explained by the single reported SNP effect. The results thus significantly improve our understanding of the allelic structure of these individual disease-associated loci, as well as our knowledge of the general genetic mechanisms of common complex traits and diseases.  相似文献   

8.
Gene flow between diverging populations experiencing dissimilar ecological conditions can theoretically constrain adaptive evolution. To minimize the effect of gene flow, alleles underlying traits essential for local adaptation are predicted to be located in linked genome regions with reduced recombination. Local reduction in gene flow caused by selection is expected to produce elevated divergence in these regions. The highly divergent crab‐adapted and wave‐adapted ecotypes of the marine snail Littorina saxatilis present a model system to test these predictions. We used genome‐wide association (GWA) analysis of geometric morphometric shell traits associated with microgeographic divergence between the two L. saxatilis ecotypes within three separate sampling sites. A total of 477 snails that had individual geometric morphometric data and individual genotypes at 4,066 single nucleotide polymorphisms (SNPs) were analyzed using GWA methods that corrected for population structure among the three sites. This approach allowed dissection of the genomic architecture of shell shape divergence between ecotypes across a wide geographic range, spanning two glacial lineages. GWA revealed 216 quantitative trait loci (QTL) with shell size or shape differences between ecotypes, with most loci explaining a small proportion of phenotypic variation. We found that QTL were evenly distributed across 17 linkage groups, and exhibited elevated interchromosomal linkage, suggesting a genome‐wide response to divergent selection on shell shape between the two ecotypes. Shell shape trait‐associated loci showed partial overlap with previously identified outlier loci under divergent selection between the two ecotypes, supporting the hypothesis of diversifying selection on these genomic regions. These results suggest that divergence in shell shape between the crab‐adapted and wave‐adapted ecotypes is produced predominantly by a polygenic genomic architecture with positive linkage disequilibrium among loci of small effect.  相似文献   

9.

Background

Characterizing the genetic determinants of complex diseases can be further augmented by incorporating knowledge of underlying structure or classifications of the genome, such as newly developed mappings of protein-coding genes, epigenetic marks, enhancer elements and non-coding RNAs.

Methods

We apply a simple class-level testing framework, termed Genetic Class Association Testing (GenCAT), to identify protein-coding gene association with 14 cardiometabolic (CMD) related traits across 6 publicly available genome wide association (GWA) meta-analysis data resources. GenCAT uses SNP-level meta-analysis test statistics across all SNPs within a class of elements, as well as the size of the class and its unique correlation structure, to determine if the class is statistically meaningful. The novelty of findings is evaluated through investigation of regional signals. A subset of findings are validated using recently updated, larger meta-analysis resources. A simulation study is presented to characterize overall performance with respect to power, control of family-wise error and computational efficiency. All analysis is performed using the GenCAT package, R version 3.2.1.

Results

We demonstrate that class-level testing complements the common first stage minP approach that involves individual SNP-level testing followed by post-hoc ascribing of statistically significant SNPs to genes and loci. GenCAT suggests 54 protein-coding genes at 41 distinct loci for the 13 CMD traits investigated in the discovery analysis, that are beyond the discoveries of minP alone. An additional application to biological pathways demonstrates flexibility in defining genetic classes.

Conclusions

We conclude that it would be prudent to include class-level testing as standard practice in GWA analysis. GenCAT, for example, can be used as a simple, complementary and efficient strategy for class-level testing that leverages existing data resources, requires only summary level data in the form of test statistics, and adds significant value with respect to its potential for identifying multiple novel and clinically relevant trait associations.  相似文献   

10.
Complexity and power in case-control association studies   总被引:12,自引:0,他引:12       下载免费PDF全文
A general method is described for estimation of the power and sample size of studies relating a dichotomous phenotype to multiple interacting loci and environmental covariates. Either a simple case-control design or more complex stratified sampling may be used. The method can be used to design individual studies, to evaluate the power of alternative test statistics for complex traits, and to examine general questions of study design through explicit scenarios. The method is used here to study how the power of association tests is affected by problems of allelic heterogeneity and to investigate the potential role for collective testing of sets of related candidate genes in the presence of locus heterogeneity. The results indicate that allele-discovery efforts are crucial and that omnibus tests or collective testing of alleles can be substantially more powerful than separate testing of individual allelic variants. Joint testing of multiple candidate loci can also dramatically improve power, despite model misspecification and inclusion of irrelevant loci, but requires an a priori hypothesis defining the set of loci to investigate.  相似文献   

11.
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study.  相似文献   

12.
Large genome-wide association studies have reported hundreds of genetic markers associated with lipid levels. However, the discovery and estimated effect of variants at these loci, derived from samples of exclusively European descent, may not generalize to the majority of the world populations. We examined the collective strength of association among these loci in a diverse set of U.S. populations from the Multi-Ethnic Study of Atherosclerosis. We constructed a genetic risk score for each lipid outcome based on previously identified lipid-associated genetic markers, and examined the relationship between the genetic risk scores and corresponding outcomes. We discover this relationship was often moderated by race/ethnicity. Our findings provide insight into the generalizability and predictive utility of large sample size meta-analyses results when leveraging data from a single population. We hope these findings will encourage researchers to investigate genetic susceptibility in more diverse populations and explore the source of such discrepancies. Until then, we caution clinicians, genetic counselors, and genetic testing consumers when interpreting genetic data on complex traits.  相似文献   

13.
We examined sex differences in familial resemblance for a broad range of behavioral, psychiatric and health related phenotypes (122 complex traits) in children and adults. There is a renewed interest in the importance of genotype by sex interaction in, for example, genome-wide association (GWA) studies of complex phenotypes. If different genes play a role across sex, GWA studies should consider the effect of genetic variants separately in men and women, which affects statistical power. Twin and family studies offer an opportunity to compare resemblance between opposite-sex family members to the resemblance between same-sex relatives, thereby presenting a test of quantitative and qualitative sex differences in the genetic architecture of complex traits. We analyzed data on lifestyle, personality, psychiatric disorder, health, growth, development and metabolic traits in dizygotic (DZ) same-sex and opposite-sex twins, as these siblings are perfectly matched for age and prenatal exposures. Sample size varied from slightly over 300 subjects for measures of brain function such as EEG power to over 30,000 subjects for childhood psychopathology and birth weight. For most phenotypes, sample sizes were large, with an average sample size of 9027 individuals. By testing whether the resemblance in DZ opposite-sex pairs is the same as in DZ same-sex pairs, we obtain evidence for genetic qualitative sex-differences in the genetic architecture of complex traits for 4% of phenotypes. We conclude that for most traits that were examined, the current evidence is that same the genes are operating in men and women.  相似文献   

14.
Bayesian methods are widely used in the GWAS meta-analysis. But the considerable consumption in both computing time and memory space poses great challenges for large-scale meta-analyses. In this research, we propose an algorithm named SMetABF to rapidly obtain the optimal ABF in the GWAS meta-analysis, where shotgun stochastic search (SSS) is introduced to improve the Bayesian GWAS meta-analysis framework, MetABF. Simulation studies confirm that SMetABF performs well in both speed and accuracy, compared to exhaustive methods and MCMC. SMetABF is applied to real GWAS datasets to find several essential loci related to Parkinson’s disease (PD) and the results support the underlying relationship between PD and other autoimmune disorders. Developed as an R package and a web tool, SMetABF will become a useful tool to integrate different studies and identify more variants associated with complex traits.  相似文献   

15.
Nitrous oxide (N2O) is the third important long-lived greenhouse gas next to carbon dioxide and methane and croplands are considered biogeochemical hotspots of soil N2O emissions. To reduce soil N2O and other greenhouse emissions, climate-smart agricultural practices including biochar application have been applied. Many studies have been conducted with biochar application but results from these studies are not conclusive. To address this issue, meta-analysis, a quantitative review that synthesizes results from multiple independent studies, has been widely used. The results from different meta-analyses also differ but are seldomly evaluated. In this study, we evaluated meta-analyses on the effects of biochar application on soil N2O emissions. A grand mean response ratio (RR) was further proposed to estimate an overall effect and the impacts of experiment setting, properties of biochar and soil, and agricultural practices. We found 18 meta-analysis papers were published between 2014 and 2022. Sample size (publications or experiments) varied from less than 30 to more than 1000, with a mean sample size of 275. RR was calculated in all studies except one. While four meta-analyses did not find a significant effect of biochar application on soil N2O emissions, all others reported reductions of soil N2O emissions, but the magnitude ranged from −10.5% to −54.8%. Synthesizing all results from these meta-analyses, we found that biochar application overall significantly reduced the soil N2O emissions by 38.8%. The impacts increased with experimental duration till one and half years and reduced after that. Biochar application rate and C:N ratio had large influence on the effects of biochar application on soil N2O emissions. This study demonstrated that while meta-analysis provides a more comprehensive and better estimation, the inconsistence among these studies may need to be further evaluated. A grand mean RR based on meta-analyses could be more accurate and representative than single meta-analysis.  相似文献   

16.
With the advent of genome-wide association (GWA) studies, researchers are hoping that reliable genetic association of common human complex diseases/traits can be detected. Currently, there is an increasing enthusiasm about GWA and a number of GWA studies have been published. In the field a common practice is that replication should be used as the gold standard to validate an association finding. In this article, based on empirical and theoretical data, we emphasize that replication of GWA findings can be quite difficult, and should not always be expected, even when true variants are identified. The probability of replication becomes smaller with the increasing number of independent GWA studies if the power of individual replication studies is less than 100% (which is usually the case), and even a finding that is replicated may not necessarily be true. We argue that the field may have unreasonably high expectations on success of replication. We also wish to raise the question whether it is sufficient or necessary to treat replication as the ultimate and gold standard for defining true variants. We finally discuss the usefulness of integrating evidence from multiple levels/sources such as genetic epidemiological studies (at the DNA level), gene expression studies (at the RNA level), proteomics (at the protein level), and follow-up molecular and cellular studies for eventual validation and illumination of the functional relevance of the genes uncovered.  相似文献   

17.
Johnson C  Drgon T  Walther D  Uhl GR 《PloS one》2011,6(7):e19210
Declaring "replication" from results of genome wide association (GWA) studies is straightforward when major gene effects provide genome-wide significance for association of the same allele of the same SNP in each of multiple independent samples. However, such unambiguous replication is unlikely when phenotypes display polygenic genetic architecture, allelic heterogeneity, locus heterogeneity and when different samples display linkage disequilibria with different fine structures. We seek chromosomal regions that are tagged by clustered SNPs that display nominally-significant association in each of several independent samples. This approach provides one "nontemplate" approach to identifying overall replication of groups of GWA results in the face of difficult genetic architectures. We apply this strategy to 1 M SNP GWA results for dependence on: a) alcohol (including many individuals with dependence on other addictive substances) and b) at least one illegal substance (including many individuals dependent on alcohol). This approach provides high confidence in rejecting the null hypothesis that chance alone accounts for the extent to which clustered, nominally-significant SNPs from samples of the same racial/ethnic background identify the same sets of chromosomal regions. It identifies several genes that are also reported in other independent alcohol-dependence GWA datasets. There is more modest confidence in: a) identification of individual chromosomal regions and genes that are not also identified by data from other independent samples, b) the more modest overlap between results from samples of different racial/ethnic backgrounds and c) the extent to which any gene not identified herein is excluded, since the power of each of these individual samples is modest. Nevertheless, the strong overlap identified among the samples with similar racial/ethnic backgrounds supports contributions to individual differences in vulnerability to addictions that come from newer allelic variants that are common in subsets of current humans.  相似文献   

18.
Genomewide association (GWA) studies assay hundreds of thousands of single nucleotide polymorphisms (SNPs) simultaneously across the entire genome and associate them with diseases, other biological or clinical traits. The association analysis usually tests each SNP as an independent entity and ignores the biological information such as linkage disequilibrium. Although the Bonferroni correction and other approaches have been proposed to address the issue of multiple comparisons as a result of testing many SNPs, there is a lack of understanding of the distribution of an association test statistic when an entire genome is considered together. In other words, there are extensive efforts in hypothesis testing, and almost no attempt in estimating the density under the null hypothesis. By estimating the true null distribution, we can apply the result directly to hypothesis testing; better assess the existing approaches of multiple comparisons; and evaluate the impact of linkage disequilibrium on the GWA studies. To this end, we estimate the empirical null distribution of an association test statistic in GWA studies using simulated population data. We further propose a convenient and accurate method based on adaptive spline to estimate the empirical value in GWA studies and validate our findings using a real data set. Our method enables us to fully characterize the null distribution of an association test that not only can be used to test the null hypothesis of no association, but also provides important information about the impact of density of the genetic markers on the significance of the tests. Our method does not require users to perform computationally intensive permutations, and hence provides a timely solution to an important and difficult problem in GWA studies.  相似文献   

19.
A recent meta-analysis of genome-wide association (GWA) studies identified 95 loci that influence lipid traits in the adult population and found that collectively these explained about 25–30% of heritability for each trait. Little is known about how these loci affect lipid levels in early life, but there is evidence that genetic effects on HDL- and LDL-cholesterol (HDL-C, LDL-C) and triglycerides vary with age. We studied Australian adults (N = 10,151) and adolescents (N = 2,363) who participated in twin and family studies and for whom we have lipid phenotypes and genotype information for 91 of the 95 genetic variants. Heterogeneity tests between effect sizes in adult and adolescent cohorts showed an excess of heterogeneity for HDL-C (pHet<0.05 at 5 out of 37 loci), but no more than expected by chance for LDL-C (1 out of 14 loci), or trigycerides (0 out 24). There were 2 (out of 5) with opposite direction of effect in adolescents compared to adults for HDL-C, but none for LDL-C. The biggest difference in effect size was for LDL-C at rs6511720 near LDLR, adolescents (0.021±0.033 mmol/L) and adults (0.157±0.023 mmol/L), pHet = 0.013; followed by ZNF664 (pHet = 0.018) and PABPC4 (pHet = 0.034) for HDL-C. Our findings suggest that some of the previously identified variants associate differently with lipid traits in adolescents compared to adults, either because of developmental changes or because of greater interactions with environmental differences in adults.  相似文献   

20.

Background  

Over the last few years, genome-wide association (GWA) studies became a tool of choice for the identification of loci associated with complex traits. Currently, imputed single nucleotide polymorphisms (SNP) data are frequently used in GWA analyzes. Correct analysis of imputed data calls for the implementation of specific methods which take genotype imputation uncertainty into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号